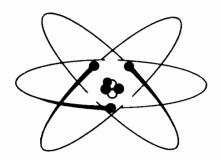

RADIOLOGICAL HEALTH


REVISED EDITION
JANUARY 1970

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE
Public Health Service

RADIOLOGICAL HEALTH HANDBOOK

Compiled and edited
by the
Bureau of Radiological Health
and the
Training Institute
Environmental Control Administration

Revised Edition January 1970

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

Public Health Service

Consumer Protection and Environmental Health Service Rockville, Maryland 20852

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price \$5.25

TABLE OF CONTENTS

Section	Pag
	FOREWORDii:
ı.	PHYSICAL, CHEMICAL, AND MATHEMATICAL DATA
II.	RADIOISOTOPE, DECAY, AND RADIOASSAY DATA 80
III.	RADIATION PROTECTION DATA
IV.	TABLE OF ISOTOPES Table I
v.	GLOSSARY41
۷I.	TNDEX

SECTION I PHYSICAL, CHEMICAL, AND MATHEMATICAL DATA

Pa	age
IGNS AND SYMBOLS Mathematics and Greek Alphabet	1
Alphabetically by Name	2
Alphabetically by Symbol	7
ONSTANTS	11
ONVERSION FACTORS	15
QUATIONS	26
ATHEMATICAL TABLES	
	36
	41 45
	46
	48
LECTROMAGNETIC SPECTRUM	50
TOMIC MASS TABLE (including binding energy)	51
ENSITY OF ELEMENTS AND COMMON MATERIALS	65
PERIODIC TABLE OF THE ELEMENTS	67
	68
HART OF THE NUCLIDES	69

SIGNS AND SYMBOLS

Mathematics

+	plus,	addition,	positive
---	-------	-----------	----------

- minus, subtraction, negative
- plus or minus,
 positive or negative
- ∓ minus or plus, negative or positive
- ÷,/,__ division
- $X, \cdot, ()$ multiplication
- (),[] collection
 - = equal to
 - ≠ not equal to
 - identical to
 - ≅ equals approximately, congruent
 - > greater than
 - > not greater than
 - ≥,≧ greater than or equal to
 - < less than
 - ≮ not less than
 - ≤,≦ less than or equal to
 - :: proportional to
 - : ratio
 - \sim similar to
 - ∞ varies as, proportional to
 - → approaches
 - ∞ infinity
 - : therefore

- √ square root
- ↑ nth root
- an nth power of a
- a^{-n} reciprocal of nth power of a, = $1/a^n$
- log, log10 common logarithm
 - ln, log. natural logarithm
 - e, e base of natural logs, 2.71828183 . . .
 - π pi, 3.14159265 . . .
 - _ angle
 - \perp perpendicular to
 - parallel to
 - n any number
 - n absolute value of n
 - n average value of n
 - no n degrees
 - n' n minutes, n feet
 - n" n seconds, n inches
 - f(x) function of x
 - Δx increment of x
 - dx differential of x
 - Σ summation of
 - sin sine
 - cos cosine
 - tan tangent

GREEK ALPHABET

- A α Alpha
- B & Beta
- Γ γ Gamma
- Δ δ Delta
- E & Epsilon
- Z ¿ Zeta
- H η Eta
- Θ θ Theta

- Ι ι Iota
- K K Kappa
- Λ λ Lambda
- M μ Mu
- N , Nu
- Ξ ξ Xi
- O o Omicron
- Π π Pi

- $P \rho Rho$
- Σ σ Sigma
- T τ Tau
- Υ υ Upsilon
- Φ φ Phi
- X x Chi
- Ψ ψ Psi
- 0

SIGNS AND SYMBOLS ALPHABETICALLY BY NAME

about ca
absoluteabs
absolute temperature (Kelvin) K
absorption coefficient, energy, for air = $\tau + \kappa + \sigma_a$ μ_a
absorption coefficient, linear, effective or apparent \mu
absorption cross section in barns $\sigma_{\mathtt{a}}$
acceleration, lineara
activation cross section in barns σ_{ac}
activity, original A ₀
alkali alk
alpha $lpha$
alpha particle α
alternating currenta.c.
ampere A, amp.
angle between incident and scattered radiation $ heta$
angstrom Å
anno (year)a
aquaaq.
aqueousaq.
•
approximatelyca
•
approximatelyca
approximatelyca areaA,σ
approximately ca area A, σ asymmetrical asym. atmosphere (atmospheric) atm, atmos. atomic mass number A
approximately ca area A, σ asymmetrical asym. atmosphere (atmospheric) atm, atmos. atomic mass number A atomic mass unit ¹² C u
approximately ca area A, σ asymmetrical asym. atmosphere (atmospheric) atm, atmos. atomic mass number A
approximately ca area A, σ asymmetrical asym. atmosphere (atmospheric) atm, atmos. atomic mass number A atomic mass unit ¹² C u
approximately ca area A, σ asymmetrical asym. atmosphere (atmospheric) atm, atmos. atomic mass number A atomic mass unit12 C u atomic mass unit16 0 (old) amu

averageav, avg.
Avogadro constantNA
barnb
barn (cross section) σ
base of natural logarithme
barometer bar.
betaβ,β¯,_0β
beta particle β ,
billion electron volt BeV, GeV
biological decay constant λ_b
biotBi
boiling pointb.p.
British thermal unit Btu
buildup factor b
caloriecal
candelacd
capacitanceC
CelsiusC
centi (prefix)c
centigradeC
centimetercm
centimeter-gram-second unit system CGS
chemicalchem.
chemistrychem.
circaca
circularcir.
circular millc.m.
coefficient coef.
cologarithm colog
Compton absorption coefficient σ_{a}
Compton collision coefficient $_{-}$ σ

Compton scatter coefficient σ_s
concentratedconc
concentrationC
concentration, airX
cosinecos
constantconst.
coulombC
count rateR
counts per minutecpm
cubiccu.
cubic centimetercc, c.cm., cu.cm., cm ³
cubic footcu.ft.
cubic foot per minutecfm
cubic inchcu.in.
cubic metercu.m.,m3
cubic millimetermm ³
cubic yardcu.yd.,
curieCi
curie (old)c
cylindercyl.
day d
decay constant
deci (prefix)d
decibeldB
decontamination factor DF
deka (prefix)da
density, generald
density, general or vapor $_{} ho$
deuterium D
deuteron d
dielectric constant ϵ
dilutedil
disintegrations per minute dpm

distribution factorDF
doseD
dose, absorbedD
dose equivalentDE
dynedyn
effective cross section in barns $\sigma_{\rm eff}$
eļectric chargeQ
electric field intensity \dots
electrone,e ⁻ ,- ⁰ ,e
electron capture ϵ
electron volteV
energyE,Q
exposureX
FahrenheitF
faradF
femto (prefix)f
film densityD
finite increment Δ
forceF
franklinFr
frequencyf
frequency (wave motion quantum theory) ν
gamma γ
gamma ray γ
gastrointestinalG.I.
gaussG
giga (prefix)G
gram g
gram-molecule weight mole
gravitational constantG
half-life, biologicalTb
half-life, effective $_{}$ $_{\text{eff}}$
half-life, physicalT
half-value laver

hecto (prefix) h
heighth
henry H
hertzHz
hourh
hundredweightcwt
initial intensity Io
insoluble insol.
intensity of radiationI
jouleJ
kayserK
KelvinK
kilo (prefix) k
kilogram kg
kilovolt constant potential kVcp
kilovolt peakkVp
kilowattkW
kilowatt-hourkWh
kinetic energyK.E.
length1
limit lim
linear lin
linear accelerationa
linear distanced,s
linear energy transfer LET
liquid liq
liter1
logarithmlog
logarithm, common log10
logarithm, natural (hyperbolic or Napierian logarithm) ln,loge
logarithm to the base eloge
logarithm to the base 10 log10
massm
mass of the hydrogen atomm _H
mass of the neutron m _n

mass of the protonmp
mass unit mu
maximum max
maxwell Mx
maximum permissible
concentration MPC
maximum permissible dose MPD
maximum permissible
radionuclide body burdenq
mean free path $\overline{1}$, $\overline{\lambda}$
median lethal dose LD ₅₀
medium med.
mega (prefix) M
megaelectron volts MeV
melting pointm.p.
meter m
meter-kilograms-second-
ampere system MKSA
micro (prefix)µ
microbarµbar
microcurieµCi
micromicro p
micromicro (use p)µμ
micromicron (use p) μμ
micron (old)
microsecondsµs
milli (prefix) m
millibarns mb
milligram mg
milliliter ml
millimeter mm
millimicro n
millimicron mu
minute m,min
mole mol
molecular weight mol.wt.

molecule mo	\1
momentump	,
nano (prefix)	
negatrone,	o~ 0
	e ,_1 e
neutrino	N
neutron	1 , N
neutron number	
newton	
numberN,	N_A , no.
number of radioactive atoms at zero time N_C)
number, original $N_{\text{\scriptsize C}}$	
${\tt numeric} ~ N$	
observed standard deviation S	
oersted 0e	•
ohm Ω	
original activity A _G	
ounce oz	2
pair production coefficient κ	
pico (prefix) p	
pint pt	
photoelectric coefficient $ au$	
photon energy h	,
Plank constant h	
poise P	
positrone	, ₊₁ e,
β <mark>*</mark> • +1	
	۲
potential V	
potential drop V	
potential energy P.	Ε.
pound 1b	·.
power factor p.	f.
precipitatedpr	recip.,
pressure p	
Protective Action Guide PA	\G

protonp
quality factor QF
quantity Q
quantumhv
radian, measure of angle; radioactivityA
Radiation Protection Guide RPG
Radioactivity Concentration GuideRCG
radio frequencyrf
radiusr
radius, nuclearR
range (radiation) R
reaction energy in MeVQ
relative biological effectiveness RBE
resistanceR
resolving time $ au$
rest mass of electron m_e
revolutions per minute rpm
roentgenR
roentgen (old)r
rutherford (obsolete)Rd
scattering cross section in barns $\sigma_{ m s}$
seconds
solubles,sol.
source to film distance SFD
source to skin distance SSD
square centimetercm ²
square meter m ²
square millimeter mm ²
standard temperature and pressures.t.p.
Stefan-Boltzman constant k
temperature, absoluteT
temperature, generalt
tera (prefix)T

teslaT	velocity, linear or particle	_ v
theoretical standard	watt	- W
deviation σ	wavelength	λ
timet	weber	Wb
time increment ϕ	weight	wt.
total cross section in barns $_{}\sigma_{t}$	work	
universal gas constant R	work function	
velocity of light in vacuum c	year (anno, annum)	

Prefixes

deci (= 10^{-1}) centi (= 10^{-2}) milli (= 10^{-3}) micro (= 10^{-6}) nano (= 10^{-9}) pico (= 10^{-12}) femto (= 10^{-15}) atto (= 10^{-18})	с m µ n	deka hecto kilo mega giga tera	(= 10) (= 10 ²) (= 10 ³) (= 10 ⁶) (= 10 ⁹) (= 10 ¹²)	da h k M G T
---	------------------	---	---	-----------------------------

SIGNS AND SYMBOLS ALPHABETICALLY BY SYMBOL

a acceleration, linear; anno (year); atto (prefix)	CGS centimeter-gram-second system
A ampere; area; atomic mass	chem chemical; chemistry
number; radioactivity	cir circular
Å angstrom	c.m circular mill
abs absolute	cmcentimeter
a.c alternating current	cm ² square centimeter
alk alkali	cm ³ cubic centimeter
amp ampere (use A)	coef coefficient
amu atomic mass unit ¹⁶ 0 (old) [use u)	colog cologarithm
A ₀ activity, original	conc concentrated
aq aqua; aqueous, water	const constant
asym asymmetrical	coscosine
at.no atomic number	cpm counts per minute
at.wt atomic weight	cucubic
at,	cu.cm cubic centimeter
atmos atmosphere (atmospheric)	cu.ft cubic foot
av, avg average	cu.in cubic inch
b barn; buildup factor	cu.mcubic meter
bar barometer	cu.yd cubic yard
BeV billion electron volt	cwt hundredweight
Bi biot	cylcylinder
b.p boiling point	d day; deci (prefix); density,
Btu British thermal unit	general; deuteron; dis- tance, linear
c velocity of light in vacuum; centi (prefix); curie (old) [use Ci)	D density, film; deuterium; dose; absorbed dose
Ccapacitance; Celsius;	dadeka (prefix)
centigrade; concentra-	dBdecibel
tion; coulomb	DE dose equivalent
ca about; approximately; circa	DF decontamination factor; distribution factor
cal calorie	dil dilute
cc cubic centimeter	dpm disintegration per minute
cdcandela	dyn dyne
cfm cubic foot per minute	ebase of natural logarithm

E	energy	lin
£	electric field intensity	liq
e,e	electron; negatron	1n
_0 e	electron; beta particle;	log
e ⁺ ,+1 e	positron	log _e
f	femto (prefix); frequency	
F	farad; fahrenheit; force	log ₁₀ _
Fr	franklin	- 310 -
G	gravitational constant; gauss; giga (prefix)	m
GeV	giga electron volts	m _e
G.I	gastrointestinal	m _H
h	Plank constant; hecto (pre- fix); height; hour	m _n
H	henry	m ²
hν	photon energy; quantum	m ³
HVL	half value layer	M
Hz	hertz	max
I	intensity of radiation	mb
I ₀	initial intensity	med
insol	insoluble	MeV
J	joule	mg
k	Stefan-Boltzman constant; kilo (prefix)	min
К	kayser; Kelvin; absolute temperature	MKSA
K.E	kinetic energy	m1
kg	kilogram	ww
kVp	kilovolt peak	mm ²
kVcp	kilovolt constant potential	mm ³
kW	kilowatt	mo1
kWh	kilowatt-hour	mol.wt
1	length; liter	mole
ī	mean free path	m.p
1b	pound	MPC
LD ₅₀	median lethal dose	MPD
LET	linear energy transfer	mu
lim	limit	

lin linear
liq liquid
ln natural logarithm
log logarithm
log _e logarithm to the base e; natural, hyperbolic or Napierian logarithm
log ₁₀ common logarithm; logarithm to the base 10
m mass; meter; milli (prefix); minute
m _e rest mass of electron
m_{H} mass of the hydrogen atom
m_{n} mass of the neutron
m_{p} mass of the proton
m ² square meter
m ³ cubic meter
M mega (prefix)
max maximum
mb millibarns
med medium
MeV megaelectron volts
mg milligram
min minute
MKSA meter-kilogram-second- ampere system
ml milliliter
mm millimeter
mm ² square millimeter
mm ³ cubic millimeter
mol mole; molecule
mol.wt molecular weight
mole gram-molecule weight
m.p melting point
MPC maximum permissible concentration
MPD maximum permissible dose
mu mass unit

Mx maxwell	RPG
mµ millimicron (use	nano) rpm
n nano (prefix)	s
on neutron	
N neutron; neutron newton; number;	
N _A Avogadro constant	t; number sol
no number	SSD
No number of radioac at zero time; r original	
Oe oersted	
oz ounce	T
p momentum; pico (p pressure	orefix);
P poise	T _{eff}
PAG Protective Action	n Guide $T_{\frac{1}{2}}$
P.E potential energy	u
p.f power factor	V
<pre>precip., pptd precipitated</pre>	v
pt point; pint	
q maximum permissib nuclide body bu	
Qelectric charge; quantity; react in MeV	x
QF quality factor	Z
r radius; radial di roentgen (old)	istance; $\beta, \beta^-, 0$
R range (radiation) count; resista roentgen; unive constant; radia	ance; $\gamma_{}$
rad radian, measure	of angle
RBE relative biologic tiveness	cal effec- $ heta_{}$
RCG Radioactivity Con Guide	ncentration K
-1	· · · · · · · · · · · · · · · · · · ·
Rd rutherford (obso	lete) λ

Į.	RPG Radiation Protection Guide
ano)	rpm revolutions per minute
	s distance, linear; second; soluble
umber;	S observed standard deviation
numeric	SFD source-to-film distance
number	sol soluble
	SSD source-to-skin distance
ive atoms mber,	s.t.p standard temperature and pressure
	t temperature, general; time; ton
efix);	T temperature, absolute; tera (prefix); tesla
,	T_{b} half-life, biological
	${f T}_{\sf eff}$ half-life, effective
Guide	$\mathtt{T}_{rac{1}{2}}$ half-life, physical
	uatomic mass unit ¹² C
	V potential; potential drop; volt; volume
	v velocity, linear or particle
e radio-	W watt; work
den µCi	Wb weber
nergy;	wt weight
on energy	$\mathbf{x}_{}$ absorber thickness
	Z atomic number
tance;	α_{\tt} alpha; alpha particle
ĺ	$\beta, \beta^-, {}_{-1}^{0}\beta_{}$ beta; beta particle
rate,	$\beta^+, {}_{1}^{0}\beta_{}$ positron
ce; sal gas	$\gamma_{ ext{}}$ gamma; gamma ray
, nuclear	$\Delta_{}$ finite increment
angle	<pre>electron capture; di- electric constant</pre>
l effec-	$ heta_{ extstyle}$ angle between incident and scattered radiation
entration	$\kappa_{}$ pair production coefficient
te)	$\lambda_{}$ decay constant; wave length
	$ar{\lambda}_{}$ mean free path

λ_{b} biological decay constant	σ absorption cross section in
μ absorption coefficient, effective or apparent,	barns; Compton absorption coefficient
linear; micro; micron (prefix)	$oldsymbol{\sigma}_{_{ m ac}}$ activation cross section in barns
μ_a = energy absorption coefficient for air	$oldsymbol{\sigma}_{ ext{eff}}$ effective cross section in barns
µbar microbar	$\sigma_{ m s}$ Compton scatter coefficient:
μCi microcurie	scattering cross section in barns
μμ micromicro; micromicron (use pico)	$oldsymbol{\sigma}_{rac{1}{4}}$ total cross section in barns
μs microseconds	$ au_{ extstyle}$ resolving time; photo-
ν frequency (wave motion	electric coefficient
quantum theory); neutrino	$\phi_{}$ work function; time incre-
ρ density, general or vapor	ment
σ area; barn (cross section)	Ωohm
theoretical standard deviation; Compton col- lision coefficient	X concentration, air

Prefixes

d c m n p f a	decí centi milli micro nano pico femto atto	$(= 10^{-1})$ $(= 10^{-3})$ $(= 10^{-3})$ $(= 10^{-6})$ $(= 10^{-12})$ $(= 10^{-15})$ $(= 10^{-18})$	da h k M G T	deka hecto kilo mega giga tera	(= 10) (= 10 ²) (= 10 ³) (= 10 ⁶) (= 10 ¹²)
---------------------------------	--	--	-----------------------------	---	---

CONSTANTS

Quantity		V a	lue (±)	MKSA	CGS
speed of light	c =	2.997	925	10 ⁸ m s ⁻¹	10 ¹⁰ cm s ⁻¹
Boltzmann constant	k =	1.380	54 18	10 ⁻²³ J°K ⁻¹	10 ⁻¹⁶ erg°K ⁻¹
mass hydrogen atom	m _H =	1.673	43 8	10 ⁻²⁷ kg	10 ⁻³⁴ g
proton mass	m _p =	1.672	52 8	10 ⁻²⁷ kg	10 ⁻²⁴ g
		1.007	276 62 8	u	u
neutron	m _n =	1.674	82 8	10 ⁻²⁷ kg	10 ⁻²⁴ g
		1.008	665 20 10	u	ս
electron mass	m _e =	9.109	4	10 ⁻³¹ kg	10 ⁻²⁸ g
		5.485	97 3	10 ⁻⁴ u	10 ⁻⁴ u
m	p/m _e =	1.836	10	10 ³	10 ³
charge of positron	e =	1.602	10	10 ⁻¹⁹ C	
	e =	4.802	98 20		10 ⁻¹⁰ esu
	e/c =	1.602	10 7		10 ⁻²⁰ emu
charge to mass ratio	e/m =	1.758	796 19	10 ¹¹ C kg ⁻¹	
	e/m =	5.272	74 6		10 ¹⁷ esu g ⁻¹
•	e/mc =	1.758	796 19		10 ⁷ emu g ⁻¹
electron radius	r _e =	2.817	77 11	10 ⁻¹⁵ m	10 ⁻¹³ cm
	r _e ² =	6.651	6 5	10 ⁻²⁹ m ²	10 ⁻²⁵ cm ²
Zeeman splitting consta e/4	ant 4πmc =	4.668	58 4	10 ¹ m ⁻¹ T ⁻¹	
e/4ī	mc ² =	4.668	58 4		10 ⁻⁵ cm ⁻¹ G ⁻¹

Quantity	Value (±)	MKSA	CGS
Planck constant h =	6.625 6	10 ⁻³⁴ J s	10 ⁻²⁷ erg s
$h/2\pi = \hbar =$	1.054 50 7	10 ⁻³⁴ J s	10 ⁻²⁷ erg s
h/e =	4.135 56 12	10 ⁻¹⁶ J s C ⁻¹	
h/e =	1.397 47 4		10 ⁻¹⁷ erg s esu ⁻¹
hc/e =	4.135 56 12		10 ⁻⁷ erg s emu ⁻¹
h/k =	4.799 3 6	10 ⁻¹¹ s °K	10 ⁻¹¹ s °K
1st radiation constant $c_1 = 2\pi hc^2 =$	3.741 5	10 ⁻¹⁶ W m ²	10 ⁻⁵ erg cm ² s ⁻¹
2nd radiation constant $c_2 = hc/k =$	1.438 79 19	10 ⁻² m °K	cm °K
Wien's radiation law $\lambda_{\text{max}}T = c_2/4.965 114 23 =$	2.897 8	10 ⁻³ m ° K	10 ⁻¹ cm °K
Stefan-Boltzmann constant $\sigma =$	5.669 7 2 9	10 ⁻⁸ W m ⁻² °K ⁻⁴	10 ⁻⁵ erg cm ⁻² s ⁻¹
fine structure constant $\alpha =$	7.297 20 10	10 ⁻³	10 ⁻³
$\alpha^{-1} =$	1.370 388	10 ⁸	10 ²
α ^a =	5.324 92 14	10 ⁻⁶	10 ⁻⁵
Bohr radius a ₀ =	5.291 67 7	10 ⁻¹¹ m	10 ⁻⁹ cm
Rydberg constant $R_{\infty} =$	1.097 373 1	10 ⁷ m ⁻¹	10 ⁵ cm ⁻¹
R _H =	1.096 775 8	10 ⁷ m ⁻¹	10 ⁵ cm ⁻¹
$R_{\infty}c$ =	3.289 842 4	10 ¹⁵ s ⁻¹	10 ¹⁶ s ⁻¹
R _∞ hc =	2.179 72 17	10 ⁻¹⁸ J	10 ⁻¹¹ erg

CONSTANTS -- Continued

Quantity	Value (±)	MKSA	CGS
Bohr magneton $\mu_B =$	9.273 2	10 ⁻²⁴ J T ⁻¹	10 ⁻²¹ erg G ⁻¹
magnetic moment of electron μ_e =	9.284 0 6	10 ⁻³⁴ J T ⁻¹	10 ⁻²¹ erg G ⁻¹
μ _e /μ _B =	1.001 159 615 15		
nuclear magneton $\mu_N =$	5.050 5 4	10 ⁻²⁷ J T ⁻¹	10 ⁻²⁴ erg G ⁻¹
magnetic moment of proton μ_p =	1.410 49	10 ⁻²⁶ J T ⁻¹	10 ⁻²³ erg G ⁻¹
$\mu_p/\mu_N =$	2.792 76 7		
gyromagnetic ratio of proton γ_p =	2.675 19	10 ⁸ s ⁻¹ T ⁻¹	10 ⁴ s ⁻¹ G ⁻¹
Compton wave lengths: of electron $\lambda_{Ce} = h/m_e =$	2.426 21	10 ⁻¹³ m	10 ⁻¹⁰ cm
$\lambda_{C}/2\pi =$	3.861 44 9	10 ⁻¹³ m	10 ⁻¹¹ cm
of proton $\lambda_{Cp} = h/m_p c =$	1.321 40	10 ⁻¹⁵ m	10 ⁻¹³ cm
$\lambda_{Cp}/2\pi =$	2.103 07 6	10 ⁻¹⁶ m	10 ⁻¹⁴ cm
of neutron $\lambda_{Cn} = h/m_n c =$	1.319 58	10 ⁻¹⁵ m	10 ⁻¹³ cm
$\lambda_{Cn}/2\pi =$	2.100 18	10 ⁻¹⁶ m	10 ⁻¹⁴ cm
•	6.022 52 28	10 ²³ mo1 ⁻¹	10 ²³ mo1 ⁻¹
molar volume of ideal gas at s.t.p. $V_m =$	2.241 36 30	10 ⁻³ m ³ mo1 ⁻¹ J mo1 ⁻¹ ° K ⁻¹ 10 ⁴ C mo1 ⁻¹	10 ⁴ cm ³ mol ⁻¹ 10 ⁷ erg mol ⁻¹⁰⁰ K ⁻¹
	8.314 3	J mol ⁻¹ °K ⁻¹	10 ⁷ erg mol ⁻¹⁰⁰ K ⁻¹
Faraday constant $F = N_A e =$	9.648 70 16	10 ⁴ C mo1 ⁻¹	
$F = N_A e =$ $F/c = N_A e/c =$	2.892 61 5		10 ¹⁴ esu mo1 ⁻¹
$F/c = N_A e/c =$	9.648 70 16		10 ³ emu mo1 ⁻¹

CONSTANTS -- Continued

Quantity		Value (±)	MKSA	cgs
curie	Ci =	3.7x10 ¹⁰ dps		
base of natural logarit		2.718 281 828 4		
gravitational accelerat		9.806 65	m s ⁻²	10 ² cm s ⁻²
pi	π =	3.141 592 653 59		
roentgen	R =	2.58×10 ⁻⁴ C kg ⁻¹		
energy equivalent of electron mass	mc ² =		0.51 MeV	
wave-length associated with 1 ${\tt eV}$	λ _o =	1.239 81	10 ⁻⁶ m	10 ⁻⁴ cm
ratio of chemical to unified mass scales r = M(0 = 16)/M(18C =	12) =	1.000 043 5		
$r = M(^{16}O = 16)/M(^{12}C =$	12) =	1.000 317 92 2		
mass unit, unified mass scale u = 1		1.660 43	10 ⁻²⁷ kg	10 ⁻²⁴ g

CONVERSION FACTORS

<u>AREA</u>

Multiply # of to obtain # of		
barns	10-24	cm²
circular mils	7.854×10 ⁻⁷	in. ²
cm ²	10 ²⁴	barns
cm ₃	0.1550	in. ²
cim ²	1.076×10 ⁻³	ft ²
cm ²	10-4	m ²
ft ²	929.0	cm²
ft ²	144	in ²
ft ²	9.290×10 ⁻²	m _s
in. ²	6,452	cm²
in. ²	6.944×10 ⁻³	ft ²
in. ²	6.452×10 ⁻⁴	m ²⁸
m ²	1550	in.ª
m ²	10.76	ft ²
m ²	1.196	yď ^a
m ²	3.861×10 ⁻⁷	sq mi
	<u>DENSITY</u>	
cm ³	1.602x10 ⁻²	ft ³ /lb
ft ⁸ /1b	62.43	cm ³ /g
g/cm ³	62.43	lb/ft ³
lb/ft ³	1.602x10 ⁻²	g/cm ³
lb/in. ³	27.68	g/cm ³
lb/gal	0.1198	g/cm ³

ELECTRICAL*

	→ to obtain # of → Divide # of
1	coulombs
2.998×10 ⁹	esu/sec
6.2418×10 ¹⁸	electrons/sec
3600.0	coulombs
0.03731	faradays
2.998×10 ⁹	statcoulombs
6.2418×10 ¹⁸	electronic charges
1.036×10 ⁻⁶	faradays
9.650×10 ⁴	amperes
26.80	ampere-hours
9.650×10 ⁴	coulombs
10 ⁶	microfarads
0.999835	amperes (absolute)
1.00033	volts (absolute)
1.000495	ohms (absolute)
9.654x10 ⁴	joules
-	farads
	megohms
10 ⁻⁶	ohms
1	joules/sec
ENERGY	
1.0548×10 ³	joules (absolute)
0.25198	kg-cal
1.0548×10 ¹⁰	ergs
2.930×10 ⁻⁴	kW-hr
0.556	g-cal/g
	1 2.998×10 ⁹ 6.2418×10 ¹⁸ 3600.0 0.03731 2.998×10 ⁹ 6.2418×10 ¹⁸ 1.036×10 ⁻⁵ 9.650×10 ⁴ 26.80 9.650×10 ⁴ 10 ⁶ 0.999835 1.00033 1.000495 9.654×10 ⁴ 10 ⁻⁶ 10 ⁻¹² 10 ⁻⁶ 1 ENERGY 1.0548×10 ³ 0.25198 1.0548×10 ¹⁰ 2.930×10 ⁻⁴

^{*} Units are absolute unless noted otherwise.

ENERGY -- Continued

Multiply # of to obtain # of ←	by by	to obtain # of Divide # of
eV	1.6021×10 ⁻¹²	ergs
eV	1.6021×10 ⁻¹⁹	joules (abs)
eV	10 ⁻³	keV
ev	10 ⁻⁶	MeV
ergs	10-7	joules (abs)
ergs	6.2418×10 ⁵	MeV
ergs	6.2418×10 ¹¹	eV
ergs	1.0	dyne-cm
ergs	9.480×10 ⁻¹¹	Btu
ergs	7.375×10 ⁻⁸	ft-1b
ergs	2.390×10 ⁻⁸	g-cal
ergs	1.020×10 ⁻³	g-cm
gm-calories	3.968×10 ⁻³	Btu
gm-calories	4.186×10 ⁷	ergs
joules (abs)	107	ergs
joules (abs)	0.7376	ft-1b
joules (abs)	9.480×10 ⁻⁴	Btu
g-cal/g	1.8	Btu/1b
kg-cal	3.968	Btu
kg-cal	3.087×10 ³	ft-1b
ft-1b	1.356	joules (abs)
ft-1b	3.239×10^{-4}	kg-cal
kw-hr	2.247×10 ¹⁹	MeV
kW-hr	3.60×10^{13}	ergs
MeV	1.6021×10 ⁻⁶	ergs

Energy to mass conversions under miscellaneous

FISSION

Multiply # of ← to obtain # of ←	by by	to obtain # of Divide # of
Btu	1.28×10 ⁻⁸	grams ²³⁵ U fissioned*
Btu	1.53×10 ⁻⁸	grams ²³⁵ U destroyed*†
Btu	3.29×10 ¹³	fissions
fission of 1 g	1	megawatt-days
fissions	8.9058×10 ⁻¹⁸	kilowatt-hours
fissions*	3.204×10 ⁻⁴	ergs
kilowatt-hours	2.7865×10 ¹⁷	²³⁵ U fission neutrons*
kilowatts per kilogram ²³⁵ U	2.43×10 ¹⁰	average thermal neu- tron flux in fuel*‡
megawatt-days per ton U	1.174×10 ⁻⁴	% U atoms fissioned§
megawatts per ton U	2.68×10 ¹⁰ /E≈	average thermal neu- tron flux in fuel*‡
neutrons per kilo- barn	1×10 ²¹	neutrons/cm ²
watts	3.121×10 ¹⁰	fissions/sec

FLUID FLOW RATES

cm ³ /min	2.19×10 ⁻³	ft ³ /min
cm ³ /sec	8.64×10 ⁻²	m ³ /day
cm ³ /sec	1.585×10 ⁻²	gal/min
cm ³ /sec	3.60	liters/hr
ft ³ /min	4.72×10 ²	cm ³ /sec
ft ³ /sec	4.488×10 ²	gal/min
gal/min	2.228×10 ⁻³	ft ³ /sec
liters/hr	0.278	cm ³ /sec
liters/min	15.851	gal/hr

^{*} At 200 MeV/fission.

[†] Thermal neutron spectrum (α = 0.193). ‡ $\bar{\sigma}$ (fission = 500 barns). § At 200 MeV/fission, in 235 U- 238 U mixture of low 235 content. \approx E = enrichment in grams 235 U/gram total. No other fissionable isotope present.

Source: Nucleonics, Vol. 18, No. 11 (Nov. 1960), p. 209.

FLUID FLOW RATES -- Continued

Multiply # of to obtain # of		to obtain # of Divide # of
liters/min	15.851	gal/hr
m ³ /day	11.57	cm ³ /sec
yd ³ /min	0.450	ft ³ /sec
yd ³ /min	3.367	gal/sec
yd ³ /min	12.74	liters/sec
	LENGTH	
angstroms (Å)	10 ⁻⁸	cm
Å	10-10	m
microns (µ)	10-3	mm
μ.	10-4	cm
μ.	10 ⁻⁶	m
μ.	3.937×10 ⁻⁶	in.
mm	10 ⁻¹	cm
cm	0.3937	in.
cm	3.2808×10 ⁻²	ft
cm	10 ⁻²	m
m	39.370	in.
m	3.2808	ft
m	1.0936	yd
m	10 ⁻³	km
m	6.2137×10 ⁻⁴	miles
km	0.62137	miles
mils	10 ⁻³	in.
mils	2.540×10 ⁻³	cm
in.	10 ³	mils
in.	2.5400	cm
ft	30.480	cm
rods	5.500	yd
miles	5280	ft
miles	1760	yd
miles	1.6094	km

MASS

Multiply # of to obtain # of	3	obtain # of vide # of
mg	10 ⁻³	g
mg	3.527×10 ⁻⁵	oz avdp
mg	1.543×10 ⁻²	grains
g	3.527×10 ⁻²	oz avdp
g	10 ⁻³	kg
g	980.7	dynes
g	2.205×10 ⁻³	1b
kg	2.205	1b
kg	0.0685	slugs
kg	9.807×10 ⁵	dynes
1b	4.448×10 ⁶	dynes
1b	453.592	g
1b	0.4536	kg
1b	16	oz avdp
1b	0.0311	slugs
dynes	1.020×10 ⁻³	g
dynes	2.248×10 ⁻⁶	1ъ
u (unified ¹² C scale)	1.66043×10 ⁻²⁷	kg
amu (physical ¹⁶ 0 scale)	1.65980×10 ⁻²⁷	kg
oz	28.35	g
oz	6.25×10 ⁻²	1b

Mass to energy conversions under miscellaneous.

MISCELLANEOUS

temperature
$$^{\circ}C = (^{\circ}F-32)/1.8 = (^{\circ}F-32)$$
 5/9 $^{\circ}F = 1.8^{\circ}C + 32 = (9/5)$ $^{\circ}C + 32$ $^{\circ}K = ^{\circ}C + 273.16$ wavelength to energy conversion $\text{keV} = 12.40/\text{Å}$ $\text{eV} = 1.240 \times 10^{-6}/\text{m}$

$\underline{\texttt{MISCELLANEOUS}} \text{--} \texttt{Continued}$

Multiply # of ← to obtain # of ←	by by	to obtain # of Divide # of
radians	57.296	degrees
eV	1.78258×10 ⁻³³	grams
eV	1.07356×10 ⁻⁹	u
erg	1.11265×10 ⁻²¹	grams
proton masses	938.256	MeV
neutron masses	939.550	MeV
electron masses	511.006	keV
u (amu on ¹² C scale)	931.478	MeV
	POWER	
Btu/hr	0.2162	ft-1b/sec
Btu/hr	0.0700	gm-cal/sec
Btu/hr	3.929×10 ⁻⁴	horsepower
Btu/hr	0.2930	watts
Btu/min	12.97	ft-1b/sec
Btu/min	0.02357	horsepower
Btu/min	0.01758	kilowatts
Btu/min	17.58	watts
horsepower	42.42	Btu/min
horsepower	33,000	ft-1b/min
horsepower	550	ft-1b/sec
horsepower	10.69	kg-cal/min
horsepower	0.7457	kilowatts
horsepower	4.655×10 ¹⁵	MeV/sec
kg-cal/min	9.356×10 ⁻²	horsepower
kilowatts	14.33	kg-cal/min
kilowatts	1.341	horsepower
kilowatts	6.243×10 ¹⁵	MeV/sec
watts	107	ergs/sec
watts	0.7376	ft-1b/sec
watts	3.414	Btu/hr

POWER--Continued

Multiply # of to obtain # of		► to obtain # of - Divide # of
watts	0.05690	Btu/min
watts	0.01433	kg-cal/min
ergs/sec	5.688×10 ⁻⁹	Btu/min
ergs/sec	4.425×10 ⁻⁶	ft-1b/min
ergs/sec	1.433×10 ⁻⁹	kg-cal/min
	PRESSURE	
atm	14.696	lb/in. ²
atm	760	mm Hg (0°C)
atm	76.0	cm Hg (0°C)
atm	1.0133	bars
atm	1.0332×10 ³	g/cm ²
atm	29.921	in. Hg $(0^{\circ}C)$
cm Hg	0.1934	lb/in. ²
cm Hg	1.316×10 ⁻²	atm
cm Hg	0.4465	ft of H ₂ O
in. Hg	0.4912	lb/in. ²
g/cm ²	1.4223×10 ⁻²	lb/in. ²
bars	10 ⁶	dynes/cm ²
bars	14.504	lb/in. ²
dynes/cm ²	1.4504×10 ⁻⁶	lb/in. ²
dynes/cm ²	1.0197×10 ⁻³	g/cm ²
lb/in. ²	27.673	in. of H ₂ O (4°C)
lb/in. ²	2.3066	ft of H_2O ($4^{\circ}C$)
lb/in. ²	6.805×10 ⁻²	atm
lb/in. ²	2.036	in. Hg $(0^{\circ} C)$
lb/in. ²	5.1715	cm Hg
lb/in. ²	51.715	mm Hg
ft of H ₂ O	2.230	cm Hg

RADIOLOGICAL UNITS

Multiply # of to obtain # of	by by	
curies	3.700×10 ¹⁰	dis/sec
curies	2.220×10 ¹⁸	dis/min
curies	10 ³	millicuries
curies	10 ⁶	microcuries
curies	10,5	picocuries
curies	10 ⁻³	kilocuries
dis/min	4.505×10^{-10}	millicuries
dis/min	4.505×10 ⁻⁷	microcuries
dis/sec	2.703×10 ⁻⁸	millicuries
dis/sec	2.703×10 ⁻⁵	microcuries
kilocuries	10 ³	curies
microcuries	3.700×10 ⁴	dis/sec
microcuries	2.220×10 ⁶	dis/min
millicuries	3.700×10^7	dis/sec
millicuries	2.220×10 ⁹	dis/min
R	2.58×10 ⁻⁴	C/kg of air
R	1	esu/cm ³ of air (s.t.p.)
R	2.082×10 ⁹	ion prs/cm ³ of air (s.t.p.)
R	1.610×10 ¹²	ion prs/g of air
R (33.7 eV/ion pr.)	7.02×10 ⁴ 7.02×10 ⁴	MeV/cm ³ of air (s.t.p.)
R (33.7 eV/ion pr.)	5.43×10 ⁷	MeV/g of air
R (33.7 eV/ion pr.)	86.9	ergs/g of air
R (33.7 eV/ion pr.)	2.08×10 ⁻⁶	g-cal/g of air
R (33.7 eV/ion pr.)	≈98	ergs/g of soft tissue
rads	0.01	J/kg
rads	100	ergs/g
rads	8.071×10 ⁴	MeV/cm ³ of air (s.t.p.)
rads	6.242×10 ⁷	MeV/g
rads	10 ⁻⁵	watt-sec/g

RADIOLOGICAL UNITS -- Continued

Multiply # of —— to obtain # of ←—		
rads (33.7 ev/ion pr.)	2.39×10 ⁹	<pre>ion prs/cm³ of air (s.t.p.)</pre>
μCi/cm ³ (μCi/ml)	2.22×10 ¹²	dpm/m ³
μCi/cm ³	2.22×10 ⁹	dpm/liter
dpm/m ³	0.4505	pCi/m ³
	TIME	
days	86,400	sec
days	1440	min
years (365 days)	3.1536×10^7	sec
years	5.256×10 ⁶	min
years	8.760×10 ³	hr
work weeks	1.44×10 ⁶	sec
work weeks	40	hr
work months	4.2	work weeks
work months	168	hr
	VELOCITY	
cm/sec	0.6000	m/min
cm/sec	0.0360	km/hr
cm/sec	0.032808	ft/sec
cm/sec	1.9685	ft/min
cm/sec	3.728×10 ⁻⁴	mi/min
cm/sec	0.02237	mph
m/min	1.667	cm/sec
m/min	5.468×10 ⁻²	ft/sec
m/min	3.728×10 ⁻²	mph
ft/sec	18.29	m/min
ft/sec	0.6818	mph
ft/min	0.5080	cm/sec
ft/min	1.667×10 ⁻²	ft/sec
ft/min	1.136×10 ⁻²	mph
mph	44.70	cm/sec

VELOCITY - - Continued

Multiply # of to obtain # of	by by	to obtain # of Divide # of
mph	88	ft/min
mph	1.467	ft/sec
mph	26.82	m/min
	VOLUME	
cm ³ (cc)	0.99997	m1
cm ³	6.1023×10 ⁻²	in. ³
cm ³	10 ⁻⁶	m ³
cm ³	9.9997×10 ⁻⁴	liters
cm ³	3.5314×10 ⁻⁶	ft ³
m ³	35.314	ft ³
m ³	2.642×10 ⁸	gal
m ³	9.9997×10 ²	liters
in. ³	16.387	cm ³
in. ³	5.787×10 ⁻⁴	ft ³
in. ³	1.639×10 ⁻²	liters
in. ³	4.329×10 ⁻³	ga1
ft ³	2.832×10 ⁻²	m ³
ft ³	7.481	gal
ft ³	28.32	liters
ft ³	1728	in. ³
gal (U.S.)	231.0	in. ³
gal	0.13368	ft ³
liters	33.8147	fluid oz
liters	1.05671	quarts
liters	0.26418	gal
gm moles (gas)	22.4	liters (s.t.p.)

EQUATIONS

A. LOGARITHMIC RELATIONS

log N = the exponent or power to which the base 10 must be raised
 to obtain a value N (the common logarithm of N)

(1)
$$\log N = 0.4343 \ln N$$

(2)
$$1n N = 2.3026 \log N$$

(3)
$$\log MN = \log M + \log N$$

(4)
$$\log M/N = \log M - \log N$$

(5)
$$\log N^a = a \log N$$

(6)
$$\log \sqrt[a]{N} = (\log N)/a$$

B. CLASSICAL PHYSICS

Unless otherwise noted, the symbols and dimensions in this section are used consistently as follows:

$$v = velocity (cm/sec)$$

$$a = acceleration (cm/sec^2)$$

$$s = distance (cm)$$

$$F = m a = (gm)(cm/sec^2) = gm-cm/sec^2 = dynes$$

$$p = mv = (gm)(cm/sec)$$

(3) Conservation of Momentum (any impact between Body A and Body B)

$$m_A v_{A_i} + m_B v_{B_i} = m_A v_{A_i} + m_B v_{B_i}$$

$$W = F s = m a s = (gm)(cm/sec^2)(cm) = gm-cm^2/sec^2 = dyne-cm = erg$$

(5) Energy

$$E = (work) = F s = (gm-cm/sec^2)(cm) = gm-cm^2/sec^2 = erg$$

(6) Kinetic Energy

K.E. =
$$\frac{1}{2}$$
 m v² = (gm)(cm/sec)² = gm-cm²/sec² = erg

(7) Conservation of Kinetic Energy (elastic impact: Body A and Body B)

$$\frac{1}{2}m_{A}v_{A_{i}}^{2} + \frac{1}{2}m_{B}v_{B_{i}}^{3} = \frac{1}{2}m_{A}v_{A_{i}}^{3} + \frac{1}{2}m_{B}v_{B_{i}}^{3}$$

(8) Power

$$P = (work/time) = F s/t = (gm-cm/sec^2)(cm)/sec = erg/sec$$

C. WAVE AND QUANTUM RELATIONS

Unless otherwise noted, symbols and dimensions in this section are used consistently as follows:

- v = velocity of wave or particle (cm/sec)
- h = Planck constant (6.6 \times 10⁻²⁷ erg sec)
- v =frequency of wave or quanta (hertz)
- λ = wavelength (cm)
- λ_{O} = wavelength of incident radiation (angstroms)
- λ_{θ} = wavelength of scattered radiation at angle θ (angstroms)
- E = energy (ergs)
- θ = angle between incident and scattered radiation
- $c = velocity of light (3 \times 10^{10} cm/sec)$
- m = mass of particle (gm)
- ϕ = work function (ergs)
- (1) Wave Equation

Wave velocity (v or c) = $\lambda \nu$

(2) Associated Wavelength of a Particle

Wavelength = $\lambda = \frac{h}{mv}$

(3) Photoelectric Equation

$$E = \phi + \frac{1}{2}mv^2$$

- (4) Photon Energy
 - E = hv
 - $E = \frac{hc}{\lambda}$

Energy in electron volts = $\frac{1.242 \times 10^4}{\text{Wavelength in angstroms}}$

(5) Mass-Energy Relation

$$E = mc^2$$

(6) Momentum of Photon

$$mv = \frac{h}{\lambda}$$

(7) Compton Scattering of Gamma and X Rays

$$\lambda_{\theta} = \lambda_0 + 0.0242 (1 - \cos \theta)$$

D. ELECTROSTATICS

The following units apply in this section:

- F = force (dynes)
- Q = electrostatic charge (statcoulombs)

s = distance (cm)

V = potential (statvolts)

C = capacitance (statfarads)

W = work (ergs)

€ = dielectric constant

(1) Force Between Two Charges, a and b (Coulomb's Law)

$$F = \frac{Q_a Q_b}{\epsilon s^2}$$

(2) <u>Work</u>

$$W = Q V$$

(3) Capacitance

$$C = Q/V$$

(4) Potential

$$V = Q/s$$

E. RADIOACTIVE DECAY

The following symbols will be used in this section:

No = number of nuclei at some original time

N = number of nuclei remaining after a time interval, t

In = intensity of radiation at some original time

I = intensity of radiation after a time interval, t

Ao = activity of sample at some original time

A = activity remaining after a time interval, t

λ = decay constant for the particular radioactive element

e = base of natural logarithms; 2.718 . . .

t = elapsed time

 T_{\downarrow} = half-life of a particular radioactive element

 $n = t/T_{\frac{1}{k}} = number of half-lives$

(1) N = $N_0 e^{-\lambda t}$ or N = $N_0 e^{-0.693t/\tau_2}$

(2) $A = A_0 e^{-\lambda t}$ or $A = A_0 e^{-0.693 \sqrt{t_1}}$

(3) I = $I_0 e^{-\lambda t}$ or I = $I_0 e^{-0.693t/T_2}$

(4) $N = N_0 e^{-n}$ or $N/N_0 = 1/2^n$

Decay Constant

(5) $\lambda = 0.693/T_{\frac{1}{2}}$

Fission Product Decay*

(6)
$$I_1 t_1^{+1.3} = I_2 t_2^{+1.3}$$

where
$$I_1$$
 = radiation intensity at
time t_1 (>4h) after fission

F. SPECIFIC ACTIVITY (Isotopic)

Specific Activity

$$\lambda N = 0.693N/T_{\frac{1}{2}} = dis/sec/gm$$

where
$$T_{\frac{1}{2}}$$
 = half-life (seconds)

Specific Activity

$$\lambda N/(3.7 \times 10^{10}) = \frac{N \times 1.873 \times 10^{-11}}{T_1} = \text{curies/gm}$$

G. RADIATION ABSORPTION

(1) Alpha Particle Range

$$R_{\alpha} = 0.56E \text{ (E<4 MeV)}$$

$$R_{\alpha} = 1.24E - 2.62 (4 < E < 8 MeV)$$

where
$$R_{\alpha}$$
 = range in cm of air at

(2) Beta Particle Range

For 0.01 ≤E ≤2.5 MeV

$$R = 412 E^{1.365} - 0.0954 InE$$

where
$$R = range in mg/cm^2$$

$$lnE = 6.63 - 3.2376 [10.2146 - lnR]^{\frac{1}{2}}$$

For E ≥2.5 MeV

$$R = 530 E - 106$$

$$R = 0.526 E - 0.094$$

Feather's rule (E >0.6 MeV)

$$R = 0.542 E - 0.133$$

(3) Gamma Ray Absorption

The following symbols will be used in this section:

Io = original radiation exposure rate

I = attenuated radiation exposure rate

 μ = linear absorption coefficient (cm⁻¹) = $\frac{0.693}{x_{k}}$

^{*}See "The Effects of Nuclear Weapons," 1962, §9.170-9.177

 μ/ρ = mass absorption coefficient (cm²/gm)

 ρ = absorber density (gm/cm³)

x = absorber thickness (cm)

 $x_1 = \text{half-value layer of absorber (cm)}$

e = base of natural logarithms (2.718 . . .)

b = "buildup" factor

For monoenergetic or monochromatic narrow-beam radiation:

$$I = I_0 e^{-\mu x}$$

$$I = I_0 e^{-(\mu/\rho)(\rho)(x)}$$

For monoenergetic or monochromatic wide-beam radiation:

$$I = bI_0e^{-\mu x}$$

(4) Neutron Absorption (for a collimated beam of monoenergetic neutrons)

$$I = I_0 e^{-\sigma Nx}$$

where I_0 = initial neutron intensities

I = final neutron intensities

N = number of atoms per cc in the absorber

σ = cross section (square centimeters)

x = thickness of absorber (cm)

e = base of the natural logarithm (2.718 . . .)

Since this equation is only an approximation of neutron attenuation, average neutron energies can be used for determining the value of σ . The equation is not accurate enough to justify the use of neutron buildup factors.

(5) Approximate Range - Energy Relation for Protons*

$$R = (E/9.3)^{1.8}$$

where E = energy in MeV (few MeV

to 200 MeV)

R = range in meters in air

H. BETA PARTICLE COUNTING

(1) <u>Self-Absorption</u>

$$\frac{R_{O}}{R} = \frac{1}{mx} (1 - e^{-mx})$$

where Ro = measured counting rate

R = true counting rate

x = sample thickness (mg/cm²)

m = absorption coefficient (cm²/mg) [See NBS Handbook No. 51, p. 26]

^{*}Segre, Emilio, "Experimental Nuclear Physics," Vol. 1, New York: John Wiley & Sons, Inc., 1953.

(2) Resolving Time Determination

$$\tau = \frac{R_1 + R_2 - R_{12}}{2 (R_1 R_2)}$$

where τ = resolving time, seconds

 R_1 = counting rate, source 1

 R_2 = counting rate, source 2 (c/s)

 R_{12} = counting rate, combined sources 1 and 2 (c/s)

(3) Resolving Time Correction

$$R = \frac{R_0}{1 - R_0 \tau}$$

where R = true counting rate (c/s)

r = resolving time, seconds

I. STATISTICS OF COUNTING*

n = number of counts, one observation

t = counting time, one observation

 \bar{n} = mean number of counts, series of observations

 \bar{t} = mean counting time, series of observations

m = number of observations

 σ = theoretical standard deviation

St = observed standard deviation of the time required to record a preset number of counts

 S_n = observed mean standard deviation of the number of counts recorded in a preset time

r = average number of counts per unit time

(1) Theoretical Standard Deviation

(a) $\sigma_n = \sqrt{rt} \cong \sqrt{n}$ for single observation

(b) $\sigma_{\overline{w}} = \sqrt{rt/m} \cong \sqrt{\overline{n}/m}$ for average number of counts/interval

(2) Observed (Experimental) Standard Deviation

(a) Series of observations, preset time

$$S_n = \left[\sum_{i=1}^n (n_i - \bar{n})^2 / (m - 1)\right]^{\frac{1}{2}}$$

^{*} Bleuler, Ernst, and Goldsmith, George J., "Experimental Nucleonics," New York: Holt, Rinehart & Winston, Inc., 1952.

(b) Series of observations, preset count

$$S_{t} = \left[\sum_{i=1}^{n} (t_{i} - \bar{t})^{2} / (m - 1)\right]^{\frac{1}{2}}$$

$$S_{n} = (n/\bar{t}) S_{t}$$

(c) Reliability factor

$$R.F. = S_n/\sigma_{\overline{n}}$$

J. CALIBRATION PROCEDURES

Gamma Emitter Dose in Air

(1) Exposure Rate (from a point source)

(Equation assumes that one ion pair in air causes an Γ = 0.156 n E (10⁵ μ_a) average energy expenditure of 32.7 electron volts.)

where Γ = mR/hr at 1 meter per mCi

n = gamma quanta per disintegration

E = energy of gamma quanta in MeV

μa = energy absorption coefficient for gamma in air (S.T.P.) in cm

(2) Exposure Rate (from point source of radium, 0.5 mm Pt cover)

$$mR/hr = \frac{mg \text{ of } Ra}{yd^3}$$
 where yd = distance to source (yd)
 $mR/hr = \frac{8400 \text{ mg of } Ra}{cm^3}$ cm = distance (cm)

(3) Exposure Rate, Approximate (from any gamma point source)

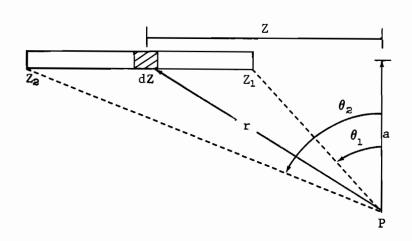
R/hr at 1 foot \cong 6 C E n where C = number of curies mR/hr/mCi at 1 meter \cong 0.5 nE E = gamma ray energy (MeV)

n = gamma quanta/dis

(4) Exposure Rate (from any gamma point source)

mR/hr =
$$n \Gamma/s^2$$
 where n = number of millicuries
$$\Gamma = mR/hr \text{ at 1 meter per mCi}$$
 s = distance (meters)

(5) Exposure Rate (from a linear gamma emitter source)


The following terminology will be used:

S = source activity in photons per second per unit length

 ϕ = flux at point of interest in photons per square centimeter per second

r = distance from source to point of interest, P

 θ = angle in radians

$$\phi = \int_{Z_1}^{Z_2} \frac{S(dZ)}{4 \pi r^2}$$

$$\phi = \frac{S}{4 \pi a} (\theta_2 + \theta_1)$$

MOIT

SOSULE SOSULE

(.) =

K. INTERNAL RADIATION DOSAGE

(1) Biological Half-Life

$$T_b = \frac{0.693}{\lambda_b}$$

where λ_b = biological decay constant

 $T_b = biological half-life$

(2) Effective Half-Life

$$T_{eff} = \frac{(T_{1/2})(T_b)}{T_{1/2} + T_b}$$

where T_{eff} = effective half-life

T₁ = radioactive (physical) half-life Prizeo

T_b = biological half-life

(3) Beta Emitter Dose

D = 73.8 E
$$T_{eff}C$$
 (1 - $e^{-\lambda_{eff} t}$)

"hr =

where D = dose (rads)

E = average energy of beta
 particle (MeV)

 $T_{eff} = effective half-life$

 $C = \mu Ci/gm$ of radionuclide in tissue

 $\lambda_{eff} = effective decay constant (day⁻¹)$

t = time (day)

L. DECONTAMINATION FACTOR

D.F. =
$$\frac{\text{Initial Activity}}{\text{Final Activity}}$$

JosoC

o foil

mos =

oult:

ter

16.14

SI'B "

M. ISOTOPIC DILUTION

(1) Single Addition Method

$$w = w' \left(\frac{SpA'}{SpA} - 1 \right)$$

w' = total weight of labeled
 material (weight of
 radioactive material)

SpA' = specific activity of
 labeled material

SpA = specific activity of
 mixture

(2) Double Dilution

(a)
$$S = \frac{S_1^1 \ S_2 \ (G_1 - G_2)}{S_2 \ G_2 - S_1 \ G_1}$$

(b)
$$Z = \frac{S_1 G_2 - S_1 G_1}{S_1 - S_2}$$

where S_0 = initial specific activity

S₁ = specific activity of first dilution

G₁ = weight of carrier added for first dilution

G₂ = weight of carrier added for second dilution

Z = weight of original radioactive material

N. NEUTRON ACTIVATION METHODS

Thin Target*

$$A\phi = k\sigma_{ac} f n (1 - e^{-\lambda t}) e^{-\lambda \phi}$$

where A_{ϕ} = measured activity in net counts per second at time ϕ

φ = time increment between end of irradiation and the time at which the target is counted

k = efficiency of the counter
 for measuring the induced
 radioactivity

 σ_{ac} = activation across section for neutron capture by the target material, square centimeters per atom per neutron

^{*}A thin target is one which will not reduce the neutron flux by more than the error permitted for the experiment.

f = flux of neutrons, neutrons per square centimeter per second

n = total number of target
 nuclei

λ = disintegration constant of radioactive material

t = time duration of exposure to neutron flux

e = base of natural logarithm (2.718 . . .)

O. GEOMETRY OF A COUNTER

Point Source

$$G = 0.5 (1 - \cos \alpha) = \sin^2 \frac{1}{2}\alpha$$

where α = arc tan $\frac{r}{d}$

d = distance between counter
 and source

G = geometry factor

N	N2	\sqrt{N}	$\sqrt{10N}$	N	N^2	\sqrt{N}	$\sqrt{10N}$	N	N^2	\sqrt{N}	$\sqrt{10N}$
1.00	1.0000	1.00000	3.16228	1.60	2.5600	1.26491	4.00000	2.20	4.8400	1.48324	4.69042
1.01	1.0201	1.00499	3.17805	1.61	2.5921	1.26886	4.01248	2.21	4.8841	1.48661	4.70106
1.02	1.0404	1.00995	3.19374	1.62	2.6244	1.27279	4.02492	2.22	4.9284	1.48997	4.71169
1.03	1.0609	1.01489	3.20936	1.63	2.6569	1.27671	4.03733	2.23	4.9729	1.49332	4.72229
1.04	1.0816	1.01980	3.22490	1.64	2.6896	1.28062	4.04969	2.24	5.0176	1.49666	4.73286
1.05	1.1025	1.02470	3.24037	1.65	2.7225	1.28452	4.06202	2.25	5.0625	1.50000	4.74342
1.06	1.1236	1.02956	3.25576	1.66	2.7556	1.28841	4.07431	2.26	5.1076	1.50333	4.75395
1:07	1.1449	1.03441	3.27109	1.67	2.7889	1.29228	4.08656	2.27	5.1529	1.50665	4.76445
1.08	1.1664	1.03923	3.28634	1.68	2.8224	1.29615	4.09878	2.28	5.1984	1.50997	4.77493
1.09	1.1881	1.04403	3.30151	1.69	2.8561	1.30000	4.11096	2.29	5.2441	1.51327	4.78539
1.10	1.2100	1.04881	3.31662	1.70	2.8900	1.30384	4.12311	2.30	5.2900	1.51658	4.79583
1.11	1.2321	1.05357	3.33167	1.71	2.9241	1.30767	4.13521	2.31	5.3361	1.51987	4.80625
1.12	1.2544	1.05830	3.34664	1.72	2.9584	1.31149	4.14729	2.32	5.3824	1.52315	4.81664
1.13	1.2769	1.06301	3.36155	1.73	2.9929	1.31529	4.15933	2.33	5.4289	1.52643	4.82701
1.14	1.2996	1.06771	3.37639	1.74	3.0276	1.31909	4.17133	2.34	5.4756	1.52971	4.83735
1.15	1.3225	1.07238	3.39116	1.75	3.0625	1.32288	4.18330	2.35	5.5225	1.53297	4.84768
1.16	1.3456	1.07703	3.40588	1.76	3.0976	1.32665	4.19524	2.36	5.5696	1.53623	4.85798
1.17	1.3689	1.08167	3.42053	1.77	3.1329	1.33041	4.20714	2.37	5.6169	1.53948	4.86826
1.18	1.3924	1.08628	3.43511	1.78	3.1684	1.33417	4.21900	2.38	5.6644	1.54272	4.87852
1.19	1.4161	1.09087	3.44964	1.79	3.2041	1.33791	4.23084	2.39	5.7121	1.54596	4.88876
1.20	1.4400	1.09545	3.46410	1.80	3.2400	1.34164	4.24264	2.40	5.7600	1.54919	4.89898
1.21	1.4641	1.10000	3.47851	1.81	3.2761	1.34536	4.25441	2.41	5.8081	1.55242	4.90918
1.22	1.4884	1.10454	3.49285	1.82	3.3124	1.34907	4.26615	2.42	5.8564	1.55563	4.91935
1.23	1.5129	1.10905	3.50714	1.83	3.3489	1.35277	4.27785	2.43	5.9049	1.55885	4.92950
1.24	1.5376	1.11355	3.52136	1.84	3.3856	1.35647	4.28952	2.44	5.9536	1.56205	4.93964
1.25	1.5625	1.11803	3.53553	1.85	3.4225	1.36015	4.30116	2.45	6.0025	1.56525	4.94975
1.26	1.5876	1.12250	3.54965	1.86	3.4596	1.36382	4.31277	2.46	6.0516	1.56844	4.95984
1.27	1.6129	1.12694	3.56371	1.87	3.4969	1.36748	4.32435	2.47	6.1009	1.57162	4.96991
1.28	1.6384	1.13137	3.57771	1.88	3.5344	1.37113	4.33590	2.48	6.1504	1.57480	4.97996
1.29	1.6641	1.13578	3.59166	1.89	3.5721	1.37477	4.34741	2.49	6.2001	1.57797	4.98999
1.30	1.6900	1.14018	3.60555	1.90	3.6100	1.37840	4.35890	2.50	6.2500	1.58114	5.00000
1.31	1.7161	1.14455	3.61939	1.91	3.6481	1,38203	4.37035	2.51	6.3001	1.58430	5.00999
1.32	1.7424	1.14891	3.63318	1.92	3.6864	1,38564	4.38178	2.52	6.3504	1.58745	5.01996
1.33	1.7689	1.15326	3.64692	1.93	3.7249	1,38924	4.39318	2.53	6.4009	1.59060	5.02991
1.34	1.7956	1.15758	3.66060	1.94	3.7636	1,39284	4.40454	2.54	6.4516	1.59374	5.03984
1.35	1.8225	1.16190	3.67423	1.95	3.8025	1,39642	4.41588	2.55	6.5025	1.59687	5.04975
1.36	1.8496	1.16619	3.68782	1.96	3.8416	1.40000	4.42719	2.56	6.5536	1.60000	5.05964
1.37	1.8769	1.17047	3.70135	1.97	3.8809	1.40357	4.43847	2.57	6.6049	1.60312	5.06952
1.38	1,9044	1.17473	3.71484	1.98	3.9204	1.40712	4.44972	2.58	6.6564	1.60624	5.07937
1.39	1.9321	1.17898	3.72827	1.99	3.9601	1.41067	4.46094	2.59	6.7081	1.60935	5.08920
1.40	1.9600	1.18322	3.74166	2.00	4.0000	1.41421	4.47214	2.60	6.7600	1.61245	5.09902
1.41	1.9881	1.18743	3.75500	2.01	4.0401	1.41774	4.48330	2.61	6.8121	1.61555	5.10882
1.42	2.0164	1.19164	3.76829	2.02	4.0804	1.42127	4.49444	2.62	6.8644	1.61864	5.11859
1.43	2.0449	1.19583	3.78153	2.03	4.1209	1.42478	4.50555	2.63	6.9169	1.62173	5.12835
1.44	2.0736	1.20000	3.79473	2.04	4.1616	1.42829	4.51664	2.64	6.9696	1.62481	5.13809
1.45	2.1025	1.20416	3.80789	2.05	4.2025	1.43178	4.52769	2.65	7.0225	1.62788	5.14782
1.46	2.1316	1.20830	3.82099	2.06	4.2436	1.43527	4.53872	2.66	7.0756	1.63095	5.15752
1.47	2.1609	1.21244	3.83406	2.07	4.2849	1.43875	4.54973	2.67	7.1289	1.63401	5.16720
1.48	2.1904	1.21655	3.84708	2.08	4.3264	1.44222	4.56070	2.68	7.1824	1.63707	5.17687
1.49	2.2201	1.22066	3.86005	2.09	4.3681	1.44568	4.57165	2.69	7.2361	1.64012	5.18652
1.50	2.2500	1.22474	3.87298	2.10	4.4100	1.44914	4.58258	2.70	7.2900	1.64317	5.19615
1.51	2.2801	1.22882	3.88587	2.11	4.4521	1.45258	4.59347	2.71	7.3441	1.64621	5.20577
1.52	2.3104	1.23288	3.89872	2.12	4.4944	1.45602	4.60435	2.72	7.3984	1.64924	5.21536
1.53	2.3409	1.23693	3.91152	2.13	4.5369	1.45945	4.61519	2.73	7.4529	1.65227	5.22494
1.54	2.3716	1.24097	3.92428	2.14	4.5796	1.46287	4.62601	2.74	7.5076	1.65529	5.23450
1.55	2.4025	1.24499	3.93700	2.15	4.6225	1.46629	4.63681	2.75	7.5625	1.65831	5.24404
1.56	2.4336	1.24900	3.94968	2.16	4.6656	1.46969	4.64758	2.76	7.6176	1.66132	5.25357
1.57	2.4649	1.25300	3.96232	2.17	4.7089	1.47309	4.65833	2.77	7.6729	1.66433	5.26308
1.58	2.4964	1.25698	3.97492	2.18	4.7524	1.47648	4.66905	2.78	7.7284	1.66733	5.27257
1.59	2.5281	1.26095	3.98748	2.19	4.7961	1.47986	4.67974	2.79	7.7841	1.67033	5.28205
1.60	2.5600	1.26491	4.00000.	2.20	4.8400	1.48324	4.69042	2.80	7.8400	1.67332	5.29150
N	N²	\sqrt{N}	√10 <i>N</i>	N	N ²	\sqrt{N}	$\sqrt{10N}$	N	N ²	\sqrt{N}	$\sqrt{10N}$

N	N ²	\sqrt{N}	√10N	N	N²	$\sqrt{\hat{N}}$	√10N	N	N2	\sqrt{N}	$\sqrt{10N}$
2.80	7.8400	1.67332	5.29150	3.40	11.5600	1.84391	5.83095	4.00	16.0000	2.00000	6.32456
2.81	7.8961	1.67631	5.30094	3.41	11.6281	1.84662	5.83952	4.01	16.0801	2.00250	6.33246
2.82	7.9524	1.67929	5.31037	3.42	11.6964	1.84932	5.84808	4.02	16.1604	2.00499	6.34035
2.83	8.0089	1.68226	5.31977	3.43	11.7649	1.85203	5.85662	4.03	16.2409	2.00749	6.34823
2.84	8.0656	1.68523	5.32917	3.44	11.8336	1.85472	5.86515	4.04	16.3216	2.00998	6.35610
2.85	8.1225	1.68819	5.33854	3.45	11.9025	1.85742	5.87367	4.05	16.4025	2.01246	6.36396
2.86	8.1796	1.69115	5.34790	3.46	11.9716	1.86011	5.88218	4.06	16.4836	2.01494	6.37181
2.87	8.2369	1.69411	5.35724	3.47	12.0409	1.86279	5.89067	4.07	16.5649	2.01742	6.37966
2.88	8.2944	1.69706	5.36656	3.48	12.1104	1.86548	5.89915	4.08	16.6464	2.01990	6.38749
2.89	8.3521	1.70000	5.37587	3.49	12.1801	1.86815	5.90762	4.09	16.7281	2.02237	6.39531
2.90	8.4100	1.70294	5.38516	3.50	12.2500	1.87083	5.91608	4.10	16.8100	2.02485	6.40312
2.91	8.4681	1.70587	5.39444	3.51	12.3201	1.87350	5.92453	4.11	16.8921	2.02731	6.41093
2.92	8.5264	1.70880	5.40370	3.52	12.3904	1.87617	5.93296	4.12	16.9744	2.02978	6.41872
2.93	8.5849	1.71172	5.41295	3.53	12.4609	1.87883	5.94138	4.13	17.0569	2.03224	6.42651
2.94	8.6436	1.71464	5.42218	3.54	12.5316	1.88149	5.94979	4.14	17.1396	2.03470	6.43428
2.95	8.7025	1.71756	5.43139	3.55	12.6025	1.88414	5.95819	4.15	17.2225	2.03715	6.44205
2.96	8.7616	1.72047	5.44059	3.56	12.6736	1.88680	5.96657	4.16	17.3056	2.03961	6.44981
2.97	8.8209	1.72337	5.44977	3.57	12.7449	1.88944	5.97495	4.17	17.3889	2.04206	6.45755
2.98	8.8804	1.72627	5.45894	3.58	12.8164	1.89209	5.98331	4.18	17.4724	2.04450	6.46529
2.99	8.9401	1.72916	5.46809	3.59	12.8881	1.89473	5.99166	4.19	17,5561	2.04695	6.47302
3.00	9.0000	1.73205	5.47723	3.60	12.9600	1.89737	6.00000	4.20	17.6400	2.04939	6.48074
3.01	9.0601	1.73494	5.48635	3.61	13.0321	1.90000	6.00833	4.21	17.7241	2.05183	6.48845
3.02	9.1204	1.73781	5.49545	3.62	13.1044	1.90263	6.01664	4.22	17.8084	2.05426	6.49615
3.03	9.1809	1.74069	5.50454	3.63	13.1769	1.90526	6.02495	4.23	17.8929	2.05670	6.50384
3.04	9.2416	1.74356	5.51362	3.64	13.2496	1.90788	6.03324	4.24	17.9776	2.05913	6.51153
3.05	9.3025	1.74642	5.52268	3.65	13.3225	1.91050	6.04152	4.25	18.0625	2.06155	6.51920
3.06	9.3636	1.74929	5.53173	3.66	13.3956	1.91311	6.04979	4.26	18.1476	2.06398	6.52687
3.07	9.4249	1.75214	5.54076	3.67	13.4689	1.91572	6.05805	4.27	18.2329	2.06640	6.53452
3.08	9.4864	1.75499	5.54977	3.68	13.5424	1.91833	6.06630	4.28	18.3184	2.06882	6.54217
3.09	9.5481	1.75784	5.55878	3.69	13.6161	1.92094	6.07454	4.29	18.4041	2.07123	6.54981
3.10	9.6100	1.76068	5.56776	3.70	13.6900	1.92354	6.08276	4.30	18.4900	2.07364	6.55744
3.11	9.6721	1.76352	5.57674	3.71	13.7641	1.92614	6.09098	4.31	18.5761	2.07605	6.56506
3.12	9.7344	1.76635	5.58570	3.72	13.8384	1.92873	6.09918	4.32	18.6624	2.07846	6.57267
3.13	9.7969	1.76918	5.59464	3.73	13.9129	1.93132	6.10737	4.33	18.7489	2.08087	6.58027
3.14	9.8596	1.77200	5.60357	3.74	13.9876	1.93391	6.11555	4.34	18.8356	2.08327	6.58787
3.15	9.9225	1.77482	5.61249	3.75	14.0625	1.93649	6.12372	4.35	18.9225	2.08567	6.59545
3.16	9.9856	1.77764	5.62139	3.76	14.1376	1.93907	6.13188	4.36	19.0096	2.08806	6.60303
3.17	10.0489	1.78045	5.63028	3.77	14.2129	1.94165	6.14003	4.37	19.0969	2.09045	6.61060
3.18	10.1124	1.78326	5.63915	3.78	14.2884	1.94422	6.14817	4.38	19.1844	2.09284	6.61816
8.19	10.1761	1.78606	5.64801	3.79	14.3641	1.94679	6.15630	4.39	19.2721	2.09523	6.62571
3.20	10.2400	1.78885	5.65685	3.80	14.4400	1.94936	6.16441	4.40	19.3600	2.09762	6.63325
3.21	10.3041	1.79165	5.66569	3.81	14.5161	1.95192	6.17252	4.41	19.4481	2.10000	6.64078
3.22	10.3684	1.79444	5.67450	3.82	14.5924	1.95448	6.18061	4.42	19.5364	2.10238	6.64831
3.23	10.4329	1.79722	5.68331	3.83	14.6689	1.95704	6.18870	4.43	19.6249	2.10476	6.65582
3.24	10.4976	1.80000	5.69210	3.84	14.7456	1.95959	6.19677	4.44	19.7136	2.10713	6.66333
3.25	10.5625	1.80278	5.70088	3.85	14.8225	1.96214	6.20484	4.45	19.8025	2.10950	6.67083
3.26	10.6276	1.80555	5.70964	3.86	14.8996	1.96469	6.21289	4.46	19.8916	2.11187	6.67832
3.27	10.6929	1.80331	5.71839	3.87	14.9769	1.96723	6.22093	4.47	19.9809	2.11424	6.68581
3.28	10.7584	1.81108	5.72713	3.88	15.0544	1.96977	6.22896	4.48	20.0704	2.11660	6.69328
3.29	10.8241	1.81384	5.73585	3.89	15.1321	1.97231	6.23699	4.49	20.1601	2.11896	6.70075
3.30	10.8900	1.81659	5.74456	3.90	15.2100	1.97484	6.24500	4.50	20.2500	2.12132	6.70820
3.31	10.9561	1.81934	5.75326	3.91	15.2881	1.97737	6.25300	4.51	20.3401	2.12368	6.71565
3.32	11.0224	1.82209	5.76194	3.92	15.3664	1.97990	6.26099	4.52	20.4304	2.12603	6.72309
3.33	11.0889	1.82483	5.77062	3.93	15.4449	1.98242	6.26897	4.53	20.5209	2.12838	6.73053
3.34	11.1556	1.82757	5.77927	3.94	15.5236	1.98494	6.27694	4.54	20.6116	2.13073	6.73795
3.35	11.2225	1.83030	5.78792	3.95	15.6025	1.98746	6.28490	4.55	20.7025	2.13307	6.74537
3.36	11.2896	1.83303	5.79655	3.96	15.6816	1.98997	6.29285	4.56	20.7936	2.13542	6.75278
3.37	11 3569	1.83576	5.80517	3.97	15.7609	1.99249	6.30079	4.57	20.8849	2.13776	6.76018
3.38	11.4244	1.83848	5.81378	3.98	15.8404	1.99499	6.30872	4.58	20.9764	2.14009	6.76757
3.39	11.4921	1.84120	5.82237	3.99	15.9201	1.99750	6.31664	4.59	21.0681	2.14243	6.77495
3.40	11.5600	1.84391	5.83095	4.00	16.0000	2.00000	6.32456	4.60	21.1600	2.14476	6.78233
N.	N ²	\sqrt{N}	√10 <i>N</i>	N	N ²	\sqrt{N}	$\sqrt{10N}$	N		\sqrt{N}	$\sqrt{10N}$

N	N³	\sqrt{N}	√10N	N	N ²	\sqrt{N}	√10N	N	N3	\sqrt{N}	√10N
4.60	21.1600	2.14476	6.78233	5.20	27.0400	2.28035	7.21110	5.80	33.6400	2.40832	7.61577
4.61	21.2521	2.14709	6.78970	5.21	27.1441	2.28254	7.21803	5.81	33.7561	2.41039	7.62234
4.62	21.3444	2.14942	6.79706	5.22	27.2484	2.28473	7.22496	5.82	33.8724	2.41247	7.62889
4.63	21.4369	2.15174	6.80441	5.23	27.3529	2.28692	7.23187	5.83	33.9889	2.41454	7.63544
4.64	21.5296	2.15407	6.81175	5.24	27.4576	2.28910	7.23878	5.84	34.1056	2.41661	7.64199
4.65	21.6225	2.15639	6.81909	5.25	27.5625	2.29129	7.24569	5.85	34.2225	2.41868	7.64853
4.66	21.7156	2.15870	6.82642	5.26	27.6676	2.29347	7.25259	5.86	34.3396	2.42074	7.65506
4.67	21.8089	2.16102	6.83374	5.27	27.7729	2.29565	7.25948	5.87	34.4569	2.42281	7.66159
4.68	21.9024	2.16333	6.84105	5.28	27.8784	2.29783	7.26636	5.88	34.5744	2.42487	7.66812
4.69	21.9961	2.16564	6.84836	5.29	27.9841	2.30000	7.27324	5.89	34.6921	2.42693	7.67463
4.70	22.0900	2.16795	6.85565	5.30	28.0900	2.30217	7.28011	5.90	34.8100	2.42899	7.68115
4.71	22.1841	2.17025	6.86294	5.31	28.1961	2.30434	7.28697	5 .91	34.9281	2.43105	7.68765
4.72	22.2784	2.17256	6.87023	5.32	28.3024	2.30651	7.29383	5.92	35.0464	2.43311	7.69415
4.73	22.3729	2.17486	6.87750	5.33	28.4089	2.30868	7:30068	5.93	35.1649	2.43516	7.70065
4.74	22.4676	2.17715	6.88477	5.34	28.5156	2.31084	7.30753	5.94	35.2836	2.43721	7.70714
4.75	22.5625	2.17945	6.89202	5.35	28.6225	2.31301	7.31437	5.95	35.4025	2.43926	7.71362
4.76	22.6576	2.18174	6.89928	5.36	28.7296	2.31517	7.32120	5.96	35.5216	2.44131	7.72010
4.77	22.7529	2.18403	6.90652	5.37	28.8369	2.31733	7.32803	5.97	35.6409	2.44336	7.72658
4.78	22.8484	2.18632	6.91375	5.38	28.9444	2.31948	7.33485	5.98	35.7604	2.44540	7.73305
4.79	22.9441	2.18861	6.92098	5.39	29.0521	2.32164	7.34166	5.99	35.8801	2.44745	7.73951
4.80	23.0400	2.19089	6.92820	5.40	29.1600	2.32379	7.34847	6.00	36.0000	2.44949	7.74597
4.81	23.1361	2.19317	6.93542	5.41	29.2681	2.32594	7.35527	6.01	36.1201	2.45153	7.75242
4.82	23.2324	2.19545	6.94262	5.42	29.3764	2.32809	7.36206	6.02	36.2404	2.45357	7.75887
4.83	23.3289	2.19773	6.94982	5.43	29.4849	2.33024	7.36885	6.03	36.3609	2.45561	7.76531
4.84	23.4256	2.20000	6.95701	5.44	29.5936	2.33238	7.37564	6.04	36.4816	2.45764	7.77174
4.85	23.5225	2.20227	6.96419	5.45	29.7025	2.33452	7.38241	6.05	36.6025	2.45967	7.77817
4.86	23.6196	2.20454	6.97137	5.46	29.8116	2.33666	7.38918	6.06	36.7236	2.46171	7.78460
4.87	23.7169	2.20681	6.97854	5.47	29.9209	2.33880	7.39594	6.07	36.8449	2.46374	7.79102
4.88	23.8144	2.20907	6.98570	5.48	30.0304	2.34094	7.40270	6.08	36.9664	2.46577	7.79744
4.89	23.9121	2.21133	6.99285	5.49	30.1401	2.34307	7.40945	6.09	37.0881	2.46779	7.80385
4.90	24.0100	2.21359	7.00000	5.50	30.2500	2.34521	7.41620	6.10	37.2100	2.46982	7.81025
4.91	24.1081	2.21585	7.00714	5.51	30.3601	2.34734	7.42294	6.11	37.3321	2.47184	7.81665
4.92	24.2064	2.21811	7.01427	5.52	30.4704	2.34947	7.42967	6.12	37.4544	2.47386	7.82304
4.93	24.3049	2.22036	7.02140	5.53	30.5809	2.35160	7.43640	6.13	37.5769	2.47588	7.82943
4.94	24.4036	2.22261	7.02851	5.54	30.6916	2.35372	7.44312	6.14	37.6996	2.47790	7.83582
4.95	24.5025	2.22486	7.03562	5.55	30.8025	2.35584	7.44.983	6.15	37.8225	2.47992	7.84219
4.96	24.6016	2.22711	7.04273	5.56	30.9136	2.35797	7.45654	6.16	37.9456	2.48193	7.84857
4.97	24.7009	2.22935	7.04982	5.57	31.0249	2.36008	7.46324	6.17	38.0689	2.48395	7.85493
4.98	24.8004	2.23159	7.05691	5.58	31.1364	2.36220	7.46994	6.18	38.1924	2.48596	7.86130
4.99	24.9001	2.23383	7.06399	5.59	31.2481	2.36432	7.47663	6.19	38.3161	2.48797	7.86766
5.00	25.0000	2.23607	7.07107	5.60	31.3600	2.36643	7.48331	6.20	38.4400	2.48998	7.87401
5.01	25.1001	2.23830	7.07814	5.61	31.4721	2.36854	7.48999	6.21	38.5641	2.49199	7.88036
5.02	25.2004	2.24054	7.08520	5.62	31.5844	2.37065	7.49667	6.22	38.6884	2.49399	7.88670
5.03	25.3009	2.24277	7.09225	5.63	31.6969	2.37276	7.50333	6.23	38.8129	2.49600	7.89303
5.04	25.4016	2.24499	7.09930	5.64	31.8096	2.37487	7.50999	6.24	38.9376	2.49800	7.89937
5.05	25.5025	2.24722	7.10634	5.65	31.9225	2.37697	7.51665	6.25	39.0625	2.50000	7.90569
5.06	25.6036	2.24944	7.11337	5.66	32.0356	2.37908	7.52330	6.26	39.1876	2.50200	7.91202
5.07	25.7049	2.25167	7.12039	5.67	32.1489	2.38118	7.52994	6.27	39.3129	2.50400	7.91833
5.08	25.8064	2.25389	7.12741	5.68	32.2624	2.38328	7.53658	6.28	39.4384	2.50599	7.92465
5.09	25.9081	2.25610	7.13442	5.69	32.3761	2.38537	7.54321	6.29	39.5641	2.50799	7.93095
5.10	26.0100	2.25832	7.14143	5.70	32.4900	2.38747	7.54983	6.30	39.6900	2.50998	7.93725
5.11	26.1121	2.26053	7.14843	5.71	32.6041	2.38956	7.55645	6.31	39.8161	2.51197	7.94355
5.12	26.2144	2.26274	7.15542	5.72	32.7184	2.39165	7.56307	6.32	39.9424	2.51396	7.94984
5.13	26.3169	2.26495	7.16240	5.73	32.8329	2.39374	7.56968	6.33	40.0689	2.51595	7.95613
5.14	26.4196	2.26716	7.16938	5.74	32.9476	2.39583	7.57628	6.34	40.1956	2.51794	7.96241
5.15	26.5225	2.26936	7.17635	5.75	33.0625	2.39792	7.58288	6.35	40.3225	2.51992	7.96869
5.16	26.6256	2.27156	7.18331	5.76	33.1776	2.40000	7.58947	6.36	40.4496	2.52190	7.97496
5.17	26.7289	2.27376	7.19027	5.77	33.2929	2.40208	7.59605	6.37	40.5769	2.52389	7.98123
5.18	26.8324	2.27596	7.19722	5.78	33.4084	2.40416	7.60263	6.38	40.7044	2.52587	7.98749
5.19	26.9361	2.27816	7.20417	5.79	33.5241	2.40624	7.60920	6.39	40.8321	2.52784	7.99375
5.20	27.0400	2.28035	7.21110	5.80	33.6400	2.40832	7.61577	6.40	40.9600	2.52982	8.00000
N	N³	\sqrt{N}	√10N	N	N³	Ä	√10N	N	N³	\sqrt{N}	√10N

N	N²	\sqrt{N}	$\sqrt{10N}$	N	N²	\sqrt{N}	$\sqrt{10N}$	N	N²	\sqrt{N}	$\sqrt{10N}$
6.40	40.9600	2.52982	8.00000	7.00	49.0000	2.64575	8.36660	7.60	57.7600	2.75681	8.71780
6.41	41.0881	2.53180	8.00625	7.01	49.1401	2.64764	8.37257	7.61	57.9121	2.75862	8.72353
6.42	41.2164	2.53377	8.01249	7.02	49.2804	2.64953	8.37854	7.62	58.0644	2.76043	8.72926
6.43	41.3449	2.53574	8.01873	7.03	49.4209	2.65141	8.38451	7.63	58.2169	2.76225	8.73499
6.44	41.4736	2.53772	8.02496	7.04	49.5616	2.65330	8.39047	7.64	58.3696	2.76405	8.74071
6.45	41.6025	2.53969	8.03119	7.05	49.7025	2.65518	8.39643	7.65	58.5225	2.76586	8.74643
6.46	41.7316	2.54165	8.03741	7.06	49.8436	2.65707	8.40238	7.66	58.6756	2.76767	8.75214
6.47	41.8609	2.54362	8.04363	7.07	49.9849	2.65895	8.40833	7.67	58.8289	2.76948	8.75785
6.48	41.9904	2.54558	8.04984	7.08	50.1264	2.66083	8.41427	7.68	58.9824	2.77128	8.76356
6.49	42.1201	2.54755	8.05605	7.09	50.2681	2.66271	8.42021	7.69	59.1361	2.77308	8.76926
6.50	42.2500	2.54951	8.06226	7.10	50,4100	2.66458	8.42615	7.70	59.2900	2.77489	8.77496
6.51	42.3801	2.55147	8.06846	7.11	50.5521	2.66646	8.43208	7.71	59.4441	2.77669	8.78066
6.52	42.5104	2.55343	8.07465	7.12	50.6944	2.66833	8.43801	7.72	59.5984	2.77849	8.78635
6.53	42.6409	2.55539	8.08084	7.13	50.8369	2.67021	8.44393	7.73	59.7529	2.78029	8.79204
6.54	42.7716	2.55734	8.08703	7.14	50.9796	2.67208	8.44985	7.74	59.9076	2.78209	8.79773
6.55	42.9025	2.55930	8.09321	7.15	51.1225	2.67395	8.45577	7.75	60.0625	2.78388	8.80341
6.56	43.0336	2.56125	8.09938	7.16	51.2656	2.67582	8.46168	7.76	60.2176	2.78568	8.80909
6.57	43.1649	2.56320	8.10555	7.17	51.4089	2.67769	8.46759	7.77	60.3729	2.78747	8.81476
6.58	43.2964	2.56515	8.11172	7.18	51.5524	2.67955	8.47349	7.78	60.5284	2.78927	8.82043
6.59	43.4281	2.56710	8.11788	7.19	51.6961	2.68142	8.47939	7.79	60.6841	2.79106	8.82610
6.60	43.5600	2.56905	8.12404	7.20	51.8400	2.68328	8.48528	7.80	60.8400	2.79285	8.83176
6.61	43.6921	2.57099	8.13019	7.21	51.9841	2.68514	8.49117	7.81	60.9961	2.79464	8.83742
6.62	43.8244	2.57294	8.13634	7.22	52.1284	2.68701	8.49706	7.82	61.1524	2.79643	8.84308
6.63	43.9569	2.57488	8.14248	7.23	52.2729	2.68887	8.50294	7.83	61.3089	2.79821	8.84873
6.64	44.0896	2.57682	8.14862	7.24	52.4176	2.69072	8.50882	7.84	61.4656	2.80000	8.85438
6.65	44.2225	2.57876	8.15475	7.25	52.5625	2.69258	8.51469	7.85	61.6225	2.80179	8.86002
6.66	44.3556	2.58070	8.16088	7.26	52.7076	2.69444	8.52056	7.86	61.7796	2.80357	8.86566
6.67	44.4889	2.58263	8.16701	7.27	52.8529	2.69629	8.52643	7.87	61.9369	2.80535	8.87130
6.68	44.6224	2.58457	8.17313	7.28	52.9984	2.69815	8.53229	7.88	62.0944	2.80713	8.87694
6.69	44.7561	2.58650	8.17924	7.29	53.1441	2.70000	8.63815	7.89	62.2521	2.80891	8.88257
6.70	44.8900	2.58844	8.18535	7.30	53.2900	2.70185	8.54400	7.90	62.4 \ 00	2.81069	8.88819
6.71	45.0241	2.59037	8.19146	7.31	53.4361	2.70370	8.54985	7.91	62.5681	2.81247	8.89382
6.72	45.1584	2.59230	8.19756	7.32	53.5824	2.70555	8.55570	7.92	62.7264	2.81425	8.89944
6.73	45.2929	2.59422	8.20366	7.33	53.7289	2.70740	8.56154	7.93	62.8849	2.81603	8.90505
6.74	45.4276	2.59615	8.20975	7.34	53.8756	2.70924	8.56738	7.94	63.0436	2.81780	8.91067
6.75	45.5625	2.59808	8.21584	7.35	54.0225	2.71109	8.57321	7.95	63.2025	2.81957	8.91628
6.76	45.6976	2.60000	8.22192	7.36	54.1696	2.71293	8.57904	7.96	63.3616	2.82135	8.92188
6.77	45.8329	2.60192	8 22800	7.37	54.3169	2.71477	8.58487	7.97	63.5209	2.82312	8.92749
6.78	45.9684	2.60384	8.23408	7.38	54.4644	2.71662	8.59069	7.98	63.6804	2.82489	8.93308
6.79	46.1041	2.60576	8.24015	7.39	54.6121	2.71846	8.59651	7.99	63.8401	2.82666	8.93868
6.80	46.2400	2.60768	8.24621	7.40	54.7600	2.72029	8.60233	8.00	64.0000	2.82843	8.94427
6.81 6.82 6.83 6.84 6.85	46.3761 46.5124 46.6489 46.7856 46.9225	2.60960 2.61151 2.61343 2.61534 2.61725	8.25227 8.25833 8.26438 8.27043 8.27647	7.42 7.43	54.9081 55.0564 55.2049 55.3536 55.5025	2.72213 2.72397 2.72580 2.72764 2.72947	8.60814 8.61394 8.61974 8.62554 8.63134	8.01 8.02 8.03 8.04 8.05	64.1601 64.3204 64.4809 64.6416 64.8025	2.83019 2.83196 2.83373 2.83549 2.83725	8.94986 8.95545 8.96103 8.96660 8.97218
6.86	47.0596	2.61916	8.28251	7.46	55.6516	2.73130	8.63713	8.06	64.9636	2.83901	8.97775
6.87	47.1969	2.62107	8.28855	7.47	55.8009	2.73313	8.64292	8.07	65.1249	2.84077	8.98332
6.88	47.3344	2.62298	8.29458	7.48	55.9504	2.73496	8.64870	8.08	65.2864	2.84253	8.98888
6.89	47.4721	2.62488	8.30060	7.49	56.1001	2.73679	8.65448	8.09	65.4481	2.84429	8.99444
6.90	47.6100	2.62679	8.30662	7.50	56.2500	2.73861	8.66025	8.10	65.6100	2.84605	9.00000
6.91	47.7481	2.62869	8.31264	7.51	56.4001	2.74044	8.66603	8.11	65.7721	2.84781	9.00555
6.92	47.8864	2.63059	8.31865	7.52	56.5504	2.74226	8.67179	8.12	65.9344	2.84956	9.01110
6.93	48.0249	2.63249	8.32466	7.53	56.7009	2.74408	8.67756	8.13	66.0969	2.85132	9.01665
6.94	48.1636	2.63439	8.33067	7.54	56.8516	2.74591	8.68332	8.14	66.2596	2.85307	9.02219
6.95	48.3025	2.63629	8.33667	7.55	57.0025	2.74773	8.68907	8.15	66.4225	2.85482	9.02774
6.96	48.4416	2.63818	8.34266	7.56	57.1536	2.74955	8.69483	8.16	66.5856	2.85657	9.03327
6.97	48.5809	2.64008	8.34865	7.57	57.3049	2.75136	8.70057	8.17	66.7489	2.85832	9.03881
6.98	48.7204	2.64197	8.35464	7.58	57.4564	2.75318	8.70632	8.18	66.9124	2.86007).04434
6.99	48.8601	2.64386	8.36062	7.59	57.6081	2.75500	8.71206	8.19	67.0761	2.86182	9.04986
7.00	49.0000	2.64575	8.36660	7.60	57.7600	2.75681	8.71780	8.20	67.2400	2.86356	9.05539
N	N ²	\sqrt{N}	$\sqrt{10N}$	N	N ²	\sqrt{N}	$\sqrt{10N}$	N		\sqrt{N}	$\sqrt{10}\bar{N}$

N	N ²	\sqrt{N}	√10N	N	<i>№</i> 2	\sqrt{N}	√10N	N	N2	\sqrt{N}	√10N
8.20	67.2400	2.86356	9.05539	8.80	77.4400	2.96648	9.38083	9.40	88.3600	3.06594	9.69536
8.21	67.4041	2.86531	9.06091	8.81	77.6161	2.96816	9.38616	9.41	88.5481	3.06757	9.70052
8.22	67.5684	2.86705	9.06642	8.82	77.7924	2.96985	9.39149	9.42	88.7364	3.06920	9.70567
8.23	67.7329	2.86880	9.07193	8.83	77.9689	2.97153	9.39681	9.43	88.9249	3.07083	9.71082
8.24	67.8976	2.87054	9.07744	8.84	78.1456	2.97321	9.40213	9.44	89.1136	3.07246	9.71597
8.25	68.0625	2.87228	9.08295	8.85	78.3225	2.97489	9.40744	9.45	89.3025	3.07409	9.72111
8.26	68.2276	2.87402	9.08845	8.86	78.4996	2.97658	9.41276	9.46	89.4916	3.07571	9.72625
8.27	68.3929	2.87576	9.09395	8.87	78.6769	2.97825	9.41807	9.47	89.6809	3.07734	9.73139
8.28	68.5584	2.87750	9.09945	8.88	78.8544	2.97993	9.42338	9.48	89.8704	3.07896	9.73653
8.29	68.7241	2.87924	9.10494	8.89	79.0321	2.98161	9.42868	9.49	90.0601	3.08058	9.74166
8.30	68.8900	2.88097	9.11043	8.90	79.2100	2.98329	9.43398	9.50	90.2500	3.08221	9.74679
8.31	69.0561	2.88271	9.11592	8.91	79.3881	2.98496	9.43928	9.51	90.4401	3.08383	9.75192
8.32	69.2224	2.88444	9.12140	8.92	79.5664	2.98664	9.44458	9.52	90.6304	3.08545	9.75705
8.33	69.3889	2.88617	9.12688	8.93	79.7449	2.98831	9.44987	9.53	90.8209	3.08707	9.76217
8.34	69.5556	2.88791	9.13236	8.94	79.9236	2.98998	9.45516	9.54	91.0116	3.08869	9.76729
8.35	69.7225	2.88964	9.13783	8.95	80.1025	2.99166	9.46044	9.55	91.2025	3.09031	9.77241
8.36	69.8896	2.89137	9.14330	8.96	80.2816	2.99333	9.46573	9.56	91.3936	3.09192	9.77753
8.37	70.0569	2.89310	9.14877	8.97	80.4609	2.99500	9.47101	9.57	91.5849	3.09354	9.78264
8.38	70.2244	2.89482	9.15423	8.98	80.6404	2.99666	9.47629	9.58	91.7764	3.09516	9.78775
8.39	70.3921	2.89655	9.15969	8.99	80.8201	2.99833	9.48156	9.59	91.9681	3.09677	9.79285
8.40	70.5600	2.89828	9.16515	9.00	81.0000	3.00000	9.48683	9.60	92.1600	3.09839	9.79796
8.41	70.7281	2.90000	9.17061	9.01	81.1801	3.00167	9.49210	9.61	92.3521	3.10000	9.80306
8.42	70.8964	2.90172	9.17606	9.02	81.3604	3.00333	9.49737	9.62	92.5444	3.10161	9.80816
8.43	71.0649	2.90345	9.18150	9.03	81.5409	3.00500	9.50263	9.63	92.7369	3.10322	9.81326
8.44	71.2336	2.90517	9.18695	9.04	81.7216	3.00666	9.50789	9.64	92.9296	3.10483	9.81835
8.45	71.4025	2.90689	9.19239	9.05	81.9025	3.00832	9.51315	9.65	93.1225	3.10644	9.82344
8:46	71.5716	2.90851	9.19783	9.06	82.0836	3.00998	9.51840	9.66	93.3156	3.10805	9.82853
8.47	71.7409	2.91033	9.20326	9.07	82.2649	3.01164	9.52365	9.67	93.5089	3.10966	9.83362
8.48	71.9104	2.91204	9.20869	9.08	82.4464	3.01330	9.52890	9.68	93.7024	3.11127	9.83870
8.49	72.0801	2.91376	9.21412	9.09	82.6281	3.01496	9.53415	9.69	93.8961	3.11288	9.84378
8.50	72.2500	2.91548	9.21954	9.10	82.8100	3.01662	9.53939	9.70	94.0900	3.11448	9.84886
8.51	72.4201	2.91719	9.22497	9.11	82.9921	3.01828	9.54463	9.71	94.2841	3.11609	9.85393
8.52	72.5904	2.91890	9.23038	9.12	83.1744	3.01993	9.54987	9.72	94.4784	3.11769	9.85901
8.53	72.7609	2.92062	9.23580	9.13	83.3569	3.02159	9.55510	9.73	94.6729	3.11929	9.86408
8.54	72.9316	2.92233	9.24121	9.14	83.5396	3.02324	9.56033	9.74	94.8676	3.12090	9.86914
8.55	73.1025	2.92404	9.24662	9.15	83.7225	3.02490	9.56556	9.75	95.0625	3.12250	9.87421
8.56	73.2736	2.92575	9.25203	9.16	83.9056	3.02655	9.57079	9.76	95.2576	3.12410	9.87927
8.57	73.4449	2.92746	9.25743	9.17	84.0889	3.02820	9.57601	9.77	95.4529	3.12570	9.88433
8.58	73.6164	2.92916	9.26283	9.18	84.2724	3.02985	9.58123	9.78	95.6484	3.12730	9.88939
8.59	73.7881	2.93087	9.26823	9.19	84.4561	3.03150	9.58645	9.79	95.8441	3.12890	9.89444
8.60	73.9600	2.93258	9.27362	9.20	84.6400	3.03315	9.59166	9.80	96.0400	3.13050	9.89949
8.61	74.1321	2.93428	9.27901	9.21	84.8241	3.03480	9.59687	9.81	96.2361	3.13209	9.90454
8.62	74.3044	2.93598	9.28440	9.22	85.0084	3.03645	9.60208	9.82	96.4324	3.13369	9.90959
8.63	74.4769	2.93769	9.28978	9.23	85.1929	3.03809	9.60729	9.83	96.6289	3.13528	9.91464
8.64	74.6496	2.93939	9.29516	9.24	85.3776	3.03974	9.61249	9.84	96.8256	3.13688	9.91968
8.65	74.8225	2.94109	9.30054	9.25	85.5625	3.04138	9.61769	9.85	97.0225	3.13847	9.92472
8.66	74.9956	2.94279	9.30591	9.26	85.7476	3.04302	9.62289	9.86	97.2196	3.14006	9.92975
8.67	75.1689	2.94449	9.31128	9.27	85.9329	3.04467	9.62808	9.87	97.4169	3.14166	9.93479
8.68	75.3424	2.94618	9.31665	9.28	86 1184	3.04631	9.63328	9.88	97.6144	3.14325	9.93982
8.69	75.5161	2.94788	9.32202	9.29	86.3041	3.04795	9.63846	9.89	97.8121	3.14484	9.94485
8.70	75.6900	2.94958	9.32738	9.30	86.4900	3.04959	9.64365	9.90	98.0100	3.14643	9.94987
8.71	75.8641	2.95127	9.33274	9.31	86.6761	3.05123	9.64883	9.91	98.2081	3.14802	9.95490
8.72	76.0384	2.95296	9.33809	9.32	86.8624	3.05287	9.65401	9.92	98.4064	3.14960	9.95992
8.73	76.2129	2.95466	9.34345	9.33	87.0489	3.05450	9.65919	9.93	98.6049	3.15119	9.96494
8.74	76.3876	2.95635	9.34880	9.34	87.2356	3.05614	9.66437	9.94	98.8036	3.15278	9.96995
8.75	76.5625	2.95804	9.35414	9.35	87.4225	3.05778	9.66954	9.95	99.0025	3.15436	9.97497
8.76	76.7376	2.95973	9.35949	9.36	87.6096	3.05941	9.67471	9.96	99.2016	3.15595	9.97998
8.77	76.9129	2.96142	9.36483	9.37	87.7969	3.06105	9.67988	9.97	99.4009	3.15753	9.98499
8.78	77.0884	2.96311	9.37017	9.38	87.9844	3.06268	9.68504	9.98	99.6004	3.15911	9.98999
8.79	77.2641	2.96479	9.37550	9.39	88.1721	3.06431	9.69020	9.99	99.8001	3.16070	9.99500
8.80	77.4400	2.96648	9.38083	9.40	88.3600	3.06594	9.69536	10.00	100.000	3.16228	10.0000
N	N ²	\sqrt{N}	$\sqrt{10N}$	N	N^2	\sqrt{N}	√10N	N	N ²	\sqrt{N}	$\sqrt{10N}$

VALUES AND LOGARITHMS OF EXPONENTIAL FUNCTIONS

Note: If 0 < x < .01 the value for e^{-x} can be found by the use of (1-x) or the value for e^{x} can be found by the use of (1+x).

x		ex	e-x	\boldsymbol{x}	•	x	e-x
	Value	Log10	Value		Value	Log ₁₀	Value
0.00 0.01 0.02 0.03 0.04	1.0000 1.0101 1.0202 1.0305 1.0408	.00000 .00434 .00869 .01303	1.00000 .99005 .98020 .97045 .96079	0.50 0.51 0.52 0.53 0.54	1.6487 1.6653 1.6820 1.6989 1.7160	.21715 .22149 .22583 .23018 .23452	.60653 .60050 .59452 .58860 .58275
0.05	1.0513	.02171	.95123	0.55	1.7333	.23886	.57695
0.06	1.0618	.02606	.94176	0.56	1.7507	.24320	.57121
0.07	1.0725	.03040	.93239	0.57	1.7683	.24755	.56553
0.08	1.0833	.03474	.92312	0.58	1.7860	.25189	.55990
0.09	1.0942	.03909	.91393	0.59	1.8040	.25623	.55433
0.10	1.1052	.04343	.90484	9.60	1.8221	.26058	.54881
0.11	1.1163	.04777	.89583	0.61	1.8404	.26492	.54335
0.12	1.1275	.05212	.88692	0.62	1.8589	.26926	.53794
0.13	1.1388	.05646	.87809	0.63	1.8776	.27361	.53259
0.14	1.1503	.06080	.86936	0.64	1.8965	.27795	.52729
0.15	1.1618	.06514	.86071	0.65	1.9155	.28229	.52205
0.16	1.1735	.06949	.85214	0.66	1.9348	.28664	.51685
0.17	1.1853	.07383	.84366	0.67	1.9542	.29098	.51171
0.18	1.1972	.07817	.83527	0.68	1.9739	.29532	.50662
0.19	1.2092	.08252	.82696	0.69	1.9937	.29966	.50158
0.20	1.2214	.08686	.81873	0.70	2.0138	.30401	.49659
0.21	1.2337	.09120	.81058	0.71	2.0340	.30835	.49164
0.22	1.2461	.09554	.80252	0.72	2.0544	.31269	.48675
0.23	1.2586	.09989	.79453	0.73	2.0751	.31703	.48191
0.24	1.2712	.10423	.78663	0.74	2.0959	.32138	.47711
0.25	1.2840	.10857	.77880	0.75	2.1170	.32572	.47237
0.26	1.2969	.11292	.77105	0.76	2.1383	.33006	.46767
0.27	1.3100	.11726	.76338	0.77	2.1598	.33441	.46301
0.28	1.3231	.12160	.75578	0.78	2.1815	.33875	.45841
0.29	1.3364	.12595	.74826	0.79	2.2034	.34309	.45384
0.30	1.3499	.13029	.74082	0.80	2.2255	. 34744	.44933
0.31	1.3634	.13463	.73345	0.81	2.2479	. 35178	.44486
0.32	1.3771	.13897	.72615	0.82	2.2705	. 35612	.44043
0.33	1.3910	.14332	.71892	0.83	2.2933	. 36046	.43605
0.34	1.4049	.14766	.71177	0.84	2.3164	. 36481	.43171
0.35	1.4191	.15200	.70469	0.85	2.3396	.36915	.42741
0.36	1.4333	.15635	.69768	0.86	2.3632	.37349	.42316
0.37	1.4477	.16069	.69073	0.87	2.3869	.37784	.41895
0.38	1.4623	.16503	.68386	0.88	2.4109	.38218	.41478
0.39	1.4770	.16937	.67706	0.89	2.4351	.38652	.41066
0.40 0.41 0.42 0.43 0.44	1.4918 1.5068 1.5220 1.5373 1.5527	.17372 .17806 .18240 .18675	.67032 .66365 .65705 .65051 .64404	0.90 0.91 0.92 0.93 0.94	2.4596 2.4843 2.5093 2.5345 2.5600	. 39087 . 39521 . 39955 . 40389 . 40824	. 40657 . 40252 . 39852 . 39455 . 39063
0.45	1.5683	.19543	.63763	0.95	2.5857	.41258	.38674
0.46	1.5841	.19978	.63128	0.96	2.6117	.41692	.38289
0.47	1.6000	.20412	.62500	0.97	2.6379	.42127	.37908
0.48	1.6161	.20846	.61878	0.98	2.6645	.42561	.37531
0.49	1.6323	.21280	.61263	0.99	2.6912	.42995	.37158
0.50	1.6487	.21715	. 60653	1.00	2.7183	. 43429	. 36788

\boldsymbol{x}	0	,x	e-x	\boldsymbol{x}	е	*	e-×
1	Value	Log10	Value		Value	Log10	Value
1.00	2.7183	.43429	.36788	1.50	4.4817	.65144	.22313
1.01	2.7456	.43864	.36422	1.51	4.5267	.65578	.22091
1.02	2.7732	.44298	.36060	1.52	4.5722	.66013	.21871
1.03	2.8011	.44732	.35701	1.53	4.6182	.66447	.21654
1.04	2.8292	.45167	.35345	1.54	4.6646	.66881	.21438
1.05	2.8577	.45601	.34994	1.55	4.7115	.67316	.21225
1.06	2.8864	.46035	.34646	1.56	4.7588	.67750	.21014
1.07	2.9154	.46470	.34301	1.57	4.8066	.68184	.20805
1.08	2.9447	.46904	.33960	1.58	4.8550	.68619	.20598
1.09	2.9743	.47338	.33622	1.59	4.9037	.69053	.20393
1.10	3.0042	.47772	.33287	1.60	4.9530	.69487	.20190
1.11	3.0344	.48207	.32956	1.61	5.0028	.69921	.19989
1.12	3.0649	.48641	.32628	1.62	5.0531	.70356	.19790
1.13	3.0957	.49075	.32303	1.63	5.1039	.70790	.19593
1.14	3.1268	.49510	.31982	1.64	5.1552	.71224	.19398
1.15	3.1582	.49944	.31664	1.65	5.2070	.71659	.19205
1.16	3.1899	.50378	.31349	1.66	5.2593	.72093	.19014
1.17	3.2220	.50812	.31037	1.67	5.3122	.72527	.18825
1.18	3.2544	.51247	.30728	1.68	5.3656	.72961	.18637
1.19	3.2871	.51681	.30422	1.69	5.4195	.73396	.18452
1.20	3.3201	.52115	.30119	1.70	5.4739	.73830	.18268
1.21	3.3535	.52550	.29820	1.71	5.5290	.74264	.18087
1.22	3.3872	.52984	.29523	1.72	5.5845	.74699	.17907
1.23	3.4212	.53418	.29229	1.73	5.6407	.75133	.17728
1.24	3.4556	.53853	.28938	1.74	5.6973	.75567	.17552
1.25	3.4903	.54287	.28650	1.75	5.7546	.76002	.17377
1.26	3.5254	.54721	.28365	1.76	5.8124	.76436	.17204
1.27	3.5609	.55155	.28083	1.77	5.8709	.76870	.17033
1.28	3.5966	.55590	.27804	1.78	5.9299	.77304	.16864
1.29	3.6328	.56024	.27527	1.79	5.9895	.77739	.16696
1.30	3.6693	.56458	.27253	1.80	6.0496	.78173	.16530
1.31	3.7062	.56893	.26982	1.81	6.1104	.78607	.16365
1.32	3.7434	.57327	.26714	1.82	6.1719	.79042	.16203
1.33	3.7810	.57761	.26448	1.83	6.2339	.79476	.16041
1.34	3.8190	.58195	.26185	1.84	6.2965	.79910	.15882
1.35	3.8574	. 58630	.25924	1.85	6.3598	.80344	.15724
1.36	3.8962	. 59064	.25666	1.86	6.4237	.80779	.15567
1.37	3.9354	. 59498	.25411	1.87	6.4883	.81213	.15412
1.38	3.9749	. 59933	.25158	1.88	6.5535	.81647	.15259
1.39	4.0149	. 60367	.24908	1.89	6.6194	.82082	.15107
1.40	4.0552	.60801	.24660	1.90	6.6859	.82516	.14957
1.41	4.0960	.61236	.24414	1.91	6.7531	.82950	.14808
1.42	4.1371	.61670	.24171	1.92	6.8210	.83385	14661
1.43	4.1787	.62104	.23931	1.93	6.8895	.83819	.14515
1.44	4.2207	.62538	.23693	1.94	6.9588	.84253	.14370
1.45	4.2631	.62973	.23457	1.95	7.0287	.84687	.14227
1.46	4.3060	.63407	.23224	1.96	7.0993	.85122	.14086
1.47	4.3492	.63841	.22993	1.97	7.1707	.85556	.13946
1.48	4.3929	.64276	.22764	1.98	7.2427	.85990	.13807
1.49	4.4371	.64710	.22537	1.99	7.3155	.86425	.13670
1.50	4.4817	.65144	. 22313	2.00	7.3891	.86859	.13534

\boldsymbol{x}		ex	e-=	x		*	e-x
"	Value	Log10	Value		Value	Log10	Value
2.00	7.3891	.86859	.13534	2.50	12.182	1.08574	.08208
2.01	7.4633	.87293	.13399	2.51	12.305	1.09008	.08127
2.02	7.5383	.87727	.13266	2.52	12.429	1.09442	.08046
2.03	7.6141	.88162	.13134	2.53	12.554	1.09877	.07966
2.04	7.6906	.88596	.13003	2.54	12.680	1.10311	.07887
2.05	7.7679	.89030	.12873	2.55	12.807	1.10745	.07808
2.06	7.8460	.89465	.12745	2.56	12.936	1.11179	.07730
2.07	7.9248	.89899	.12619	2.57	13.066	1.11614	.07654
2.08	8.0045	.90333	.12493	2.58	13.197	1.12048	.07577
2.09	8.0849	.90768	.12369	2.59	13.330	1.12482	.07502
2.10	8.1662	.91202	.12246	2.60	13.464	1.12917	.07427
2.11	8.2482	.91636	.12124	2.61	13.599	1.13351	.07353
2.12	8.3311	.92070	.12003	2.62	13.736	1.13785	.07280
2.13	8.4149	.92505	.11884	2.63	13.874	1.14219	.07208
2.14	8.4994	.92939	.11765	2.64	14.013	1.14654	.07136
2.15	8.5849	.93373	.11648	2.65	14.154	1.15088	.07065
2.16	8.6711	.93808	.11533	2.66	14.296	1.15522	.06995
2.17	8.7583	.94242	.11418	2.67	14.440	1.15957	.06925
2.18	8.8463	.94676	.11304	2.68	14.585	1.16391	.06856
2.19	8.9352	.95110	.11192	2.69	14.732	1.16825	.06788
2.20	9.0250	.95545	.11080	2.70	14.880	1.17260	.96721
2.21	9.1157	.95979	.10970	2.71	15.029	1.17694	.06654
2.22	9.2073	.96413	.10861	2.72	15.180	1.18128	.06587
2.23	9.2999	.96848	.10753	2.73	15.333	1.18562	.06522
2.24	9.3933	.97282	.10646	2.74	15.487	1.18997	.06457
2.25	9.4877	.97716	.10540	2.75	15.643	1.19431	.06393
2.26	9.5831	.98151	.10435	2.76	15.800	1.19865	.06329
2.27	9.6794	.98585	.10331	2.77	15.959	1.20300	.06266
2.28	9.7767	.99019	.10228	2.78	16.119	1.20734	.06204
2.29	9.8749	.99453	.10127	2.79	16.281	1.21168	.06142
2.30	9.9742	.99888	.10026	2.80	16.445	1.21602	.06081
2.31	10.074	1.00322	.09926	2.81	16.610	1.22037	.06020
2.32	10.176	1.00756	.09827	2.82	16.777	1.22471	.05961
2.33	10.278	1.01191	.09730	2.83	16.945	1.22905	.05901
2.34	10.381	1.01625	.09633	2.84	17.116	1.23340	.05843
2.35	10.486	1.02059	.09537	2.85	17.288	1.23774	.05784
2.36	10.591	1.02493	.09442	2.86	17.462	1.24208	.05727
2.37	10.697	1.02928	.09348	2.87	17.637	1.24643	.05670
2.38	10.805	1.03362	.09255	2.88	17.814	1.25077	.05613
2.39	10.913	1.03796	.09163	2.89	17.993	1.25511	.05558
2.40	11.023	1.04231	.09072	2.90	18.174	1.25945	.05502
2.41	11.134	1.04665	.08982	2.91	18.357	1.26380	.05448
2.42	11.246	1.05099	.08892	2.92	18.541	1.26814	.05393
2.43	11.359	1.05534	.08804	2.93	18.728	1.27248	.05340
2.44	11.473	1.05968	.08716	2.94	18.916	1.27683	.05287
2.45	11.588	1.06402	. 08629	2.95	19.106	1.28117	.05234
2.46	11.705	1.06836	. 08543	2.96	19.298	1.28551	.05182
2.47	11.822	1.07271	. 08458	2.97	19.492	1.28985	.05130
2.48	11.941	1.07705	. 08374	2.98	19.688	1.29420	.05079
2.49	12.061	1.08139	. 08291	2.99	19.886	1.29854	.05029
2.50	12.182	1.08574	. 08208	3.00	20.086	1.30288	.04979

\boldsymbol{x}		,*	e-z
	Value	Log10	Value
3.00	20.086	1.30288	.04979
3.05	21.115	1.32460	.04736
3.10	22.198	1.34631	.04505
3.15	23.336	1.36803	.04285
3.20	24.533	1.38974	.04076
3.25	25.790	1.41146	.03877
3.30	27.113	1.43317	.03688
3.35	28.503	1.45489	.03508
3.40	29.964	1.47660	.03337
3.45	31.500	1.49832	.03175
3.50	33.115	1.52003	.03020
3.55	34.813	1.54175	.02872
3.60	36.598	1.56346	.02732
3.65	38.475	1.58517	.02599
3.70	40.447	1.60689	.02472
3.75	42.521	1.62860	.02352
3.80	44.701	1.65032	.02237
3.85	46.993	1.67203	.02128
3.90	49.402	1.69375	.02024
3.95	51.935	1.71546	.01925
4.00	54.598	1.73718	.01832
4.10	60.340	1.78061	.01657
4.20	66.686	1.82404	.01500
4.30	73.700	1.86747	.01357
4.40	81.451	1.91090	.01227
4.50	90.017	1.95433	.01111
4.60	99.484	1.99775	.01005
4.70	109.95	2.04118	.00910
4.80	121.51	2.08461	.00823
4.90	134.29	2.12804	.00745
5.00	148.41	2.17147	.00674
5.10	164.02	2.21490	.00610
5.20	181.27	2.25833	.00552
5.30	200.34	2.30176	.00499
5.40	221.41	2.34519	.00452
5.50	244.69	2.38862	.00409
5.60	270.43	2.43205	.00370
5.70	298.87	2.47548	.00335
5.80	330.30	2.51891	.00303
5.90	365.04	2.56234	.00274
6.00	403.43	2.60577	.00248
6.25	518.01	2.71434	.00193
6.50	665.14	2.82291	.00150
6.75	854.06	2.93149	.00117
7.00	1096.6	3.04006	.00091
7.50	1808.0	3.25721	.00055
8.00	2981.0	3.47436	.00034
8.50	4914.8	3.69150	.00020
9.00	8103.1	3.90865	.00012
9.50	13360.	4.12580	.00007
10.00	22026.	4.34294	.00005

THREE-PLACE VALUES OF TRIGONOMETRIC FUNCTIONS AND DEGREES IN RADIAN MEASURE

Rad.	Deg.	Sin	Tan	Sec	Csc	Cot	Cos	Deg.	Rad.
.000	0 °	.000	.000	1.000			1.000	90°	1.571
.017	1°	.017	.017	1.000	57.30	57.29	1.000	89°	1.553
.035	20	.035	.035	1.001	28.65	28.64	0.999	88°	1.536
.052	3°	.052	.052	1.001	19.11	19.08	.999	87°	1.518
.070	40	.070	.070	1.002	14.34	14.30	.998	86°	
.087	5°	.087	.087	1.002	11.47	11.43	.996	85°	1.501 1.484
									1.404
.105	6°	.105	.105	1.006	9.567	9.514	.995	84°	1.466
.122	7°	.122	.123	1.008	8.206	8.144	.993	83°	1.449
.140	8°	.139	.141	1.010	7.185	7.115	.990	82°	1.431
.157	9°	.156	.158	1.012	6.392	6.314	.988	81°	1.414
.175	10°	.174	.176	1.015	5.759	5.671	.985	80°	1.396
.192	11°	.191	.194	1.019	5.241	5.145	.982	79°	1.379
.209	12°	.208	.213	1.022	4.810	4.705	.978	78°	1.361
.227	13°	.225	.231	1.026	4.445	4.331	.974	77°	1.344
.244	14°	.242	.249	1.031	4.134	4.011	.970	76°	1.326
.262	15°	.259	.268	1.035	3.864	3.732	.966	75°	1.309
				4.000					
.279	16°	.276	.287	1.040	3.628	3.487	.961	74°	1.292
.297	17°	.292	.306	1.046	3.420	3.271	.956	73°	1.274
.314	18°	.309	.325	1.051	3.236	3.078	.951	72°	1.257
.332	19°	.326	.344	1.058	3.072	2.904	.946	71°	1.239
.349	20°	.342	.364	1.064	2.924	2.747	.940	70°	1.222
.367	21°	.358	.384	1.071	2.790	2.605	.934	69°	1.204
.384	22°	.375	.404	1.079	2.669	2.475	.927	68°	1.187
.401	23°	.391	.424	1.086	2:559	2.356	.921	67°	1.169
.419	24°	.407	.445	1.095	2.459	2.246	.914	66°	1.152
.436	25°	.423	.466	1.103	2.366	2.145	.906	65°	1.134
.454	26°	.438	.488	1.113	2.281	2.050	.899	64°	1.117
.471	27°	.454	.510	1.122	2.203	1.963	.891	63°	1.100
.489	28°	.469	.532	1.133	2.130	1.881	.883	62°	1.082
.506	29°	.485	.554	1.143	2.063	1.804	.875	61°	1.065
.524	30°	.500	.577	1.155	2.000	1.732	.866	60°	1.047
.541	31°	.515	.601	1.167	1.942	1.664	.857	59°	1.030
.559	32°	.530	.625	1.179	1.887	1.600	.848	58°	1.012
.576	33°	.545	.649	1.192	1.836	1.540	.839	57°	0.995
.593	34°	.559	.675	1.206	1.788	1.483	.829	56°	0.977
.611	35°	.574	.700	1.221	1.743	1.428	.819	55°	0.960
				1 000	1.501	1.070			
.628	36°	.588	.727	1.236	1.701	1.376	.809	54°	0.942
.646	37°	.602	.754	1.252	1.662	1.327	.799	53°	0.925
.663	38°	.616	.781	1.269	1.624	1.280	.788	52°	0.908
.681	39°	.629	.810	1.287	1.589	1.235	.777	51°	0.890
.698	40°	.643	.839	1.305	1.556	1.192	.766	50°	0.873
.716	41°	.656	.869	1.325	1.524	1.150	.755	49°	0.855
.733	42°	.669	.900	1.346	1.494	1.111	.743	48°	0.838
.750	43°	.682	.933	1.367	1.466	1.072	.731	47°	0.820
.768	44°	.695	0.966	1.390	1.440	1.036	.719	46°	0.803
.785	45°	.707	1.000	1.414	1.414	1.000	.707	45°	0.785
Rad.	Deg.	Cos	Cot	Csc	Sec	Tan	Sin	Deg.	Rad.

NATURAL (NAPIERIAN) LOGARITHMS

The natural logarithm of a number is the index of the power to which the base e (2.7182818) must be raised in order to equal the number.

Example: $\log_e 4.12 = \ln 4.12 = 1.4159$.

The table gives the natural logarithms of numbers from 1.00 to 9.99 directly, and permits finding logarithms of numbers outside that range by the addition or subtraction of the natural logarithms of powers of 10.

Example: $\ln 679$. = $\ln 6.79 + \ln 10^8 = 1.9155 + 4.6052 = 6.5207$ $\ln 0.0679 = \ln 6.79 - \ln 10^3 = 1.9155 + 4.6052 = -2.6897$

Natural Logarithms of 10^k

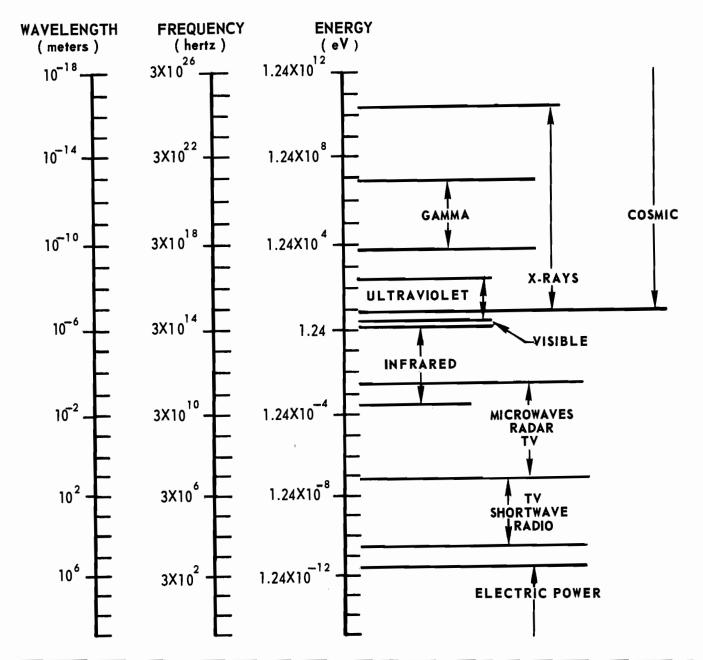
To obtain the common logarithm, the natural logarithm is multiplied by $\log_{10} e$, which is 0.434294, or $\log_{10} N = 0.434294$ ln N.

N	0	1	2	3	4	5	6	7	8	9
1.0	0.0000	0.0100	0.0198	0.0296	0.0392	0.0488	0.0583	0.0677	0.0770	0.0862
1.1	0.0953	0.1044	0.1133	0.1222	0.1310	0.1398	0.1484	0.1570	0.1655	0.1740
1.2	0.1823	0.1906	0.1989	0.2070	0.2151	0.2231	0.2311	0.2390	0.2469	0.2546
1.3	0.2624	0.2700	0.2776	0.2852	0.2927	0.3001	0.3075	0.3148	0.3221	0.3293
1.4	0.3365	0.3436	0.3507	0.3577	0.3646	0.3716	0.3784	0.3853	0.3920	0.3988
1.5	0.4055	0.4121	0.4187	0.4253	0.4313	0.4383	0.4447	0.4511	0.4574	0.4637
1.6	0.4700	0.4762	0.4824	0.4886	0.4947	0.5008	0.5068	0.5128	0.5188	0.5247
1.7	0.5306	0.5365	0.5423	0.5481	0.5539	0.5596	0.5653	0.5710	0.5766	0.5822
1.8	0.5878	0.5933	0.5988	0.6043	0.6098	0.6152	0.6206	0.6259	0.6313	0.6366
1.9	0.6419	0.6471	0.6523	0.6575	0.6627	0.6678	0.6729	0.6780	0.6831	0.6881
2.0	0.6931	0.6981	0.7031	0.7080	0.7129	0.7178	0.7227	0.7275	0.7324	0.7372
2.1	0.7419	0.7467	0.7514	0.7561	0.7608	0.7655	0.7701	0.7747	0.7793	0.7839
2.2	0.7885	0.7930	0.7975	0.8020	0.8065	0.8109	0.8154	0.8198	0.8242	0.8286
2.3	0.8329	0.8372	0.8416	0.8459	0.8502	0.8544	0.8587	0.8629	0.8671	0.8713
2.4	0.8755	0.8796	0.8838	0.8879	0.8920	0.8961	0.9002	0.9042	0.9083	0.9123
2.5	0.9163	0.9203	0.9243	0.9282	0.9322	0.9361	0.9400	0.9439	0.9478	0.95!7
2.6	0.9555	0.9594	0.9632	0.9670	0.9708	0.9746	0.9783	0.9821	0.9858	0.9895
2.7	0.9933	0.9969	1.0006	1.0043	1.0080	1.0116	1.0152	1.0188	1.0225	1.0260
2.8	1.0296	1.0332	1.0367	1.0403	1.0438	1.0473	1.0508	1.0543	1.0578	1.0613
2.9	1.0647	1.0682	1.0716	1.0750	1.0784	1.0818	1.0852	1.0886	1.0919	1.0953
8.0	1.0986	1.1019	1.1053	1.1086	1.1119	1,1151	1.1184	1.1217	1 1249	1.1282
3.1	1.1314	1.1346	1.1378	1.1410	1.1442	1,1474	1.1506	1.1537	1.1569	1.1600
3.2	1.1632	1.1663	1.1694	1.1725	1.1756	1,1787	1.1817	1.1848	1.1878	1.1909
3.3	1.1939	1.1969	1.2000	1.2030	1. 2 060	1, 20 90	1.2119	1.2149	1.2179	1.2208
3.4	1.2238	1.2267	1.2296	1.2326	1, 2355	1.2384	1.2413	1 . 2442	1,2470	1, 2499
3.5	1.2528	1.2556	1.2585	1.2613	1, 2641	1.2669	1.2698	1 . 2726	1,2754	1, 2782
3.6	1.2809	1.2837	1.2865	1.2892	1, 2920	1.2947	1.2975	1 . 3002	1,3029	1, 3056
3.7	1.3083	1.3110	1.3137	1.3164	1.3191	1.3218	1.3244	1.3271	1.3297	1,3324
3.8	1.3350	1.3376	1.3403	1.3429	1.3455	1.3481	1.3507	1.3533	1.3558	1,3584
3.9	1.3610	1.3635	1.3661	1.3686	1.3712	1.3737	1.3762	1.3788	1.3813	1,3838
4.0	1.8863	1.3888	1.3913	1.3938	1.3962	1.3987	1.4013	1.4086	1.4061	1,4085
4.1	1,4110	1,4134	1, 4159	1.4183	1.4207	1.4231	1,4255	1,4279	1.4303	1.4327
4.2	1,4351	1,4375	1, 4398	1.4422	1.4446	1.4469	1,4493	1,4516	1.4540	1.4563
4.3	1,4586	1,4609	1, 4633	1.4656	1.4679	1.4702	1,4725	1,4748	1.4770	1.4793
4.4	1.4816	1,4839	1.4861 .	1.4884	1.4907	1,4929	1, 4951	1,4974	1.4996	1.5019
4.5	1.5041	1,5063	1.5085	1.5107	1.5129	1,5151	1, 5173	1,5195	1.5217	1.5239
4.6	1.5261	1,5282	1.5304	1.5326	1.5347	1,5369	1, 5390	1,5412	1.5433	1.5454
4.7	1.5476	1.5497	1.5518	1,5539	1.5560	1.5581	1.5602	1,5623	1.5644	1.5665
4.8	1.5686	1.5707	1.5728	1,5748	1.5769	1.5790	1.5810	-1,5831	1.5851	1.5872
4.9	1.5892	1.5913	1.5933	1,5953	1.5974	1.5994	1.6014	1,6034	1.6054	1.6074

N	0	1	2	3	4	5	6	7	8	9
5.0	1.6094	1.6114	1.6134	1.6154	1.6174	1.6194	1.6214	1.6233	1.6253	1.6278
5.1 5.2	1.6292 1.6487	1.6312 1.6506	1.6332 1.6525	1,6351 1,6544	1.6371 1.6563	1.6390 1.6582	1.6409 1.6601	1.6429 1.6620	1.6448	1.6467 1.6658
5.3	1.6677	1.6696	1.6715	1.6734	1.6752	1.6771	1.6790	1.6808	1.6827	1,6845
5.4 5.5	1.6864 1.7047	1.6882 1.7066	1.6901 1.7084	1.6919 1.7102	1.6938 1.7120	1.6956 1.7138	1,6974 1,7156	1.6993 1.7:74	1.7011 1.7192	1. 7 029 1.721 0
5.6	1.7228	1.7246	1.7263	1.7281	1.7299	1.7317	1.7334	1.7352	1.7370	1,7387
5.7	1.7405 1.7579	1.7422 1.7596	1.7440	1.7457 1.7630	1.7475 1.7647	1.7492 1.7664	1.7509	1.7527 1.7699	1.7544	1.7561
5.8 5.9	1.7750	1.7766	1.7783	1.7800	1.7817	1.7834	1.7851	1.7867	1.7884	1.7901
6.0	1.7918	1.7934	1.7951	1.7967	1.7984	1.8001	1.8017	1.8034	1.8050	1.8066
6.1	1.8083 1.8245	1.8099 1.8262	1.8116 1.8278	1.8132 1.8294	1.8148	1.8165 1.8326	1.8181 1.8342	1.8197 1.8358	1.8213	1.8229 1.839 0
6.2 6.3	1.8405	1.8421	1.8437	1.8453	1.8469	1.8485	1.8500	1.8516	1.8532	1.8547
6.4	1.8563	1.8579	1.8594	1.8610	1.8625	1.8641	1.8656	1.8672	1.8687	1.8703
6.5 6.6	1.8718	1.8733	1.8749	1.8764	1.8779	1.8795	1.8810 1.8961	1.8825 1.8976	1.8840	1.8556 1.9006
6.7	1.9021	1.9036	1.9051	1.9066	1.9081	1.9095	1.9110	1,9125	1.9140	1.9155
6.8	1.9169 1.9315	1.9184	1.9199 1.9344	1.9213	1.9228 1.9373	1.9242 1.9387	1.9257 1.9402	1.9272	1.9286	1.9301 1.9445
6.9 7.0	1.9459	1,9473	1.9488	1.9502	1.9516	1.9530	1.9544	1.9559	1.9573	1.9587
7.1	1.9601	1.9615	1.9629	1.9643	1.9657	1.9671	1.9685	1.9699	1.9713	1.9727
7.2	1.9741	1.9755	1.9769	1.9782	1.9796 1.9933	1.9810 1.9947	1.9824 1.9961	1.9338 1.9974	1.9851	1.9865 2.0001
7.3 7.4	1.9879	1.9892 2.0028	1.9906 2.0042	1.9920 2.0055	2.0069	2.0082	2.0096	2.0109	2.0122	2.0136
7.5	2.0149	2.0162	2.0176	2.0189	2.0202	2.0215	2.0229	2.0242	2.0255	2.0268
7.6	2.0281	2.0295	2.0308	2.0321	2.0334	2.0347	2.0360	2.0373	2.0386 2.0516	2.0399 2.0528
7.7 7.8	2.0412 2.0541	2.0425 2.0554	2.0438 2.0567	2.0451 2.0580	2.0464 2.0592	2.0477 2.0605	2.0490 2.0618	2.0631	2.0643	2.0656
7.9	2,0669	2.0681	2.0694	2.0707	2.0719	2.0732	2.0744	2.0757	2.0769	2.0782
8.0	2.0794	2.0807	2.0819	2.0832	2.0844	2.0857	2.0869	2.0882	2.0894	2.0906
8.1 8.2	2.0919 2.1041	2.0931	2.0943 2.1066	2.0956 2.1078	2.0968 2.1090	2.0989 2.1102	2.0992	2.1005 2.1126	2. 1017 2. 1138	2.1029 2.1150
8.3	2.1163	2, 1175	2,1187	2.1199	2.1211	2.1223	2, 1235	2.1247	2, 1258	2.1270
8.4	2.1282	2.1294 2.1412	2.1306 2.1424	2.1318 2.1436	2.1330 2.1448	2.1342 2.1459	2.1353 2.1471	2.1365 2.1483	2.1377	2.1389 2.1506
8.5 8.6	2.1401 2.1518	2.1529	2.1541	2, 1552	2.1564	2. 1576	2.1587	2, 1599	2, 1610	2, 1622
8.7	2, 1633	2.1645	2.1656	2.1668	2.1679	2.1691	2.1702	2.1713	2.1725	2, 1736
8.8 8.9	2.1748 2.1861	2.1759	2.1770 2.1883	2.1782 2.1894	2.1793	2.1804 2.1917	2.1815	2.1827 2.1939	2.1838	2.1849 2.1961
9.0	2.1972	2.1983	2.1994	2.2006	2.2017	2.2028	2.2039	2.2050	2.2061	2.2072
9.1		2.2094	2.2105	2.2116	2.2127	2.2138	2.2148	2.2159	2.2170	2.2181
9.2 9.3	2.2192 2.2300	2.2203	2.2214	2.2225 2.2332	2.2235 2.2343	2.2246 2.2354	2.2257 2.2364	2.2268 2.2375	2.2279 2.2386	2.2289 2.2396
9.4	2.2407	2,2418	2.2428	2.2439	2.2450	2.2460	2.2471	2.2481	2.2492	2.2502
9.5 9.6	2.2513 2.2618	2, 2523 2, 2628	2.2534 2.2638	2.2544 2.2649	2. 2555 2. 2659	2.2565 2.2670	2.2576 2.2680	2, 2586 2, 2690	2, 2597 2, 2701	2.2607 2.2711
9.0	2.2018	2.2732	2.2742	2.2752	2.2762	2, 2773	2.2783	2.2793	2.2803	2.2814
9.8	2.2824	2.2834	2.2844	2.2854	2.2865	2.2875	2.2885	2.2895	2.2905	2.2915
9.9	2.2925	2. 2935	2. 2946	2.2956	2.2966	2.2976	2. 2986	2. 2996	2.3006	2.3010

LOGARITHMS TO BASE 10

N	0	1	2	8	4	•		7	8	9	•	2	2	4	K	c	7	8	9
		_		_	-	5	6				_		<u> </u>	4	5	<u> </u>		<u> </u>	9
10	0000				0170		0253	I		0374	4	8	12	! 	21		29	33	<u>37</u>
11 12	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0453 0828		0531 0899	0569 0934	0 607 0 969	0645 1004	0682 1038			4 3		11 10		19 17		26 24		
13	1139			1239		1303		1367	1399		3		1 0		1 6		23		
14	1461 1761	1492	1523	1553		1614	1644	1673	1703	1732	3	6	9		15		21		
15 16	2041	1790 2068	1818 2095	1847 2122	1875 2148	1903 2175	1931 2201	1959 2227	1987 2253	2014 2279	3 3	6 5	8 8		14 13		20 18		
17	2304	2330	2355	2380	2405	24 30		2480	2504		2	5	7		12		17		
18 19	2553 2788	2577 2810	2601 2833	2625 2856	2648 2878	2672 2900	2695 2923	$2718 \\ 2945$		2765 2989	2 2	5 4	. 7 7		12 11		16 16		
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243		3284	3304	3324	3345	3365			2	4	6		10		14		
22 23	3424 3617	3444 3636	3464 3655	3483 3674	3502 3692	3522 3711	3541 3729	3560 3747	3579 3766	3598 3784	2 2	4	6 6	8 7		12 11	14 13		
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25 26	3979 4150	3997 41 66	4014 4183	4031 4200	404 8 4216	4065 42 3 2	4082 4249	4099 4265	4116 4281	4133 4298	2 2	4 3	5 5	7	9 8	10 10	12 11		
27	4314	433 0	4346	4362	4378	4393	4409	4425	4440		2	3	5	6	8	9	11		
28 29	4472 4624	4487 4639	$\begin{array}{c} 4502 \\ 4654 \end{array}$	4518 4669	4533 4683	4548 4698	4564 4713	4579 4728	4594 4742	4609	2 1	3	5 4	6	8	9	11 10		
30	4771	4786	4800	4814	4829	4843	4857	4871	4886		$\frac{1}{1}$	3	4	$\frac{6}{6}$	· 7	9	10		
31	4914	4928	4942	4955	4969	4983	4997	5011	5024		1	3	<u>-</u>	5	7	- 8	10		
32 33	5051 5185	5065 519 8	5079 5211	5092 5224	5105 5237	5119 525 0	5132 5263	5145 5276	5159 5289		1	3	4 4	5 5	7 7	8		11 11	12 12
34	5315	5328	5340	5353	5366	5378		5403			1	2	4	5	6	8		10	
35 36	5441 5563	5453 5575	5465	5478 5599	5490	5502	5514	5 527	5539	5551	1 1	2 2	4	5	6	7	9	10	11
37	5682	5694	5587 5705	5717	5611 5729	5623 5740	5635 5752	5647 5763	5658 5775	5 670	1	2	4	5	6	7 7	8	10 0	11
38	5798	5 809	5821	5 832	5843	5 855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39 40	5911 6021	5922 6031	5933	5944 6053	5955	5966	5977	5988 6006	5999 6107		$\frac{1}{1}$	$\frac{2}{2}$	$\frac{3}{3}$	4	<u>5</u>	7	_ 8		10 10
41	6128	6138	$\frac{6042}{6149}$	6053 6160	$\frac{6064}{6170}$	$\frac{6075}{6180}$	$\frac{6085}{6191}$	6096 6201	$\frac{6107}{6212}$	$\frac{6117}{6222}$	1	$\frac{2}{2}$	$\frac{3}{3}$	$\frac{4}{4}$	5	$\frac{6}{6}$	$\frac{-8}{7}$	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325		2	3	4	5	6	7	8	9
44	6435		- 1	6365 6464	- 1	- 1	- 1				1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590		6609		1	2	3	4	5	6	7	8	9
46	6628	6637	6646		6665			6693		6712	1	2	3	4	5	6	7	7	8
47 48	6721 6812	6730 6821	6830	6839		6857		6875	6794 6884	6893	1	$\frac{2}{2}$	3	4 4	5 5	6 6	7 7	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	<u>6981</u>	1	2	3	4	4	5		7	8
50	6990	6998	7007	7016			7042	7050	——I	7067	1	2	3	3	4	5	6	7	8
51 52	7076 7160	7084 7168	7093 7177	7101 7185	7110 7193	7118 7202	7126 7210	7135 7218		7152 7235	1	$\frac{2}{2}$	3 3	3 3	4 4	5	6 6	7 7	8 7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	_1	2	2	_3_	4	5	6	6	7
N	0	1	2	8	4	5	6	7	8	9	1	2	2	4	5	6	7	8	9


The proportional parts are stated in full for every tenth at the right-hand side. The logarithm of any number of four significant figures can be read directly by add-

(continued)—LOGARITHMS TO BASE 10

N	0	1	2	8	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
55 56	7404 7482	7412 7490	7419 7497	7427 7505	7435 7513	7443 7520	7451 7528	7459 7536	7466 7543	7474 7551	1 1	2 2	2 2	 3 3	44	5 5	5 5	6 6	77
57 58 59	7559 7634 7709	7566 7642 7716	7574 7649 7723	7582 7657 7731	7589 7664 7738	7597 7672 7745	7604 7679 7752	7612 7686 7760	7619 7694 7767	7627 7701 7774	1 1 1	1 1 1	2 2	3 3	444	5 4 4	5 5 5	6 6 6	7 7 7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	_3_	4	4	_5_	6	6
61 62 63	7853 7924 7993	7860 7931 8000	7868 7938 8007	7875 7945 8014	7882 79 5 2 80 21	7889 7959 8028	7896 7966 8035	7903 7973 8041	7910 7980 8048	7917 7987 8055	1 1 1	1 1 1	2 2 2	3 3	3 3 3	4 4 4	5 5 5	6 5 5	6 6 6
64 65 66	8062 8129 8195	8069 8136 8202	8075 8142 8209	8082 8149 8215	8089 8156 8222	8096 8162 8228	8102 8169 8235	8109 8176 8241	8116 8182 8248		1 1 1	1 1 1	2 2 2	3 3	3 3	4 4 4	5 5 5	5 5 5	6 6 6
67 68 69	8261 8325 8388	8267 8331 8395	8274 8338 8401	8280 8344 8407	8287 8351 8414	8293 8357 8420	8299 8363 8426	8306 8370 8432	8312 8376 8439	8319 8382 8445	1 1 1	1 1 1	2 2 2	3 3 3	3 3 3	4 4 4	5 4 4	5 5 5	6 6
70	8451	8457	8463	8470	8476	8482	84 88	8494	8500	8506	1	1	2	3	3	4	4	5	6
71 72 73	8513 8573 8633	8519 8579 8639	8525 8585 8645	8531 8591 8651	8537 8597 8657	8543 8603 8663	8549 8609 8669	8555 8615 8675	8561 8621 8681	8567 8627 8686	1 1 1	1 1 1	2 2 2	3 3 2	3 3 3	4 4 4	4 4 4	5 5 5	6 6 5
74 75 76	8692 8751 8808	8698 8756 8814	8704 8762 8820	8710 8768 8825	8716 8774 8831	8722 8779 8837	8727 8785 8842	8733 8791 8848	8739 8797 8854	8745 8802 8859	1 1 1	1 1 1	2 2 2	2 2 2	3 3 3	3	4 4	5 5 4	5 5
77 78 79	8865 8921 8976	8871 8927 8982	8876 8932 8987	8882 8938 8993	8887 8943 8998	8893 8949 9004			8910 8965 9020	8915 8971 9025	1 1 1	1 1 1	2 2 2	2 2 2	3 3 3	3 3 3	4 4 4	4 4 4	5 5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81 82 83	9085 9138 9191	9090 9143 9196	9096 9149 9201	9101 9154 9206	9106 9159 9212	9112 9165 9217	9117 9170 9222	9122 9175 9227	9128 9180 9232	9133 9186 9238	1 1 1	1 1 1	2 2 2	2 2 2	3 3 3	333	44	4 4 4	5 5
84 85 86	9243 9294 9345	9248 9299 9350	9253 9304 9355	9258 9309 9360	9263 9315 9365	9269 9320 9370	9274 9325 9375	9279 9330 9380	9284 9335 9385	9289 9340 9390	1 1 1	1 1 1	2 2 2	2 2 2	3 3 3	3 3	444	4 4 4	5 5 5
87 88 89	9395 9445 9494	9450	9405 9455 9504	9460	9415 9465 9513	9420 9469 9518	9474		9484	9489	1 0 0	1 1 1	2 1 1	2 2 2	3 2 2	3 3	4 3 3	4 4 4	5 4 4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91 92 93	9590 9638 9685		9647			9614 9661 9708	9619 9666 9713	9671	9628 9675 9722	9680	0 0 0	1 1 1	1 1 1	2 2 2	2 2 2	333	3 3 3	4 4 4	444
94 95 96	9731 9777 9823		9786	9791	9750 9795 9841		9805	9809		9818		1 1 1	1 1 1	2 2 2	2 2 2	3 3	3 3 3	4 4 4	4 4 4
97 98 99		9872 9917 9961	9921		9886 9930 9974		9939	9943	9903 9948 9991	9952		1 1 1	1 1 1	2 2 2	2 2 2	3 3	3 3 3	4 3 3	444
N	0	1	2	8	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

ing the proportional part corresponding to the fourth figure to the tabular number corresponding to the first three figures. There may be an error of 1 in the last place.

THE ELECTROMAGNETIC SPECTRUM

Type of Radiation	Wavelength Range* (meters)	Frequency Range (hertz)	Energy Range (eV)
Electric Power	∞ - 3 ×10 ⁵	0 - 10 ³	0 - 4.1×10 ⁻¹³
Radio Waves	3 ×10 ⁴ - 3 ×10 ⁻⁴	10 ⁴ - 10 ¹²	$4.1 \times 10^{-11} - 4.1 \times 10^{-3}$
Infrared	$3 \times 10^{-3} - 7.6 \times 10^{-7}$	10^{11} - 4 $\times 10^{14}$	4.1×10 ⁻⁴ - 1.6
Visible	7.6×10^{-7} - 3.8×10^{-7}	$4 \times 10^{14} - 7.9 \times 10^{14}$	1.6 - 3.3
Ultraviolet	3.8×10^{-7} - 3 $\times 10^{-9}$	$7.9 \times 10^{14} - 10^{17}$	3.3 - 410
X Rays	$1.2 \times 10^{-7} - 4.1 \times 10^{-17}$	$2.5 \times 10^{15} - 7.3 \times 10^{24}$	10 - 3 $\times 10^{10}$
Gamma Rays	$1.5 \times 10^{-10} - 1.2 \times 10^{-13}$	$2 \times 10^{18} - 2.5 \times 10^{21}$	$8 \times 10^3 - 10^7$
Cosmic Rays	1.2×10 ⁻⁷	2.5×10 ¹⁵	10

^{50 *}Ranges are approximate; no exact end points exist.

Atomic Mass Table (unified mass scale)

A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
elec	tron	0.000 549	<1		13	В	13.017 78	0 4	84.455
prot	on	1.007 277	<1		l)	С	13.003 35		97.109
neut		1.008 665	<1			N	13.005 73		94.106
1	Н	1.007 825	<1		14	С	14.003 24	2 <1	105.286
					1	N	14.003 07		104.659
2	Н	2.014 102	<1	2.225		0	14.008 59	7 <1	98.733
3	Н	3.016 050	<1	8.482	15	С	15.010 60		106.504
	Нe	3.016 030	<1	7.718	.	N	15.000 10		115.494
4	Н	4.030 300	1830	3.280		0	15.003 07	0 1	111.952
4	п Не	4.002 603	<1	28.296	16	С	16.014 70	0 17	110.756
	ne	4.002 003	\1	20.290		N	16.006 10		117.981
5	Н	5.031 620	1610	10.120	ll .	0	15.994 91		127.620
	Не	5.012 297	20	27.338		F	16.011 70		111.197
	Li	5.012 538	40	26.331		•	10.011 70	0 13	111.177
	-	3.012 330	1	20.331	17	N	17.008 45	0 16	123.867
6	Нe	6.018 893	4	29.266	-7	0	16.999 13		131.763
	Li	6.015 124	1	31.993	1	F	17.002 09		128.220
	Вe	6.019 717	13	26.932					
					18	0	17.999 16		139.809
7	Li	7.016 004	1	39.245		F	18.000 93		137.371
	Be	7.016 929	1	37.601		Ne	18.005 71	1 5	132.142
8	Нe	8.037 520	2150	28.060	19	0	19.003 57	8 3	143.765
	Li	8.022 487	2	41.278		F	18.998 40	5 1	147.801
	Вe	8.005 308	1	56.498		Ne	19.001 88	1 2	143.781
	В	8.024 609	2	37.736		•	00 00/ 07		151 070
9	Li	9.026 802	22	AF 220	20	0	20.004 07		151.370
9	Вe	9.012 186	1	45.330 58.163	II.	F	19.999 98		154.399
	В	9.013 332	1	56.312	1	Ne Na	19.992 44 20.008 88		160.646 144.550
	Б	9.013 332	1			Na	20.008 88	0 320	144.550
10	Вe	10.013 534	2	64.978	21	F	20.999 95	1 8	162.504
	В	10.012 939	1	64.750	ll .	Ne	20.993 84		167.406
	С	10.016 810	14	60.361	l	Na	20.997 65	5 9	163.078
11	Ве	11.021 666	16	65.475	22	Ne	21.991 38	5 1	177.772
	В	11.009 305	<1	76.206		Na	21.994 43		174.147
	С	11.011 432	1	73.443		Mg	21.999 85		168.320
12	В	12.014 354	1	79.575	23	Ne	22.994 47	3 4	182.967
	C	12.000 000	Ō	92.163	-3	Na	22.989 77		186.565
	N	12.018 641	8	74.017		Mg	22.994 12		181.726
						_			

^{*}Errors are standard errors (one standard deviation) in the last digits of the reported atomic masses. Binding energy errors are not given, but are generally proportional to the atomic mass errors. †Binding energies are for the entire atom and include the binding energies of the electrons.

Source: Mattauch, J.H.E., Thiele, W., Wapstra, A.H., "1964 Atomic Mass Table," Nuclear Physics, Vol. 67, No. 1 (1965), pp. 1-31.

A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
24	N-	23.993 613	10	191.839	36	s	35.967 090	9	308.707
24	Ne				30	C1	35.968 309	4	306.790
	Na	23.990 962	4	193.526					306.730
	Mg	23.985 542	2	198.258		Ar	35.967 545	2	
	A1	24.000 100	100	183.450		K	35.982 040	1070	292.440
25	Na	24.989 955	9	202.535	37	S	36.971 010	80	313.130
	Mg	24.985 839	2	205.587		C1	36.965 899	1	317.106
	A1	24.990 412	7	200.545		Ar K	36.966 772 36.973 365	1 48	315.510 308.587
26	Na	25.991 740	320	208.940		K	30.973 303	40	300.307
_	Mg	25.982 593	2	216.682	38	S	37.971 230	160	321.000
	A1	25.986 891	2	211.896		C1	37.968 005	9	323.216
	Si	25.992 343	14	206.036		Ar	37.962 728	3	327.349
	01	23.772 343		200.030		K	37.969 097	10	320.634
27	Ma	26.984 345	4	223.122		Ca	37.976 720	1070	312.750
41	Mg	26.981 539		224.953		Ja	31.310 120	1070	312.750
	A1				39	01	20 060 000	20	331.284
	Si	26.986 703	3	219.361	39	C1	38.968 008		333.940
				001 (01		Ar	38.964 317	6	
28	Mg	27.983 875	6	231.631	1	K	38.963 710	3	333.723
	A1	27.981 904	4	232.684		Ca	38.970 691	25	326.437
	Si	27.976 929	3	236.536					
	P	27.991 780	300	221.920	40	C1	39.970 400	500	337.100
						Ar	39.962 384	1	343.812
29	A1	28.980 442	7	242.118		K	39.964 000	1	341.524
	Si	28.976 496	4	245.011		Ca	39.962 589	4	342.056
	P	28.981 808	6	239.280		Sc	39.977 570	210	327.320
30	A1	29.981 590	270	249.120	41	Ar	40.964 500	5	349.912
	Si	29.973 762	4	255.628		K	40.961 832	4	351.615
	P	29.978 317	8	250.603		Ca	40.962 275	8	350.420
	S	29.984 873	29	243.714		Sc	40.969 247	10	343.143
31	Si	30.975 349	6	262.222	42	Ar	41.963 048	43	359.337
31		30.973 765	2	262.916	72	K	41.962 406	·11	359.152
	P						41.958 625	4	361.891
	S	30.979 611	12	256.688		Ca			
	. .	01 07/ 000	5.0	071 500		Sc	41.965 495	13	354.710
32	Si	31.974 020	50	271.530		Ti	41.974 903	16	345.164
	P	31.973 910	2	270.852					
	S	31.972 074		271.880	43	K	42.960 730	12	368.784
	C1	31.986 240	410	257.800		Ca	42.958 780	4	369.819
						Sc	42.961 165	9	366.815
33	P	32.971 728	4	280.955		Ti	42.968 500	160	359.200
	S	32.971 462	3	280.421					
	C1	32.977 440	13	274.070	44	K	43.962 040	210	375.640
						Ca	43.955 491	4	380.954
34	P	33.973 340	210	287.530		Sc	43.959 406	. 6	376.525
	S	33.967 864	3	291.843		Ti	43.959 572	13	375.587
	C1	33.973 750	6	285.578		_		_	
	Ar	33.980 620	1070	278.400	45	K	44.960 680	210	384.980
	A.	33.700 020	1070	2,3.400	7	Ca	44.956 190	4	388.374
35	c	34.969 031	1	298.828	li .	Sc	44.955 919	3	387.843
22	S				ľ			5 5	
	C1	34.968 851	1	298.213		Ti	44.958 129	5	385.003
	Ar	34.975 254	18	291.467	1				

A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
	_				+				
46	K	45.962 060	1070	391.760	55	Cr	54.940 833	7	480.263
	Ca	45.953 689	10	398.775		Mn	54.938 050		482.073
	Sc	45.955 173	4	396.611		Fe	54.938 299		481.059
	Τi	45.952 632	2	398.195	li	Co	54.942 013	11	476.817
	V	45.960 214	10	390.350		CO	J4.742 013	11	470.017
	V	43.700 214	10	390.330	56	Cr	55.940 640	160	488.520
47	K	46.961 090	320	400.740		Mn	55.938 910		489.343
47	Ca	46.954 538		406.056		Fe	55.934 936		492.262
		46.952 413	6 3	407.253	l)	Co	55.939 847		486.905
	Sc				l l		55.942 116		484.010
	Ti	46.951 769	3 9	407.070		Ni	55.942 110	10	464.010
	V	46.954 899	9	403.372	.,	16-	E 6 029 200	220	497.990
40	0-	/7 050 501	10	/15 006	57	Mn	56.938 300		497.990
48	Ca	47.952 531	10	415.996	11	Fe	56.935 398		
	Sc	47.952 221	8	415.503		Co	56.936 296		498.285
	Ti	47.947 950	2	418.698		Νi	56.939 769	17	494.267
	V	47.952 259	4	413.903			57.0/0.0/0	1070	50/ 000
	\mathtt{Cr}	47.953 760	210	411.720	58	Mn	57.940 260		504.230
						Fe	57.933 282		509.946
49	Ca	48.955 675	12	421.140	ll .	Co	57.935 761		506.855
	Sc	48.950 026	6	425.619		Νi	57.935 342		506.462
	Τi	48.947 870	2	426.844	ll .	Cu	57.944 541	8	497.11
	V	48.948 523	5	425.454	II.				
	\mathtt{Cr}	48.951 271	12	422.112	59	Fe	58.934 878		516.53
					II.	Co	58.933 189		517.321
50	Sc	49.951 730	210	432.100	lì	Ni	58.934 342		515.465
	Τi	49.944 786	4	437.789	l l	Cu	58.939 496	22	509.882
	V	49.947 164	4	434.791	11				
	\mathtt{Cr}	49.946 055	4	435.042	60	Fe	59.933 964	33	525.454
	Mn	49.954 215	29	426.659	ll .	Co	59.933 813	5	524.812
					II.	Ni	59.930 787	5	526.848
51	Ti	50.946 603	7	444.168	ll .	Cu	59.937 362	9	519.94
	V	50.943 961	3	445.846					
	Cr	50.944 768	3	444.312	61	Fe	60.936 520	1070	531.140
	Mn	50.948 190	50	440.340	1	Co	60.932 440		534.162
					Į.	Ni	60.931 056		534.669
52	Ti	51.946 820	1070	452.040		Cu	60.933 457		531.651
	v	51.944 780	5	453.155	ļļ.	Zn	60.939 250		525.470
	Cr	51.940 513	3	456.347					
	Mn	51.945 568	6	450.856	62	-Co	61.933 946	43	540.831
	Fe	51.948 117	14	447.699	"-	Ni	61.928 342		545.269
		J1.770 II/	17	,	II .	Cu	61.932 566		540.552
53	V	52.943 980	1070	461.970		Zn	61.934 380		538.079
,,	Cr	52.940 653	3	464.288		211	01.754 300	14	550.07
	Mn	52.941 295	7	462.907	63	Со	62.933 530	210	549.290
	Fe	52.945 572	48	458.141	03	Ni	62.929 640		552.108
	re	J2.74J J/Z	40	470.141		Cu	62.929 592		551.393
5 <i>/</i> .	17	52 0/4 720	1070	467 400					547.244
54	V C	53.946 720	1070	467.490	1	Zn	62.933 206		
	Cr	53.938 882	4	474.009		Ga	62.939 110	1070	540.960
	Mn	53.940 362	6	471.848			(2 007 050		E (1 - 7 ()
	Fe	53.939 617	5	471.760	64	Νi	63.927 958		561.769
	Co	53.948 475	7	462.726		Cu	63.929 759		559.309
					ľ	Zn	63.929 145		559.099
					II	Ga	63.936 737	33	551.244

A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
					╫		(4)		
65	Ni	64.930 072	8	567.872	75	Ge	74.922 883	20	652.152
Ų,	Cu	64.927 786	6	569.219	1	As	74.921 596	4	652.568
	Zn	64.929 234	6	567.087	ll .	Se	74.922 525	4	650.921
	Ga	64.932 733	17	563.045		Br	74.925 447	22	647.416
	Ge	64.939 600	1070	555.860		Kr	74.930 920	1070	641.530
	Ge	04.939 000	1070	000.000	ł	KI	74.930 920	1070	041.550
66	Ni	65.929 085	33	576.862	76	Ge	75.921 405	2	661.600
	Nu	65.928.871	9	576.279	1	As	75.922 397	12	659.894
	Zn	65.926 052	6	578.123	ľ	Se	75.919 207	7	662.083
	Ga	65.931 607	7	572.165		\mathtt{Br}	75.924 180	60	656.670
	Ge	65.934 800	160	568.410	ľ	Kr	75.925 470	1080	654.690
67	Cu	66.927 759	13	585.386	77	Ge	76.923 600	50	667.630
	Zn	66.927 145	10	585.175	1	As	76.920 646	11	669.597
	Ga	66.928 216	11	583.395		Se	76.919 911	5	669.498
	Ge	66.932 940	110	578.210	ll .	Br	76.921 376	6	667.351
	GC	00.732 740	110	370.210		Kr	76.924 480	90	663.680
68	Cu	67.929 770	60	591.580					
	Zn	67.924 857	6	595.378	78	As	77.921 900	210	676.500
	Ga	67.927 992	7	591.676		Se	77.917 314	3	679.989
	Ge	67.928 530	1070	590.390	1	\mathtt{Br}	77.921 150	6	675.634
			_			Kr	77.920 403	5	675.547
69	Zn	68.926 541	7	601.881	1		70 000 000		605 516
	Ga	68.925 574	4	602.000	79	As	78.920 890	60	685.510
	Ge	68.927 963	5	598.992		Se	78.918 494	5	686.961
	As	68.932 150	320	594.310		Br Kr	78.918 329 78.920 068	3 6	686.333 683.930
70	Zn	69.925 334	6	611.077		KI	70.720 000	O	003.730
	Ga	69.926 035	6	609.642	80	As	79.922 970	210	691.650
	Ge	69.924 252	2	610.520		Se	79.916 527	3	696.865
	As	69.930 946	32	603.502	i	Br	79.918 536	4	694.212
						Kŗ	79.916 380	6	695.437
71	Zn	70.927 510	50	617.120		RЪ	79.921 900	600	689.600
-	Ga	70.924 706	5	618.951	Į.				
	Ge	70.924 956	6	617.935	81	Se	80.917 984	7	703.579
	As	70.927 113	9	615.144	"	Br	80.916 292	5	704.373
	Se	70.931 840	320	609.960		Kr	80.916 610	110	703.290
	50	70.751 040	320	007.700		Rb	80.919 020	110	700.270
72	Zn	71.926 843	10	625.814					
	Ga	71.926 372	7	625.471	82	Se	81.916 707	7	712.840
	Ge	71.922 082	2	628.684		\mathtt{Br}	81.916 802	5	711.970
	As	71.926 763	11	623.542		Kr	81.913 482	5	714.279
	Se	71.927 410	1070	622.160		Rb	81.917 959	33	709.327
					X.	Sr	81.918 390	1070	708.140
73	Ga	72.925 126	43	634.702					
	Ge	72.923 463	2	635.470	83	\mathtt{Br}	82.915 168	17	721.562
	As	72.923 861	32	634.316	l	Kr	82.914 131	5	721.746
	Se	72.926 814	34	630.783		RЪ	82.914 730	1070	720.400
	Br	72.931 860	1070	625.300		Sr	82.917 200	1520	717.320
74	Ga	73.927 190	50	640.850	84	Br	83.916 550	50	728.350
	Ge	73.921 181	2	645.667		Kr	83.911 503	4	732.265
	As	73.923 933	4	642.321		Ŕb	83.914 381	5	728.803
	Se	73.922 476	5	642.895		Sr	83.913 430	4	728.90
	Br	73.922 470	1070	635.310	1	Y	83.920 190	110	721.820
	Kr	73.933 100	1520	631.430			03.720 170	110	, = 1.02(
	V.	13.933 100	1320	031.430	11				

A	E1.	Atomic Mass	Mass Error*	Binding Energy†	A	E1.	Atomic Mass	Mass Error*	Binding Energy†
		(u)		(MeV)	₩		(u)		(MeV)
85	Br	84.915 530	110	737.370	93	Sr	92.914 710	110	800.360
	Kr	84.912 523	7	739.387	1	Y	92.909 552	22	804.378
	Rb	84.911 800	5	739.278		Zr	92.906 450	5	806.486
	Sr	84.912 989	33	737.388	1	Nb	92.906 382	5	805.767
	Y	84.916 489	34	733.346	1	Мо	92.906 830	14	804.566
					1	Tc	92.910 251	20	800.598
86	Br	85.918 200	500	742.900					
	Kr	85.910 616	4	749.235	94	Sr	93.915 380	240	807.800
	Rb	85.911 193	7	747.915	Ï	Y	93.911 680	210	810.470
	Sr	85.909 285	5	748.910		Zr	93.906 313	4	814.684
	Y	85.914 946	18	742.854	\(\)	NЪ	93.907 303	15	812.980
	Zr	85.916 230	1070	740.870	1	Mo	93.905 090	3	814.259
0.7	••	06 010 065	10	75/ 7/5	1	Tc	93.909 663	7	809.216
87	Kr	86.913 365	10	754.745	05		04 010 540		
	Rb C	86.909 187	3	757.855	95	Y	94.912 540	1070	817.730
	Sr	86.908 892	4	757.347		Zr	94.908 035	5	821.152
	Y	86.910 740	210	754.850	\	ИР	94.906 832	3	821.490
	Zr	86.914 490	220	750.560	1	Мо	94.905 839	3	821.633
88	12	97 01/ 070	2/0	761 070	1	Tc	94.907 620	23	819.191
00	Kr	87.914 270 87.911 270	240	761.970 763.990		Ru	94.909 801	40	816.377
	RЪ		100		0.0		05 015 600	1070	000 070
	Sr Y	87.905 641	6	768.447	96	Y	95.915 690	1070	822.870
	ı Zr	87.909 528 87.910 060	8 1070	764.044		Zr	95.908 286	5	828.990
	Nb	87.917 790	1520	762.760 754.780	1	Nb	95.908 056	27	828.422
	ИВ	67.917 790	1320	734.760	[Mo Tc	95.904 674 95.907 830	3	830.789 827.070
89	Kr	88.916 600	500	767.900	1	Ru	95.907 598	50 6	826.501
•	Rb	88.911 650	50	771.700	1	110	,,,,,,	ŭ	020.501
	Sr	88.907 442	7	774.840	97	Zr	96.910 966	23	834.565
	Y	88.905 872	5	775.521	"	NЪ	96.908 096	8	836.455
	Zr	88.908 914	6	771.905		Мо	96.906 022	3	837.606
	Nb	88.913 080	100	767.240	li .	Tc	96.906 340	1070	836.520
					1	Ru	96.907 630	1520	834.540
90	Kr	89.919 720	110	773.040	ļ!	Rh	96.911 380	1520	830.270
	RЪ	89.914 820	110	776.820			,0.,,,	2520	0301270
	Sr	89.907 747	9	782.628	98	Zr	97.911 960	1520	841.710
	Y	89.907 163	8	782.390	1	Nb	97.910 350	1070	842.430
	Zr	89.904 700	4	783.902		Мо	97.905 409	3	846.248
	Nb	89.911 259	11	777.009	l)	Tc	97.907 110	210	843.880
	Мо	89.913 940	110	773.730		Ru	97.905 289	4	844.795
						Rh	97.909 800	3 20	839.810
91	RЪ	90.916 070	1070	783.730					
	Sr	90.910 161	16	788.451	99	NЪ	98.911 050	1070	849.850
	Y	90.907 295	12	790.338		Mo	98.907 720	10	852.166
	Zr	90.905 642	5	791.096		Tc	98.906 249	6	852.754
	NЪ	90.906 860	70	789.180		Ru	98.905 936	4	852.264
	Мо	90.911 650	60	783.930		Rh	98.908 190	22	849.381
02	p1	01 010 1/0	1000	700 0/0		Pd	98.912 270	220	844.800
9 2	Rb Sr	91.919 140 91.910 980	1080 80	788.940 795.760	100	ΝL	99 91/ 920	1070	955 150
	Y	91.908 926	22	796.890	100	Nb Mo	99.914 020 99.907 475		855.150
	Zr	91.905 926	3	796.890		Mo Tc	99.907 840	4 60	860.466 859.350
	Nb	91.907 211	10	796.922	ļ	Ru	99.907 840	5	861.935
	Мо	91.906 810	3	796.514		Rh	99.908 126	22	857.512
	Tc	91.915 460	150	787.670	l	Pd	99.908 770	1070	856.130
		727725 400	-50	.07.070		1.0	77.700 770	1070	050.150
					I				

	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
101		100 010 353	20	965 957	109	Λα	108.904 756	5	931.729
101	Мо	100.910 353	20 27	865.857	109	Ag Cd	108.904 730	7	930.787
	Tc	100.907 326		867.893	1	In	108.907 096	13	927.985
	Ru	100.905 577	3	868.741	1	111	100.907 090	13	927.903
	Rh	100.906 178 100.908 070	19 60	867.398 864.860	110	Rh	109.911 100	500	935.500
	Pd	100.908 070	60	004.000	110	Pd	109.911 100	14	940.204
102	Мо	101.910 250	1520	874.020	1	Ag	109.906 095	7	938.553
102	Tc	101.910 230	1070	874.240	N.	Cd	109.903 012	4	940.643
	Ru	101.904 348	5	877.957		In	109.907 231	43	935.931
	Rh	101.906 842	9	874.851	X		207770. 202	; -	
	Pd	101.905 609	11	875.217	111	Pd	110.907 670	50	945.940
	Ag	101.911 300	1070	869.130		Ag	110.905 316	11	947.351
	***	1011,11 000	20.0		i	Cd	110.904 188	4	947.618
103	Tc	102.908 830	110	882.640	1	In	110.905 360	210	945.750
	Ru	102.906 306	21	884.204	1	Sn	110.908 060	220	942.440
	Rh	102.905 511	5	884.162	1				
	Pd	102.906 107	22	882.825	112	Pd	111.907 386	33	954.276
	Ag	102.908 890	110	879.450	ľ	Ag	111.907 064	25	953.794
	Ŭ				∤	Cď	111.902 763	3	957.018
1 04	Tc	103.911 710	110	888.020	1	In	111.905 544	10	953.645
	Ru	103.905 430	5	893.092		Sn	111.904 835	10	953.523
	Rh	103.906 659	7	891.164	ĺ				
	$\mathbf{P}\mathbf{d}$	103.904 011	11	892.848	113	Ag	112.906 556	43	962.339
	Ag	103.908 596	16	887.796	1	Cd	112.904 409	4	963.556
	Cd	103.909 880	1070	885.810	ł	In	112.904 089	9	963.071
					1	Sn	112.905 187	18	961.266
105	Tc	104.911 330	220	896.450		Sb	112.909 986	47	956.914
	Ru	104.907 679	17	899.068	1		112 000 200	/ 20	068 700
	Rh	104.905 671	13	900.156	114	_	113.908 300	430	968.790
	Pd	104.905 064	12	899.939		Cd	113.903 360 113.904 905	3 9	972.604 970.383
	Ag	104.906 460 104.909 470	1070 1520	897.860	Ì	In Sn	113.902 773	9	971.587
	Cd	104.909 470	1520	894.270	1	Sb	113.902 7/3	210	964.520
106	Ru	105.907 322	12	907.472	Į.	30	113.909 510	210	704.520
100	Rh	105.907 279	12	906.729	115	Ag	114.908 930	180	976.270
	Pd	105.903 479	6	909.487	117	Cd	114.905 431	10	978.747
	Ag	105.906 661	9	905.740	1	In	114.903 871	8	979.417
	Cd	105.906 463	4	905.143		Sn	114.903 346	7	979.124
	In	105.913 440	320	897.860	1	Sb	114.906 599	23	975.311
107	Ru	106.910 130	320	912.920	116	Ag	115.911 310	1070	982.120
-0,	Rh	106.906 753	43	915.292		Cd	115.904 762	3	987.442
	Pd	106.905 132	5	916.019		In	115.905 317	26	986.142
	Ag	106.905 094	5	915.272		Sn	115.901 745	5	988.687
	Cď	106.906 615	6	913.072		Sb	115.906 630	50	983.350
	In	106.910 360	160	908.800	}	Te	115.908 300	120	981.010
108	Ru	107.910 100	700	921.000	117	Cd	116.907 239	15	993.205
	Rh	107.908 700	600	921.500		In	116.904 534	10	994.943
	Pd	107.903 891	8	925.246		Sn	116.902 958	3	995.628
	Ag	107.905 949	8	922.547		Sb	116.904 912	32	993.026
	Cd	107.904 187	4	923.406		Te	116.908 670	60	988.740
	In	107.909 72 0	90	917.470					1 001
		100 000 115	1070	000 (00	118	Cd	117.906 970	1160	1 001.520
109	Rh	108.908 640	1070	929.680		In	117.906 110	430	1 001.540
	Pd	108.905 954	5	931.396		Sn	117.901 606	4	1 004.959

A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
110	C.L	117 005 57/		1 000.481	127	Sn	126.910 260	1070	1 069.550
118	Sb Te	117.905 574 117.905 900		999.400	127	Sb	126.910 200	33	1 071.863
	re	117.905 900	1070	999,400	ì	Te	126.905 209	9	1 071.681
119	Cd	118.909 740	350	1 007.020	\	I	126.904 470	4	1 072.587
119	In	118.905 990		1 007.020	1	Хe	126.905 220	380	1 071.100
	Sn	118.903 313		1 011.440		Cs	126.907 480	380	1 068.220
	Sb	118.903 935		1 010.079	Į]	Ba	126.911 340	1140	1 063.840
	Te	118.906 398		1 007.002	1	54	120.711 340	1110	1 003.010
	10	1101700 070		2 007,002	128	Sn	127.910 470	230	1 077.420
120	In	119.908 000	1070	1 015.930		Sb	127.909 070	160	1 077.940
	Sn	119.902 198		1 020.550	1	Te	127.904 476	6	1 081.435
	Sb	119.905 081		1 017.082		I	127.905 838	9	1 079.384
	Te	119.904 023		1 017.285		Хe	127.903 540	6	1 080.742
	I	119.909 820		1 011.100	li	Cs	127.907 759	33	1 076.029
						Ва	127.908 510	1070	1 074.550
121	In	120.908 090	1070	1 023.910					
	Sn	120.904 227		1 026.732	129	Sb	128.909 260	1070	1 085.830
	Sb	120.903 816		1 026.332		Te	128.906 575	9	1 087.551
	Te	120.905 199		1 024.262		I	128.904 987	7	1 088.249
	I	120.907 730		1 021.120		Хe	128.904 784	5	1 087.655
	Хe	120.911 800		1 016.550	li	Cs	128.905 960	1070	1 085.770
						Ва	128.908 590	1070	1 082.540
122	In	121.910 600	900	1 029.600	1	La	128.912 890	1520	1 077.760
	Sn	121.903 441		1 035.536					
	Sb	121.905 183		1 033.130	130	Sb	129.912 040	1070	1 091.320
	Te	121.903 066		1 034.320		Te	129.906 238	6	1 095.937
	I	121.907 511		1 029.397	1	I	129.906 676	33	1 094.747
						Хe	129.903 509	6	1 096.914
123	In	122.910 570	1070	1 037.750		Cs	129.906 720	22	1 093.141
	Sn	122.905 738		1 041.467		Ва	129.906 245	23	1 092.800
	Sb	122.904 213		1 042.106		La	129.912 260	1070	1 086.420
	Te	122.904 277		1 041.263	U				
	I	122.905 730		1 039.130	131	Te	130.908 575	22	1 101.832
	Хe	122.908 730		1 035.550	ll .	I	130.906 127	4	1 103.329
					ii .	Хe	130.905 085	4	1 103.517
124	In	123.913 200	500	1 043.400	II.	Cs	130.905 466	8	1 102.380
	Sn	123.905 272		1 049.973		Ва	130.906 716	18	1 100.433
	Sb	123.905 973		1 048.539	II.	La	130.909 890	60	1 096.690
	Te	123.902 842		1 050.671		Ce	130.915 500	360	1 090.690
	I	123.906 246	33	1 046.719					
	Хe	123.906 120		1 046.050	132	Te	131.908 523	18	1 109.951
						I	131.907 981	7	1 109.674
125	Sn	124.907 746		1 055.740		Хe	131.904 161	5	1 112.450
	Sb	124.905 232		1 057.299		Cs	131.906 393	27	1 109.588
	Te	124.904 418		1 057.275		Ва	131.905 120	300	1 109.990
	I	124.904 578		1 056.343		La	131.910 300	320	1 104.390
	Хe	124.906 620		1 053.660		Ce	131.911 590	1120	1 102.400
	Cs	124.909 910	1070	1 049.810					
					133	I	132.907 750	70	1 117.960
126	Sn	125.907 640	1090	1 063.910		Хe	132.905 815	39	1 118.981
	Sb	125.907 320	160	1 063.420		Cs	132.905 355	38	1 118.626
	Te	125.903 322	5	1 066.367	II.	Ва	132.905 879	39	1 117.356
	I	125.905 631		1 063.434		La	132.908 240	220	1 114.370
	Хe	125.904 288	9	1 063.903		Ce	132.911 250	1100	1 110.790
	Cs	125.909 440		1 058.320					

A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
134	I	133.909 850	60	1 124.070	142	Ва	141.916 350	120	1 180.250
134	Хe	133.905 397	5	1 127.441	142	La	141.913 980	60	1 181.670
	Cs	133.906 823	41	1 125.331	1	Ce	141.909 140	50	1 185.393
	Ba	133.904 612	41	1 126.607		Pr	141.909 978	17	1 183.833
	La	133.908 660	70	1 122.050		Nd	141.907 663	16	1 185.207
	Ce	133.908 810	90	1 121.130		Pm	141.912 820	320	1 179.620
135	I	134.910 020	1080	1 131.980	143	La	142.915 870	90	1 187.980
	Хe	134.907 020	110	1 134.000		Ce	142.912 327	19	1 190.499
	Cs	134.905 770	110	1 134.380		Pr	142.910 781	16	1 191.157
	Ba	134.905 550	110	1 133.810		Nd	142.909 779	15	1 191.307
	La	134.906 890	1080	1 131.780		Pm	142.910 990	330	1 189.400
	Ce	134.909 140	1520	1 128.890		Sm	142.914 550	90	1 185.300
136	I	135.914 740	110	1 135.670	144	La	143.919 600	1070	1 192.580
	Хe	135.907 221	6	1 141.885	[]	Ce	143.913 591	19	1 197.393
	Cs	135.907 340	90	1 140.990		Pr	143.913 248	16	1 196.930 1 199.137
	Ва	135.904 300	80	1 143.040 1 139.390		Nd	143.910 039 143.912 510	15 1070	1 196.050
	La Ce	135.907 380 135.907 100	110 500	1 138.880		Pm Sm	143.912 310	15	1 195.755
					1,5				1 202 0/0
137	Хe	136.911 100		1 146.340	145	Ce	144.917 270	1070	1 202.040
	Cs	136.906 770	80	1 149.600 1 149.990		Pr	144.914 476 144.912 538	19 15	1 203.858 1 204.881
	Ba	136.905 500	80	1 148.710		Nd Pm	144.912 536	18	1 203.955
	La Ce	136.906 040 136.907 330	1080 1520	1 146.730		Sm	144.913 394	18	1 202.519
	Pr	136.910 360	1520	1 143.120		Eu	144.916 390	60	1 198.950
138	Хe	137.913 810	1100	1 151.890	146	Ce	145.918 670	240	1 208.810
130	Cs	137.910 800	1080	1 153.910		Pr	145.917 590	220	1 209.020
	Ва	137.905 000	60	1 158.530		Nd	145.913 086	15	1 212.442
	La	137.906 910	60	1 155.970	ľ	Pm	145.914 632	28	1 210.219
	Ce	137.905 830	60	1 156.200	[Sm	145.912 992	23	1 210.964
	Pr	137.910 460	120	1 151.100		Eu Gd	145.917 138 145.918 320	37 1070	1 206.320 1 204.440
139	Хe	138.917 840	390	1 156.210		Gu			
	Cs	138.912 900	330	1 160.030	147	Pr	146.918 800	1070	1 215.970
	Вa	138.908 600	60	1 163.250		Nd	146.916 074	19	1 217.729
	La	138.906 140	50	1 164.760		Pm	146.915 108	15	1 217.847
	Ce	138.906 430	50	1 163.710		Sm	146.914 867	15	1 217.290
	Pr Nd	138.908 580 138.911 580	120 1080	1 160.920 1 157.340		Eu Gd	146.916 800 146.919 170	330 1120	1 214.700 1 211.720
* / -					1/0				
140	Cs	139.917 110	1070	1 164.170	148	Pr	147.921 910	1070	1 221.140
	Ва	139.910 565	23	1 169.491		Nd Dm	147.916 869	15 26	1 225.061 1 223.764
	La	139.909 438	20	1 169.758		Pm Sm	147.917 421 147.914 791	26 15	1 223.764
	Ce	139.905 392 139.909 007	19 27	1 172.745 1 168.595		Sm Eu	147.914 791	60	1 221.560
	Pr Nd	139.909 007	1070	1 167.510		Eu Gd	147.918 110	19	1 220.783
	Ma		10/0			Tb	147.924 130	320	1 214.380
141	Ва	140.914 050	110	1 174.320					
	La	140.910 828	37	1 176.535	149	Nd	148.920 122	18	1 230.102
	Ce	140.908 219	19	1 178.182		Pm	148.918 330	15	1 230.989
	Pr	140.907 596	18	1 177.981		Sm	148.917 180	14	1 231.278
	Nd	140.909 528	21	1 175.398		Eu	148.918 000	1070	1 229.740
	Pm	140.913 410	220	1 171.000		Gd	148.919 300	160	1 227.730
					L	<u>Tb</u>	148.923 350	60	1 223.180

		Atomic		Binding			Atomic		Binding
Α	E1.	Mass	_Mass	Energyt	A	E1.	Mass	Mass	Energyt
••		(u)	Error*	(MeV)			(u)	Error*	(MeV)
150	Nd	149.920 915	15	1 237.435	158	Eu	157.927 940	220	1 293.120
	Pm	149.920 960	70	1 236.610]	Gd	157.924 178	19	1 295.837
	Sm	149.917 276	14	1 239.260		Tb	157.925 464	29	1 293.857
	Eu	149.919 689	24	1 236.229		Dy	157.924 449	30	1 294.020
	Gd	149.918 605	24	1 236.457		Но	157.928 790	31	1 289.193
	Тb	149.923 748	38	1 230.884	ļ				
	Dу	149.925 590	1070	1 228.390	159	Eu	158.928 840	220	1 300.350
					\ 	Gd	158.926 368	27	1 301.868
151	Nd	150.923 770	110	1 242.840		Тb	158.925 351	26	1 302.033
	Pm	150.921 198	22	1 244.460		Dу	158.925 759	34	1 300.871
	Sm	150.919 919	21	1 244.869		Но	158.927 690	1070	1 298.290
	Eu	150.919 838	21	1 244.162					
	Gd	150.920 270	1070	1 242.980	160	Eu	159.931 000	500	1 306.400
	Tb	150.923 150	330	1 239.510		Gd	159.927 115	20	1 309.244
	Dу	150.926 250	1120	1 235.850		Тb	159.927 146	25	1 308.433
	•					Dу	159.925 202	21	1 309.461
152	Pm	151.923 510	1070	1 250.370		Ho	159.928 740	60	1 305.380
	Sm	151.919 756	15	1 253.093					
	Eu	151.921 749	15	1 250.453	161	Gd	160.929 720	80	1 314.890
	Gd	151.919 794	16	1 251.492		Tb	160.927 572	21	1 316.107
	Tb	151.924 280	160	1 246.530		Dy	160.926 945	20	1 315.909
	Dy	151.924 729	28	1 245.330		Ho	160.927 800	1070	1 314.330
	Но	151.931 560	330	1 238.180		Er	160.929 950	1080	1 311.540
				_ 000,120		Tm	160.933 730	1080	1 307.240
153	Pm	152.924 030	110	1 257.960					_ •••••
133	Sm	152.922 102	17	1 258.978	162	Gd	161.930 880	1520	1 321.880
	Eu	152.921 242	18	1 258.997	102	Tb	161.929 810	1070	1 322.100
	Gd	152.921 503	18	1 257.971	ļ	Dy	161.926 803	19	1 324.113
	Tb	152.923 490	1070	1 255.340		Но	161.929 122	38	1 321.170
	Dy	152.925 740	160	1 252.460		Er	161.928 740	90	1 320.740
	Но	152.930 270	60	1 247.460		Tm	161.933 990	140	1 315.070
	110	132.300 270		2 2477 100			101.700 770	1.0	1 3131070
154	Sm	153.922 282	15	1 266.882	163	Tb	162.930 560	60	1 329.470
	Eu	153.923 053	20	1 265.382	ì	Dу	162.928 755	19	1 330.366
	Gd	153.920 929	20	1 266.577	Ì	Ho	162.928 766	22	1 329.574
	Тb	153.924 580	1070	1 262.400	ļ	Er	162.930 065	23	1 327.581
	Dу	153.924 350	60	1 261.820	ļ	Tm	162.932 502	40	1 324.529
	Но	153.930 260	1080	1 255.540					
	Er	153.932 760	1070	1 252.420	164	Тb	163.933 280	1070	1 335.010
					i i	Dу	163.929 200	19	1 338.023
155	Sm	154.924 701	18	1 272.701		Но	163.930 390	41	1 336.132
	Eu	154.922 930	19	1 273.568		Er	163.929 287	43	1 336.377
	Gd	154.922 664	18	1 273.033		Tm	163.933 541	48	1 331.632
	Tb	154.923 630	1070	1 271.350					
	Dy	154.925 880	1070	1 268.470	165	Dy	164.931 816	20	1 343.658
	2)	13, 23 000	10.0	2 2001 170		Ho	164.930 421	21	1 344.175
156	Sm	155.925 569	30	1 279.963		Er	164.930 819	22	1 343.021
130	Eu	155.924 802	25	1 279.896		Tm	164.932 540	1070	1 340.640
	Gd	155.922 175	19	1 281.560		Yb	164.935 440	1520	1 337.160
	Tb	155.924 750	1070	1 278.380		15	10-1757 440	1520	1 337.100
	Dy	155.923 930	180	1 278.360	166	Dу	165.932 807	30	1 350.806
	Dу	100.920 900	100	1 2/0.300	100	Бу Но	165.932 289	30	1 350.506
157	Eu	156.925 390	60	1 287.420		Er	165.930 307	29	1 351.570
1)/	Gd	156.924 025	19	1 287.908		Tm	165.933 510	60	1 347.810
	Tb	156.924 025	22	1 287.065		Yb	165.933 850	110	1 346.700
		156.925 270	1070			10	102.533 030	110	1 340.700
	Dу	130.923 2/0	10/0	1 285.180					
					Щ				

A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)	A	E1.	Atomic Mass (u)	Mass Error*	Binding Energy† (MeV)
1.17		144 000 100	110	1 257 700	170	***1	177 0/7 270	1000	1 /20 070
167	Но	166.933 130	110	1 357.790	178	Υb	177.947 370	1080 90	1 430.970 1 431.180
	Er	166.932 060	29	1 358.008		Lu Hf	177.946 300 177.943 880	80	1 431.180
	Tm	166.933 030	1070 1070	1 356.330		пі Та	177.945 930	130	1 429.960
	Yb Lu	166.935 130 166.938 390	1070	1 353.580 1 349.760	ľ	la	177.945 950	130	1 429.900
	Lu	100.930 390	1000	1 349.700	179	Lu	178.947 470	100	1 438.160
168	Но	167.935 930	110	1 363.260	1,,	Hf	178.946 030	90	1 438.720
100	Er	167.932 383	32	1 365.779		Ta	178.946 160	90	1 437.820
	Tm	167.934 230	50	1 363.279		_			
	Yb	167.934 160	160	1 362.560	180	Lu	179.950 370	150	1 443,540
	Lu	167.939 090	1090	1 357.180		Нf	179.946 820	100	1 446.050
						Ta	179.947 544	48	1 444.602
169	Но	168.936 860	110	1 370.460		W	179.947 000	50	1 444.320
	Er	168.934 610	34	1 371.776					
	Tm	168.934 245	34	1 371.334	181	Hf	180.949 105	42	1 452.001
	Υb	168.935 530	1070	1 369.350		Ta	180.948 007	42	1 452.242
	Lu	168.937 960	1080	1 366.310		W	180.948 211	47	1 451.269
170	Но	169.940 070	130	1 375.540	182	Нf	181.950 700	220	1 458.580
	Er	169.935 560	70	1 378.960		Ta	181.950 167	42	1 458.301
	Tm	169.936 060	60	1 377.720	ľ	W	181.948 301	41	1 459.257
	Υb	169.935 020	60	1 377.900		Re	181.951 372	47	1 455.614
	Lu	169.938 830	70	1 373.570					
					183	Ηf	182.953 830	220	1 463.740
171		170.938 130	70	1 384.640		Ta	182.951 470	43	1 465.159
	Tm	170.936 530	70	1 385.350		W	182.950 324	41	1 465.444
	Υb	170.936 430	70	1 384.660	ļ	Re	182.951 260	1070	1 463.790
	Lu	170.938 140	1080	1 382.280	184	То	183.953 980	50	1 470.900
172	Er	171.939 330	80	1 391.590	104	Ta W	183.951 025	43	1 470.966
1/2	Tm	171.938 380	80	1 391.700		w Re	183.952 780	1080	1 470.450
	Yb	171.936 360	70	1 392.800	[0s	183.952 750	70	1 469.690
	Lu	171.939 260	1080	1 389.320		00	103.752 750	, 0	1 107.070
	20	1,11,3, 200	2000	1 30,131.0	185	Ta	184.955 560	70	1 477.490
173	Tm	172.939 480	80	1 398.740	-33	W	184.953 519	43	1 478.611
	Υb	172.938 060	70	1 399.280	ľ	Re	184.953 059	43	1 478.257
	Lu	172.938 800	80	1 397.810		Os	184.954 113	43	1 476.493
174	Tm	173.941 970	120	1 404.500	186	Ta	185.958 410	330	1 482.910
	Yb	173.938 740	60	1 406.720		W	185.954 440	45	1 485.824
	Lu	173.940 350	70	1 404.440		Re	185.955 020	70	1 484.500
	Ηf	173.940 360	70	1 403.640		Os	185.953 870	70	1 484.790
					l	Ir	185.957 990	80	1 480.170
175	Tm	174.943 830	1080	1 410.840					
	Υb	174.941 140	60	1 412.550	187	W	186.957 244	45	1 491.284
	Lu	174.940 640	60	1 412.240	1	Re	186.955 833	44	1 491.815
	Нf	174.941 610	1080	1 410.560		0s	186.955 832	44 1070	1 491.034
176	Tm	175.947 190	130	1 415.770		Ir	186.957 560	1070	1 488.640
1,0	Yb	175.942 680	70	1 419.190	188	W	187.958 816	48	1 497.891
	Lu	175.942 660	60	1 418.430		Re	187.958 353	47	1 497.540
	Hf	175.941 570	60	1 418.660		0s	187.956 081	47	1 498.873
			2-			Ir	187.959 122	49	1 495.259
177	Υb	176.945 410	90	1 424.720		Pt	187.959 670	70	1 493.970
	Lu	176.943 930	80	1 425.320					
	Ηf	176.943 400	80	1 425,030					
	Ta	<u>176.944 650</u>	<u>8</u> 0	1 423.080					

Re	Mass Error*	Binding Energy† (MeV)
0s 188.958 300 90 1 504.880 Ir 188.958 910 1080 1 503.530 Pt 188.960 610 1520 1 501.160 Re 189.961 960 440 1 510.330 Pb 197.972 410 Os 189.958 630 80 1 512.640 Ir 189.960 830 180 1 509.810 Pt 189.959 950 70 1 509.840 Au 189.964 710 1080 1 504.630 Ir 190.960 640 60 1 518.530 Ir 190.960 640 60 1 518.530 Ir 190.961 450 1080 1 516.520 Au 190.963 550 1520 1 513.790 192 Os 191.961 450 60 1 524.210 Pt 191.961 150 60 1 524.880 Au 191.964 620 80 1 520.860 Hg 191.966 160 1080 1 518.640 Ir 192.963 012 35 1 531.643 Ir 192.963 012 35 1 531.643 Ir 192.963 010 31 1 531.165 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 Pt 193.965 725 23 1 538.781 Ir 193.965 725 23 1 538.781 Ir 193.965 775 23 1 536.258 Hg 193.965 790 1070 1 526.160 Pt 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Tl 193.971 570 1520 1 538.640 Pt 194.964 813 18 1 545.665 Au 194.965 051 19 1 544.672 Hg 194.966 800 0 500 1 544.200 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 820 1070 1 552.330 Tl 194.966 800 100 1 558.660 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 820 1070 1 552.330 Pt 194.966 800 100 1 542.430 Tl 194.966 800 100 1 542.430 Tl 194.966 800 170 1		
0s 188.958 300 90 1 504.880 Ir 188.958 910 1080 1 503.530 Pt 188.960 610 1520 1 501.160 Re 189.961 960 440 1 510.330 Pb 197.972 410 Os 189.958 630 80 1 512.640 Ir 189.960 830 180 1 509.810 Pt 189.959 950 70 1 509.840 Au 189.964 710 1080 1 504.630 Ir 190.960 640 60 1 518.530 Ir 190.960 640 60 1 518.530 Ir 190.961 450 1080 1 516.520 Au 190.963 550 1520 1 513.790 192 Os 191.961 450 60 1 524.210 Pt 191.961 150 60 1 524.880 Au 191.964 620 80 1 520.860 Hg 191.966 160 1080 1 518.640 Ir 192.963 012 35 1 531.643 Ir 192.963 012 35 1 531.643 Ir 192.963 010 31 1 531.165 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 Pt 193.965 725 23 1 538.781 Ir 193.965 725 23 1 538.781 Ir 193.965 775 23 1 536.258 Hg 193.965 790 1070 1 526.160 Pt 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Tl 193.971 570 1520 1 538.640 Pt 194.964 813 18 1 545.665 Au 194.965 051 19 1 544.672 Hg 194.966 800 0 500 1 544.200 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 820 1070 1 552.330 Tl 194.966 800 100 1 558.660 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 820 1070 1 552.330 Pt 194.966 800 100 1 542.430 Tl 194.966 800 100 1 542.430 Tl 194.966 800 170 1	320	1 563.400
Tr	23	1 567.019
Pt	7	1 565.923
190 Re	7	1 566.515
190 Re	90	1 562.270
08 189.958 630 80 1 512.640 Ir 189.960 830 180 1 509.810 Pt 189.959 950 70 1 509.840 Au 189.964 710 1080 1 504.630 191 08 190.960 970 60 1 518.530 Ir 190.960 640 60 1 518.060 Pt 190.961 450 1080 1 516.520 Au 190.963 550 1520 1 513.790 192 08 191.961 450 60 1 524.820 Ir 191.962 700 60 1 524.880 Au 191.964 620 80 1 524.880 Au 191.964 620 80 1 524.880 Au 191.966 160 1080 1 518.640 Pb 199.971 430 200 Pt 199.971 430 Au 199.970 700 Hg 191.961 150 60 1 524.880 Au 191.964 620 80 1 520.860 Pb 199.971 970 Pt 192.963 060 31 1 531.643 Ir 192.963 060 31 1 531.643 Ir 192.963 060 31 1 531.643 Ir 192.964 620 80 1 529.280 Hg 192.966 750 1070 1 526.160 194 0s 193.965 229 25 1 538.966 Pt 193.965 725 23 1 539.549 Au 193.965 790 1070 1 535.130 If 193.971 570 1520 1 528.960 Pt 194.968 800 500 1 544.200 If 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 891 110 1 542.430 If 194.966 620 1070 1 542.430 If 194.966 800 500 1 542.430 If 194.966 620 1070 1 551.330 Pt 194.966 620 1070 1 551.330 Pt 195.966 555 14 1 551.342	1080	1 559.680
Ir	1520	1 551.490
Pt 189.959 950 70 1 509.840 Au 189.964 710 1080 1 504.630 Hg 190.960 970 60 1 518.530 Ir 190.960 640 60 1 518.060 Pt 190.961 450 1080 1 516.520 Au 190.963 550 1520 1 513.790 192 0s 191.961 450 60 1 524.210 Pt 191.962 700 60 1 524.210 Hg 199.970 700 Ir 191.962 620 80 1 520.860 Hg 191.966 160 1080 1 518.640 193 0s 192.964 227 35 1 531.643 Ir 192.963 012 35 1 531.653 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 194 0s 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.965 790 1070 1 535.130 Hg 193.965 790 1070 1 535.130 Pt 194.968 800 500 1 544.200 If 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.965 890 110 1 544.200 If 194.966 800 1070 1 528.960 If 194.966 800 1070 1 535.130 Pt 194.966 800 1070 1 542.430 If 194.966 800 500 1 544.200 If 194.966 620 1070 1 542.430 If 194.966 620 1070 1 542.430 If 194.966 620 1070 1 542.430 If 194.966 840 1090 1 538.650 If 195.968 250 1070 1 551.330 Pt 194.969 840 1090 1 538.650 Pb 202.973 229 Pt 195.968 250 1070 1 551.330 Pt 195.968 250 1070 1 551.330 Pt 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Pt 202.973 229 Pt 195.966 555 14 1 551.342 Pt 202.973 229 Pt 195.966 555 14 1 551.342 Pt 202.973 229 Pt 195.966 555 14 1 551.342	1320	1 331.490
Au 189.964 710 1080 1 504.630 Au 198.968 773 Hg 198.968 773 Hg 198.968 773 Hg 198.968 279 Hg 190.960 640 60 1 518.060 Pb 198.972 860 Pt 190.961 450 1080 1 516.520 Au 190.963 550 1520 1 513.790 200 Pt 199.971 430 Au 191.962 700 60 1 524.210 Hg 199.970 700 Hg 191.961 150 60 1 524.210 Hg 199.970 700 Hg 191.966 160 1080 1 518.640 Pb 199.971 970 Hg 191.966 160 1080 1 518.640 Hg 199.978 940 Pb 199.979 962 Pb 199.971 970 Hg 192.963 060 31 1 531.165 Au 200.971 920 Hg 192.966 750 1070 1 526.160 Hg 200.972 860 Hg 193.965 125 25 1 538.096 Pt 193.965 125 25 1 538.096 Pt 193.965 125 25 1 538.096 Pt 193.965 790 1070 1 535.130 Ti 193.971 570 1520 1 535.130 Ti 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 890 110 1 545.460 Pt 194.966 620 1070 1 544.200 Hg 201.972 800 Hg 194.966 620 1070 1 544.200 Hg 201.972 800 Hg 202.975 800 Hg 194.966 620 1070 1 544.200 Hg 201.970 642 Hg 194.966 620 1070 1 544.200 Hg 201.970 800 Hg 202.975 800 Hg 202.976 650 Hg 202.978 470 Hg 202.978 800 Hg 202.976 650 Hg 202.981 470 Hg 202.978 200 Hg 2	29	1 572.589
191 OS 190.960 970 60 1 518.530 T1 198.968 279 187 199.960 640 60 1 518.060 188 190.960 970 60 1 518.530 189 190.961 450 1080 1 516.520 190.963 550 1520 1 513.790 191 OS 191.961 450 60 1 526.160 181 191.962 700 60 1 524.210 181 191.962 700 60 1 524.210 181 191.964 620 80 1 520.860 181 191.966 160 1080 1 518.640 191 191.966 160 1080 1 518.640 193 OS 192.964 227 35 1 531.643 181 192.963 012 35 1 531.93 181 192.963 060 31 1 531.165 281 192.963 060 31 1 531.165 281 192.963 060 31 1 531.165 281 192.964 240 1070 1 526.160 291 193.965 229 25 1 538.781 291 OS 193.965 229 25 1 538.781 291 OS 193.965 125 25 1 538.096 292 Pt 193.965 790 1070 1 535.130 293 Pt 194.966 890 110 1 545.460 294 OS 194.968 000 500 1 544.200 295 OS 194.968 000 500 1 544.200 296 OS 194.968 000 500 1 544.200 297 OS 194.968 000 500 1 544.200 298 OS 194.968 000 500 1 544.200 299 Pt 194.964 813 18 1 545.675 290 Au 194.965 890 110 1 545.460 290 Pt 194.966 800 1070 1 528.960 291 OS 194.968 000 500 1 544.200 291 OS 194.968 000 500 1 544.200 292 OS 194.968 000 500 1 544.200 293 OS 194.968 000 500 1 544.200 294 OS 194.968 000 500 1 544.200 295 OS 194.968 000 500 1 544.200 296 OS 194.968 000 500 1 544.200 297 OS 194.968 000 500 1 544.200 298 OS 194.968 000 500 1 544.200 299 OS 194.968 000 500 1 542.430 200 Pt 199.971 430 200 Pt	13	1 573.490
191 OS 190.960 970 60 1 518.530 T1 198.969 460 Pb 199.972 860 Pt 190.961 450 1080 1 516.520 Au 190.963 550 1520 1 513.790 192 OS 191.961 450 60 1 524.210 Hg 199.970 700 Fb 191.961 150 60 1 524.210 Hg 191.966 160 1080 1 518.640 Pb 199.971 970 Hg 191.966 160 1080 1 518.640 Pb 199.971 970 Hg 192.963 060 31 1 531.643 Ir 192.963 060 31 1 531.165 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 T1 200.970 750 Pb 200.972 860 Pt 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.965 790 1070 1 535.130 Hg 193.965 790 1070 1 535.130 Hg 193.965 790 1070 1 535.130 Hg 193.965 790 1070 1 528.960 Hg 193.965 790 1070 1 528.960 T1 201.971 950 Pb 201.972 003 Pt 194.966 800 500 1 544.200 Hg 194.965 890 110 1 545.460 Pc 201.981 130 Pt 194.966 810 110 1 545.460 Pc 201.981 130 Pt 194.966 800 1070 1 544.672 Hg 194.966 620 1070 1 551.330 Pb 202.972 880 T1 202.972 880 T1 194.966 820 1070 1 544.672 Hg 194.966 620 1070 1 551.330 Pb 202.973 229 Pt 195.966 555 14 1 551.342 Pc 202.981 470	7	1 573.490
Ir		1 571.290
Pt 190.961 450 1080 1 516.520 Au 190.963 550 1520 1 513.790 192 Os 191.961 450 60 1 526.160 Ir 191.962 700 60 1 524.210 Pt 191.961 150 60 1 524.880 Au 191.964 620 80 1 520.860 Hg 191.966 160 1080 1 518.640 Pb 199.971 970 Pt 192.963 012 35 1 531.643 Ir 192.963 012 35 1 531.165 Pt 192.963 060 31 1 531.165 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 520.280 Hg 193.965 725 23 1 538.781 Ir 193.965 125 25 1 538.781 Hg 193.965 790 1070 1 535.130 Pt 193.965 790 1070 1 535.130 Pt 194.966 800 500 1 544.200 Pt 194.966 800 1070 1 528.960 Ir 194.966 800 1070 1 542.430 Pt 194.966 800 1070 1 542.430 Pt 194.966 800 1070 1 542.430 Pt 194.966 620 1070 1 542.430 Pt 194.966 825 1070 1 535.330 Pt 195.968 250 1070 1 551.330 Pt 195.968 555 14 1 551.342 Pt 195.966 555 14 1 551.342	320	
Au 190.963 550 1520 1 513.790 192 Os 191.961 450 60 1 526.160	1120 1090	1 567.330
192 Os 191.961 450 60 1 526.160	1090	1 561.350
192 Os 191.961 450 60 1 526.160	1000	1 570 970
Tr	1080	1 579.870
Pt 191.961 150 60 1 524.880 Au 191.964 620 80 1 520.860 Hg 191.966 160 1080 1 518.640 Pb 199.971 970 Bi 199.978 940 Po 199.982 820 193 Os 192.964 227 35 1 531.643 Ir 192.963 012 35 1 531.993 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.965 790 1070 1 535.130 Hg 193.965 790 1070 1 535.130 Hg 193.965 790 1070 1 535.130 Hg 193.965 890 110 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.966 620 1070 1 544.200 Hg 194.966 620 1070 1 538.650 Pt 194.966 620 1070 1 542.430 Pt 194.966 620 1070 1 551.330 Pt 194.966 620 1070 1 551.330 Pt 194.966 620 1070 1 551.330 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	100	1 579.770
Au 191.964 620 80 1 520.860 Hg 191.966 160 1080 1 518.640 193 Os 192.964 227 35 1 531.643 Ir 192.963 012 35 1 531.993 Pt 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Hg 193.971 570 1520 1 528.960 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 538.650 Pt 195.966 555 14 1 551.330 Pt 195.966 555 14 1 551.330 Pt 195.966 555 14 1 551.330 Pt 195.966 555 14 1 551.332 Pt 195.966 555 14 1 551.332 Pt 195.966 555 14 1 551.332 Pt 202.972 880	6	1 581.194
Hg 191.966 160 1080 1 518.640 Po 199.982 820 193 Os 192.964 227 35 1 531.643 Ir 192.963 012 35 1 531.993 Pt 192.963 060 31 1 531.165 Au 192.964 240 1070 1 522.280 Hg 192.966 750 1070 1 526.160 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.962 725 23 1 539.549 Au 193.965 790 1070 1 535.130 Hg 193.971 570 1520 1 528.960 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 538.650 Hg 194.966 8250 1070 1 551.330 Pt 194.969 840 1090 1 538.650 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342	8	1 577.958
Po 199.982 820 193 Os 192.964 227 35 1 531.643	1070	1 576.240
193 Os 192.964 227 35 1 531.643 Ir 192.963 012 35 1 531.993 Pt 192.963 060 31 1 531.165 Au 200.971 920 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.962 725 23 1 539.549 Au 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Hg 193.971 570 1520 1 528.960 195 Os 194.968 000 500 1 544.200 Pt 194.965 890 110 1 545.460 Pt 194.965 890 110 1 545.460 Pt 194.966 620 1070 1 542.430 Pt 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.964 967 15 1 553.300 Pt 195.966 555 14 1 551.342 Pt 200.974 770 Au 200.971 920 Au 200.971 920 Bi 200.970 308 Bi 200.977 370 Pb 200.973 370 Pc 201.974 120 Bi 201.977 880 Pc 201.971 880 Pc 201.972 003 Bi 201.972 880 Pc 201.973 880 Pc 202.975 130 Pc 202.973 229 Pc 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342	1520	1 568.960
Ir 192.963 012 35 1 531.993 Pt 192.963 060 31 1 531.165 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.965 725 23 1 539.549 Au 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Hg 193.965 790 1070 1 535.130 T1 193.971 570 1520 1 528.960 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.966 555 14 1 551.342 Po 202.971 770 Au 200.974 770 Au 200.971 920 Hg 200.970 308 Hg 200.970 750 Pb 200.977 370 Pc 200.983 020 Pt 120.977 880 T1 201.971 950 Pb 201.972 003 Pb 201.972 003 Pc 201.981 130 Pc 201.988 800 Pc 201.988 800 Pc 201.988 800 Pc 201.981 130 Pc 202.972 880 Pc 202.973 229 Pc 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Pc 202.981 470	1090	1 564.570
Pt 192.963 060 31 1 531.165 Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.962 725 23 1 539.549 Au 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Hg 193.971 570 1520 1 528.960 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 538.650 Hg 202.972 880 T1 202.972 353 196 Ir 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Po 202.981 470		
Au 192.964 240 1070 1 529.280 Hg 192.966 750 1070 1 526.160 T1 200.970 750 Pb 200.972 860 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.962 725 23 1 539.549 Au 193.965 790 1070 1 535.130 Hg 201.974 120 Hg 193.971 570 1520 1 528.960 T1 201.971 950 Pb 201.972 003 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 538.650 Hg 202.972 880 T1 202.972 353 196 Ir 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Po 202.981 470	120	1 584.830
Hg 192.966 750 1070 1 526.160 T1 200.970 750 Pb 200.972 860 194 Os 193.965 229 25 1 538.781 Bi 200.977 370 Ir 193.965 125 25 1 538.096 Pc 200.983 020 Pt 193.965 725 23 1 539.549 Hg 201.974 120 Hg 193.965 790 1070 1 535.130 Hg 201.974 120 Pb 201.972 003 195 Os 194.968 000 500 1 544.200 Pb 201.972 003 Pb 201.972 003 Pc 194.965 890 110 1 545.460 Pc 201.981 130 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 538.650 Hg 202.975 130 T1 194.969 840 1090 1 538.650 Hg 202.975 880 T1 202.972 353 Pc 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Pc 202.981 470	110	1 586.700
Pb 200.972 860 194 Os 193.965 229 25 1 538.781 Ir 193.965 125 25 1 538.096 Pt 193.962 725 23 1 539.549 Au 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 T1 193.971 570 1520 1 528.960 195 Os 194.968 000 500 1 544.200 Pt 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.968 250 1070 1 551.330 Pb 202.972 880 T1 202.972 353 Pb 202.973 229 Pt 195.966 555 14 1 551.342 Po 202.981 470	7	1 587.421
194 Os 193.965 229 25 1 538.781 Bi 200.977 370 Ir 193.965 125 25 1 538.096 Pt 193.962 725 23 1 539.549 Au 193.965 418 28 1 536.258 Hg 201.974 120 Hg 193.971 570 1520 1 528.960 T1 201.971 950 Pb 201.972 003 195 Os 194.968 000 500 1 544.200 Bi 201.977 880 Pt 194.964 813 18 1 545.675 At 201.989 800 T1 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 T1 202.972 353 196 Ir 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Po 202.981 470	60	1 586.230
Ir 193.965 125 25 1 538.096 Pt 193.962 725 23 1 539.549 Au 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Hg 201.970 642 T1 193.971 570 1520 1 528.960 T1 201.971 950 Pb 201.972 003 Pt 194.965 890 110 1 545.460 Pt 194.965 890 110 1 545.460 Pt 194.966 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 T1 202.972 880 T1 202.972 880 T1 202.972 353 Pt 195.968 250 1070 1 551.330 Pt 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Po 202.981 470	1080	1 583.480
Pt 193.962 725 23 1 539.549 Au 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 T1 193.971 570 1520 1 528.960 Pb 201.972 003 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.968 250 1070 1 551.330 Pt 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Po 202.973 229 Pt 195.966 555 14 1 551.342	1520	1 578.490
Au 193.965 418 28 1 536.258 Hg 193.965 790 1070 1 535.130 Hg 201.970 642 T1 193.971 570 1520 1 528.960 T1 201.971 950 Pb 201.972 003 T1 194.965 890 110 1 545.460 Pt 194.965 891 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.968 250 1070 1 551.330 Pt 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Po 202.973 229 Pt 195.966 555 14 1 551.342	1090	1 572.450
Hg 193.965 790 1070 1 535.130 Hg 201.970 642 T1 193.971 570 1520 1 528.960 T1 201.971 950 Pb 201.972 003 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.968 250 1070 1 551.330 Pt 195.968 250 1070 1 551.330 Pt 195.966 555 14 1 551.342 Po 202.973 229 Pt 195.966 555 14 1 551.342		
T1 193.971 570 1520 1 528.960 T1 201.971 950 Pb 201.972 003 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.968 250 1070 1 551.330 Pt 195.968 250 1070 1 551.330 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	1070	1 592.720
Pb 201.972 003 195 Os 194.968 000 500 1 544.200 Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Pt 195.968 250 1070 1 551.330 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Pb 201.972 003 Bi 201.972 003 Bi 201.972 880 Po 201.972 880 T1 202.975 130 Pb 202.973 229 Pt 195.966 555 14 1 551.342 Po 202.981 470	7	1 595.181
195 Os 194.968 000 500 1 544.200 Bi 201.977 880 Ir 194.965 890 110 1 545.460 Po 201.981 130 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 T1 202.972 353 196 Ir 195.968 250 1070 1 551.330 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	25	1 593.180
Ir 194.965 890 110 1 545.460 Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 T1 195.968 250 1070 1 551.330 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 201.981 130 Po 201.981 130 At 201.989 800 T1 202.975 130 T1 202.972 353 Pb 202.973 229 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	40	1 592.348
Pt 194.964 813 18 1 545.675 Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 T1 195.968 250 1070 1 551.330 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	1070	1 586.100
Au 194.965 051 19 1 544.672 Hg 194.966 620 1070 1 542.430 T1 194.969 840 1090 1 538.650 Hg 202.975 130 Hg 202.972 880 T1 202.972 353 Pb 202.973 229 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	1080	1 582.280
Hg 194.966 620 1070 1 542.430 203 Au 202.975 130 Hg 202.972 880 T1 194.969 840 1090 1 538.650 Hg 202.972 353 196 Ir 195.968 250 1070 1 551.330 Pb 202.973 229 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	1520	1 573.420
T1 194.969 840 1090 1 538.650 Hg 202.972 880 T1 202.972 353 196 Ir 195.968 250 1070 1 551.330 Pb 202.973 229 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470		
T1 202.972 353 196 Ir 195.968 250 1070 1 551.330 Pb 202.973 229 Pt 195.964 967 15 1 553.604 Au 195.966 555 14 1 551.342 Po 202.981 470	1070	1 599.850
196 Ir 195.968 250 1070 1 551.330 Pb 202.973 229 Pt 195.964 967 15 1 553.604 Bi 202.976 650 Au 195.966 555 14 1 551.342 Po 202.981 470	8	1 601.168
Pt 195.964 967 15 1 553.604 Bi 202.976 650 Au 195.966 555 14 1 551.342 Po 202.981 470	8	1 600.876
Au 195.966 555 14 1 551.342 Po 202.981 470	13	1 599.278
	60	1 595.310
and the state of t	1120	1 590.040
	1090	1 583.440
T1 195.970 760 160 1 545.860		
Pb 195.973 800 1090 1 542.250 204 Hg 203.973 495	7	1 608.666
T1 203.973 865	8	1 607.539
197 Ir 196.969 490 220 1 558.240 Pb 203.973 044		1 607.522
Pt 196.967 347 13 1 559.458 Bi 203.977 810		1 602.300
Au 196.966 541 10 1 559.426 Po 203.980 460	1070	1 599.050
Hg 196.967 360 44 1 557.881 At 203.988 060		1 591.190
T1 196.969 720 170 1 554.900 Rn 203.992 300	1090	1 586.450
РЬ 196.974 090 1090 1 550.050	1070	_ 5551450

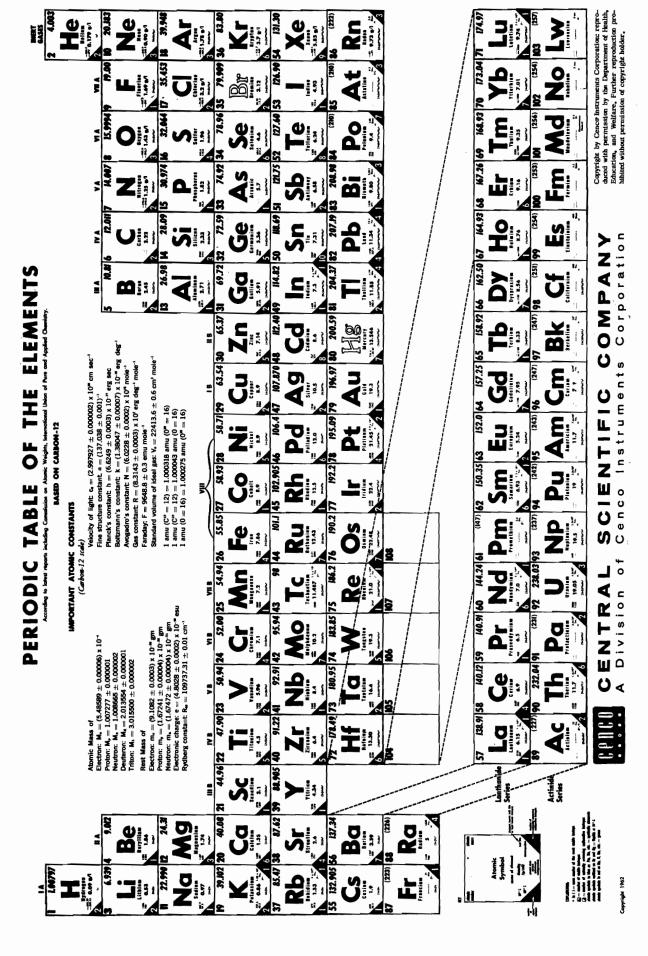
A	E1.	Atomic Mass	Mass Error*	Binding Energy†	A	E1.	Atomic Mass	Mass Error*	Binding Energyt
		(u)		(MeV)			(u)		(MeV)
205	Hg	204.976 210	110	1 614.210	212	Pb	211.991 892	9	1 654.537
	ΤĪ	204.974 44 2	8	1 615.073	ł	Βi	211.991 276	8	1 654.328
	Pb	204.974 480	9	1 614.256]	Po	211.988 865	6	1 655.792
	Βi	204.977 382	13	1 610.769		Αt	211.990 723	23	1 653.278
	Po	204.981 200	1080	1 606.430	ĺ	Rn	211.990 707	13	1 652.511
	Αt	204.986 440	1520	1 600.770		Fr	211.996 230	1080	1 646.580
	Rn	204.992 560	1530	1 594.290		Ra	211.999 950	1070	1 642.330
206	Hg	205.977 513	23	1 621.067	213	Pb	212.996 580	1070	1 658.240
	Tl	205.976 104	8	1 621.597		Βi	212.994 377	14	1 659.511
	Pb	205.974 468	7	1 622.338	ł	Po	212.992 849	10	1 660.152
	Βi	205.978 389	28	1 617.904		Αt	212.993 070	210	1 659.170
	Po	205.980 324	41	1 615.318	ł	Rn	212.993 935	24	1 657.576
	Αt	205.986 790	1070	1 608.510		Fr	212.996 184	17	1 654.698
	Rn	205.990 580	1080	1 604.200	ĺ	Ra	213.000 420	1080	1 649.970
	Fr	205.999 840	1520	1 594.790		Ac	213.007 050	1520	1 643.010
207	T1	206.977 450	11	1 628.414	214	Pb	213.999 844	12	1 663.272
	Pb	206.975 903	7	1 629.073		Βi	213.998 726	15	1 663.532
	Βi	206.978 438	8	1 625.929	ł	Po	213.995 204	6	1 666.029
	Po	206.981 558	11	1 622.240		Αt	213.996 332	12	1 664.196
	Αt	206.985 560	60	1 617.730	[Rn	213.995 380	1070	1 664.300
	Rn	206.990 760	1120	1 612.100	ł	Fr	213.998 980	40	1 660.160
	Fr	206.997 730	1090	1 604.830	1	Ra	213.999 990	50	1 658.440
208	т1	207.982 013	9	1 632.235	}	Ac	214.007 100	1080	1 651.040
200	Pb	207.976 650	7	1 636.448	215	Вi	215.001 850	100	1 668.690
	Bi	207.979 731	9	1 632.796	213	Po	214.999 449	11	1 670.147
		207.981 243	12	1 630.605		At	214.998 656	14	1 670.103
	Po		1080		[214.998 690	110	1 669.290
	At	207.986 610 207.989 790	1070	1 624.830 1 621.080	}	Rn	215.000 400	30	1 666.910
	Rn Fr	207.989 790	1520	1 612.700		Fr Ra	215.003 400	26	1 663.930
209	T1	208.985 296	37	1 637.249	216	Bi	216.006 310	1070	1 672.610
209	Pb	208.981 082	11	1 640.391	210	Po	216.001 908	9	1 675.928
	Bi	208.980 394	8	1 640.250		At	216.002 416	11	1 674.672
	Po	208.982 426	13	1 637.575		Rn	216.000 272	12	1 675.887
	At	208.986 167	13	1 633.307		Fr	216.003 100	1070	1 672.470
	Rn	208.990 420	1080	1 628.570		Ra	216.003 490	30	1 671.330
	Fr	208.996 320	1520	1 622.280		Να			
					217	Po	217.006 340	1070	1 679.870
210	T1	209.990 054	29	1 640.888		Αt	217.004 708	14	1 680.609
	Pb	209.984 187	7	1 645.571		Rn	217.003 920	11	1 680.560
	Вí	209.984 121	7	1 644.849		Fr	217.004 750	300	1 679.000
	Po	209.982 876	7	1 645.227		Ra	217.006 390	40	1 676.700
	Αt	209.987 036	28	1 640.569					
	Rn	209.989 540	42	1 637.454	218	Po	218.009 009	12	1 685.456
	Fr	209.996 570	1070	1 630.120		At	218.008 710	15	1 684.953
						Rn	218.005 606	12	1 687.062
211	Pb	210.988 742	22	1 649.399		Fr	218.007 521	16	1 684.496
	Βi	210.987 300	11	1 649.960		Ra	218.007 170	1520	1 684.040
	Po	210.986 657	8	1 649.777					_ 32 1.0 .0
	At	210.987 462	8	1 648.244	219	Αt	219.011 320	90	1 690.600
	Rn	210.990 566	11	1 644.570		Rn	219.009 508	11	1 691.499
	Fr	210.995 330	60	1 639.350		Fr	219.009 250	26	1 690.956
	Ra	211.000 950	1550	1 633.330		Ra	219.010 050	150	1 689.430
							217.010 030		1 00

A	E1.	Atomic Mass	Mass	Binding Energy†	A	E1.	Atomic Mass	Mass	Binding Energy†
		(u)	Error*	(MeV)			(u)	Error*	(MeV)
220	At	220.015 140	1070	1 695.100	230	Pa	230.034 541	21	1 753.054
220	Rn	220.013 140	9	1 697.819	230	Ü	230.033 935	20	1 752.836
	Fr	220.011 387	13	1 696.170		Νp	230.037 750	1070	1 748.500
	Ra	220.012 318	16	1 696.591		ИР	230.037 730	1070	1 740.500
					231	Ac	231.038 570	110	1 758.930
221	Rn	221.015 390	1520	1 702.170		Th	231.036 318	11	1 760.252
	Fr	221.014 244	15	1 702.447		Pa	231.035 903	11	1 759.857
	Ra	221.013 913	12	1 701.973		U	231.036 290	50	1 758.720
	Ac	221.015 680	370	1 699.550		Np	231.038 270	60	1 756.080
222	Rn	222.017 610	12	1 708.166	232	Th	232.038 079	12	1 766.683
	Fr	222.017 550	30	1 707.440		Pa	232.038 592	24	1 765.423
	Ra	222.015 375	16	1 708.683		U	232.037 148	10	1 765.986
	Ac	222.017 779	20	1 705.661	1	Νp	232.039 950	1070	1 762.600
222	77	222 010 760	.,	1 712 /52		Pu	232.041 170	60	1 760.670
223	Fr Ra	223.019 760 223.018 527	11 11	1 713.452 1 713.818	233	Th	233.041 604	12	1 771.472
	Ac	223.019 133	26	1 712.470	233	Pa	233.040 268	12	1 771.934
	Th	223.020 920	190	1 712.470		T a	233.039 654	12	1 771.723
	111	223.020 920	190	1 /10.030		Νp	233.040 830	1070	1 769.850
224	Fr	224.023 320	1070	1 718.210		Pu	233.042 987	26	1 767.050
224	Ra	224.020 203	9	1 720.328		Iu	255.042 707	20	1 707.030
	Ac	224.021 701	15	1 718.150	234	Th	234.043 636	13	1 777.651
	Th	224.021 470	20	1 717.583	-5-	Pa	234.043 354	13	1 777.131
	111	224.021 470	-0	1 /1/.505		U	234.040 976	12	1 778.564
225	Ra	225.023 630	13	1 725 208		Νp	234.042 908	20	1 775.981
	Ac	225.023 214	15	1 724.813		Pu	234.043 313	20	1 774.822
	Th	225.023 945	14	1 723.349				_•	
	Pa	225.026 230	1140	1 720.430	235	Pa	235.045 450	110	1 783.250
						Ü	235.043 943	11	1 783.871
226	Ra	226.025 438	12	1 731.594		NP	235.044 075	11	1 782.965
	Ac	226.026 101	21	1 730.195		Pu	235.045 290	60	1 781.050
	Th	226.024 900	20	1 730.531					
	Pa	226.027 882	22	1 726.971	236	Pa	236.048 700	1070	1 788.290
					1	U	236.045 591	12	1 790.407
227	Ra	227.029 180	24	1 736.181	1	NP	236.046 605	15	1 788.680
	Ac	227.027 774	11	1 736.708	l	Pu	236.046 049	11	1 788.416
	Th	227.027 727	11	1 735.969		Am	236.049 310	1520	1 784.590
	Pa	227.028 801	27	1 734.190					
	U	227.031 200	1090	1 731.170	237	Pa	237.051 220	60	1 794.020
						U	237.048 750	12	1 795.536
228	Ra	228.031 096	13	1 742.468		NP	237.048 195	12	1 795.271
	Ac	228.031 037	13	1 741.740		Pu	237.048 434	13	1 794.266
	Th	228.028 733	9	1 743.103		Am	237.050 060	1520	1 791.970
	Pa	228.030 990	16	1 740.219			`		
	U	228.031 377	22	1 739.076	238	U NP	238.050 819 238.050 970	12 14	1 801.680 1 800.757
229	Ra	229.034 870	1520	1 747.020		Pu	238.049 582	12	1 801.268
227	ка Ас	229.032 940	1070	1 747.020		Am	238.052 010	1070	1 798.230
	Th	229.032 940	1070	1 748.336		Cm	238.053 030	40	1 796.490
	Pa	229.031 781	16	1 747.274		OIII	230,033 030	-+0	1 //0.4/0
	U	229.032 496	14	1 747.274	239	U	239.054 328	13	1 806.484
	Ü		1-4	2 143.113	237	Νp	239.052 951	12	1 806.984
230	Ra	230.037 130	1520	1 752.990		Pu	239.052 175	12	1 806.924
_50	Ac	230.036 270	1070	1 753.010		Am	239.053 042	24	1 805.330
	Th	230.033 159	12	1 755.124		Cm	239.054 900	1070	1 802.820
					l)	J-11			

		Atomic	Mass	Binding			Atomic	Mass	Binding
Α	E1.	Mass	Error*	Energyt	A	E1.	Mass	Error*	Energyt
		(u)		(MeV)	 				(MeV)
240	U	240.056 633	17	1 812.408	248	Es	248.075 500	1520	1 853.930
	Np	240.056 080	70	1 812.140	ll .	Fm	248.077 190	30	1 851.570
	Pu	240.053 836	12	1 813.448	ll .				
	Am	240.055 340	1070	1 811.270	249	Cm	249.075 985	17	1 863.895
	Cm	240.055 518	11	1 810.316	JI	$\mathbf{B}\mathbf{k}$	249.075 005	12	1 864.026
					}	Cf	249.074 870	12	1 863.369
241	Np	241.058 330	110	1 818 110	11	Es	249.076 380	30	1 861.180
	Pu	241.056 873	12	1 818 691	li	Fm	249.078 960	1070	1 857.990
	Am	241.056 850	12	1 817.929					
	Cm	241.057 679	13	1 816.375	250	Cm	250.078 420	1070	1 869.700
	Bk	241.060 240	1070	1 813.200]]	Bk	250.078 337	16	1 868.993
					ll	Cf	250.076 432	14	1 869.985
242	Np	242.061 780	1070	1 822.980	[]	Es	250.078 650	1070	1 867.130
	Pu	242.058 769	12	1 824.996		Fm	250.079 550	40	1 865.520
	Am	242.059 573	14	1 823.465	(I	Md	250.084 430	1860	1 860.190
	Cm	242.058 860	12	1 823.347	ll l				
	Bk	242.062 080	1070	1 819.560	251	Bk	251.080 810	1520	1 874.760
	Cf	242.063 670	40	1 817.300		Cf	251.079 591	18	1 875.114
	-				ll	Es	251.079 970	50	1 873.980
243	Pu	243.062 031	15	1 830.029	JI	Fm	251.081 620	1320	1 871.660
	Am	243.061 393	12	1 829.840	II	Md	251.084 870	1070	1 867.850
	Cm	243.061 400	12	1 829.052	11	No	251.088 860	2150	1 863.350
	Bk	243.063 022	25	1 826.760	ll				
	Cf	243.065 330	1520	1 823.830	252	Bk	252.084 340	1070	1 879.540
	0_	2.0.005	23-0	1 020,000		Cf	252.081 657	17	1. 881.261
244	Pu	244.064 235	17	1 836.047	!]	Es	252.082 870	1070	1 879.350
	Am	244.064 310	12	1 835.196		Fm	252.082 500	40	1 878.910
	Cm	244.062 775	12	1 835.842	Ш	Md	252.086 530	1860	1 874.380
	Bk	244.065 220	1070	1 832.780	ll .	No	252.088 970	40	1 871.320
	Cf	244.065 988	11	1 831.284	ll	2.0	252.000 7.0	. •	
	01	244.005 700		1 051.204	253	Cf	253.085 140	60	1 886.090
245	Pu	245.067 800	1070	1 840.800	-55	Es	253.084 850	14	1 885.576
243	Am	245.066 477	13	1 841.249		Fm	253.085 200	1070	1 884.470
	Cm	245.065 511	12	1 841.366	!	Md	253.087 250	1070	1 881.780
	Bk	245.066 393	13	1 839.762	 	No	253.090 580	1520	1 877.890
	Cf	245.068 071	13	1 837.416		2.0	200,070 200		
	Es	245.071 330	1520	1 833.600	254	Cf	254.087 390	1070	1 892.060
	110	243.071 330	1320	1 033.000		Es	254.088 05 3	17	1 890.663
246	Pu	246.070 120	60	1 846.710		Fm	254.086 883	15	1 890.972
240	Am	246.069 720	60	1 846.300		Md	254.089 630	1520	1 887.630
	Cm	246.067 250	13	1 847.817]	No	254.090 990	40	1 885.580
	Bk	246.068 820	1070	1 845.570		110	-5 0 / 0 / / 0	70	2 003.300
	Cf	246.068 837	16	1 844.774	255	Es	255.090 290	1520	1 896.650
	Es	246.072 970	1520	1 840.140	233	Fm	255.089 970	19	1 896.168
	Fm	246.075 260	50	1 837.230		Md	255.091 100	1070	1 894.330
	rm	240.073 200	50	1 037.230	l l	No	255.093 270	1700	1 891.520
247	Am	247.072 100	1070	1 852.160]] .	110	233.073 270	1/00	1 071.520
441	Am Cm	247.072 100	15	1 852.160	256	Es	256.093 710	1520	1 901.540
	Bk	247.070 380	30	1 852.280	2,0	Es Fm	256.093 710	40	1 902.600
	Cf	247.070 290	760	1 850.660	ii	Md	256.091 730	1520	1 899.900
		247.071 180	40			•	256.094 280	40	1 898.650
	Es			1 847.600	1	No			
	Fm	247.076 740	1860	1 843.920		Lw	256.098 570	1070	1 893.880
248	Am	248.075 710	1070	1 856.860	257	Fm	257.095 110	60	1 907.520
	Cm	248.072 379	16	1 859.182		Md	257.095 610	1070	1 906.270
	Bk	248.073 020	1070	1 857.800		No	257.096 930	1520	1 904.260
	Cf	248.072 220	30	1 857.770	{	Lw	257.099 510	1520	1 901.070

gm/cm

H										Juston
He 2 4,0026 40.0 0,126 Ke 54 131.30 757.52 3.52 Li 3 6,939 39.032 0.534 Be 4 9.0122 56.0 1.87 Be 5 10.811 79.0 2.25 N 7 14.0067 92.0 0.808 O 8 15.9994 105.0 1.14 Ne 10 20.183 130.016 1.2 Na 11 22.9898				MIP*	Density				MIP*	Density
He 2 4,0026 40.0 0,126 Ke 54 131.30 757.52 3.52 Li 3 6,939 39.032 0.534 Be 4 9.0122 56.0 1.87 Be 5 10.811 79.0 2.25 N 7 14.0067 92.0 0.808 O 8 15.9994 105.0 1.14 Ne 10 20.183 130.016 1.2 Na 11 22.9898	ч	1	1 00797	18 0	0.0586		53	126 9044		4 93
Lit 3 6.939 39.032 0.534						ш			757 52	
Be 4 9,0122 56.0 1.8 Ba 56 137.34 3.5 B 5 10.811 2.34 La 57 138.91 3.92 N 7 14.0067 92.0 0.808 0.971 Ce 58 140.12 3.92 N 7 14.0067 92.0 0.808 0.971 Pr 59 140.907 6.5 Ne 10 20.183 130.016 1.2 Sm 62 150.35 7.8 Na 11 22.9898 0.971 Eu 63 151.96 5.24 Mg 12 24.312 156.4 1.74 Gd 64 157.25 Ma 13 26.9815 163 2.699 7.5 Gd 64 157.25 Si 14 28.086 2.42 Dy 66 162.50 8.56 P 15 30.9738 1.82 Ho 67 164.930						u			131.32	
B 5 10.811										
C 6 12.01115 79.0 2.25				36.0						
N 7 14.0067 92.0 0.808 Pr 59 140.907 6.5 0 8 15.9994 105.0 1.14 Nd 60 144.24 6.95 F 9 18.9984 105.0 1.11 Pm 61 147 Ne 10 20.183 130.016 1.2 Sm 62 150.35 7.8 Mg 12 24.312 156.4 1.74 Gd 64 157.25 A1 13 26.9815 163 2.699 Tb 65 158.924 S1 14 28.086 2.42 Dy 66 162.50 8.56 P 15 30.9738 1.82 Ho 67 164.930 S S 16 32.064 2.07 Er 68 167.26 4.77 C1 17 35.453 1.56 Tm 69 168.934 Ar 18 39.948 240.0 1.40 Yb 70 173.04 K 19 39.102 0.87 Lu 71 174.97 Ca 20 40.08 200 1.55 Hf 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 Y 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 Os 76 190.2 22.48 Mn 25 54.9380 F.20 T.1 Os 76 190.2 22.48 Mn 25 54.9380 7.20 Tr 77 192.2 760 22.48 Mn 25 54.9380 7.20 Tr 77 192.2 760 22.48 Mn 25 55.93832 298 8.9 Au 79 196.967 786 19.32 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Cn 29 63.54 322 8.94 Tf 81 81 204.37 11.85 Cn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ca 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Po 84 210 Sr 38 87.62 2.54 Th 90 232.038 11.3 Se 34 78.96 As 33 74.9216 5.73 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Sr 38 87.62 2.54 Th 90 232.038 11.3 Sr 38 87.62 2.55 Th 90 22 238.03 908 18.68 No 42 95.94 420 10.2 Pu 94 No 42 95.994 420 10.2 Pu 94 No 42 95.994 420 10.2 Pu 94 No 42 95.994 420 10.2 Pu 94 No 44 101.07 88 10.50 Es 99 Ru 44 101.07 12.2 Cm 96 Ru 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sn 51 121.75 6.6691 Lw 103				70.0						
O 8 15.9994 105.0 1.14 Nd 60 144.24 6.95 F 9 18.9984 1.11 Pm 61 147 8 Ne 10 20.183 130.016 1.2 Sm 62 150.35 7.8 Na 11 22.9888 0.971 Eu 63 151.96 5.24 Al 13 26.9815 163 2.699 7.8 64 64 157.25 Al 13 26.9815 163 2.699 7.6 66 162.50 8.56 P 15 30.9738 1.82 Ho 67 164.930 8.56 P 15 30.9738 1.82 Ho 67 164.930 8.56 P 15 30.9742 240.0 1.40 7b 70 173.04 K 19 39.102 0.87 Lu 71 17.497 71 Ca 20										
F 9 18.9984										
Ne 10 20.183 130.016 1,2 Sm 62 150.35 7.8 Na 11 22.9898 0.971 Eu 63 151.96 5.24 Mg 12 24.312 156.4 1.74 Gd 64 157.25 Al 13 26.9815 163 2.699 Tb 65 158.924 91 14 28.086 2.422 Dy 66 162.50 8.56 P 15 30.9738 1.82 Ho 67 164.930 8.56 P 15 30.9738 1.82 Ho 67 164.930 8.56 P 15 30.9738 1.82 Ho 67 164.930 8.56 P 15 30.9748 240.0 1.40 Yb 70 173.04 8.77 K 19 39.102 0.87 Ta 71 174.97 183.35 Ca 21 4.596				105.0						6.95
Na 11 22.9898 0.971 Eu 63 151.96 5.24 Mg 12 24.312 156.4 1.74 Gd 64 157.25 A1 13 26.9815 163 2.699 Tb 65 158.924 S1 14 28.086 2.42 Dy 66 162.50 8.56 P 15 30.9738 1.82 Ho 67 164.930 8.56 S 16 32.064 2.07 Tm 69 168.934 77 Ar 18 39.948 240.0 1.40 Yb 70 173.04 K 19 39.102 0.87 Hf 72 178.49 13.3 Ca 20 40.98 200 1.55 Hg 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 Ti 22 47.90 2254										
Mg 12 24,312 156,4 1.74 Al 13 26,9815 163 2.699 Si 14 28,086 2.42 Dy 66 162.50 8.56 P 15 30,9738 1.82 Ho 67 164,930 S S 16 32,064 2.07 F 68 167,26 4.77 Cl 17 35,453 1.56 Tm 69 168,934 Ar 18 39,948 240.0 1.40 Yb 70 173.04 K 19 39,102 0.87 Lu 71 174,97 Ca 20 40.08 200 1.55 Hf 72 178,49 13.3 Sc 21 44,956 3.02 Ta 73 180,948 720 16.6 Ti 22 47,90 225 4.5 W 74 183.85 740 19.3 V 23 50,942 254 5.96 Re 75 186.2 20.53 Cr 24 51,996 7.1 0s 76 190.2 22.48 Mn 25 54,9380 7.20 Tr 73 190,22 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58,9332 298 8.9 Au 79 196,967 786 19.32 N1 28 58,71 312 8.90 Hg 80 200.59 Cu 29 63,54 322 8.94 Tl 81 204.37 11.85 Ca 31 69,72 59 5,36 Pg 84 210 As 33 74,9216 5.73 At 85 210 Se 34 78.96 4.8 Rn 86 222 9.73 Fr 36 83,80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88,905 5.51 Cr 24 399 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Rn 99 Ru 44 101.07 485 10.50 Fm 100 Ln 49 114.82 490 7.28 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103				130.016		11				
AI 13 26,9815 163 2.699										5.24
Si 14 28.086 2.42 Dy 66 162.50 8.56 P 15 30.9738 1.82 Bo 67 164.930 4.77 C1 17 35.453 1.56 Tm 69 168.934 4.77 C1 17 35.453 1.56 Yb 70 173.04 4 K 19 39.102 0.87 Lu 71 174.97 173.04 Ca 20 40.08 200 1.55 Hf 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 Os 76 190.2 22.48 Fe 26 55.847 273 7.86 Pt 78 195.09 777 2										
P 15 30,9738 1.82 Ho 67 164,930 4.77 C1 17 35,453 1.56 Tm 69 168,934 4.77 Ar 18 39,948 240.0 1.40 Yb 70 173.04 70 K 19 39,102 0.87 Lu 71 174.97 70 Ca 20 40.08 200 1.55 Hf 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 0s 76 190.2 22.48 Mn 25 54.9380 7.20 1r 77 192.2 760 22.48 Fe 26 55.847 273 7.86 Pt 78 195.			26.9815	163		ТЪ				
S 16 32.064 2.07 Er 68 167.26 4.77 C1 17 35.453 1.56 Tm 69 168.934 Ar 18 39.948 240.0 1.40 K 19 39.102 0.87 Ca 20 40.08 200 1.55 Hf 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 T1 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 Os 76 190.2 22.48 Mn 25 54.9380 7.20 Ir 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 N1 28 58.71 312 8.90 Hg 80 200.59 N1 28 58.71 312 8.90 Hg 80 200.59 N1 28 63.54 322 8.94 T1 81 204.37 11.85 Ca 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Po 84 210 As 33 74.9216 5.73 At 85 210 Se 34 78.96 4.8 Rn 86 222 9.73 Br 35 79.909 Rr 36 83.80 493.68 2.6 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Pr 87 223 Sr 38 87.62 2.54 Th 90 232.038 11.3 Pr 98 89.05 5.51 Pa 91 231 Pr 99 Ru 44 101.07 12.2 Cm 96 Ru 44 101.07 885 10.50 Cd 48 112.40 468.0 8.55 Fm 100 Sn 50 118.69 500 7.31 No 102	Si	14	28.086		2.42	Dу	66	162.50		8.56
C1 17 35.453	P	15	30.9738		1.82	Ho	67	164.930		
C1 17 35.453	S	16	32.064		2.07	Er	68	167.26		4.77
Ar 18 39,948 240,0 1.40	C1	17	35.453			Tm	69	168.934		
K 19 39.102 0.87 Lu 71 174.97 Ca 20 40.08 200 1.55 Hf 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 Os 76 190.2 22.48 Mn 25 54.9380 7.20 Ir 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8		18	39.948	240.0			70			
Ca 20 40.08 200 1.55 Hf 72 178.49 13.3 Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 6 Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 0s 76 190.2 22.48 Mn 25 54.9380 7.20 1r 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 T1 81 204.37 11.85 Zn 72										
Sc 21 44.956 3.02 Ta 73 180.948 720 16.6 Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 0s 76 190.2 22.48 Mn 25 54.9380 7.20 Tr 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 T1 81 204.37 11.85 An 20.72 59 5.36				200						13.3
Ti 22 47.90 225 4.5 W 74 183.85 740 19.3 V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 Os 76 190.2 22.48 Mn 25 54.9380 7.20 Ir 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 Tl 81 204.37 11.85 Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Po 84 210 As 33 74.9216 5.73 At 85 210 Se 34 78.96 4.8 Rn 86 222 9.73 Sr 38 87.62 7.59 At 85 210 Sr 35 79.909 3.12 Fr 87 223 Kr 36 83.80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 Pa 91 231 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Pu 94 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Cf 98 Ag 47 107.870 485 10.50 Es 99 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 In 49 114.82 490 7.28 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103									720	
V 23 50.942 254 5.96 Re 75 186.2 20.53 Cr 24 51.996 7.1 Os 76 190.2 22.48 Mn 25 54.9380 7.20 Ir 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 N1 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 T1 81 204.37 11.85 Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Po 84 210 As 33 74.9216 5.73 At 85 210 Se 34 78.96 4.8 Rn 86 222 9.73 Br 35 79.909 3.12 Fr 87 223 Kr 36 83.80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 Pa 91 231 Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103				225						
Cr 24 51.996 7.1 Os 76 190.2 22.48 Mn 25 54.9380 7.20 Ir 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 TI 81 204.37 11.85 An 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 At 85 210 88 826 9.747 Br 35 79.909						8			740	
Mn 25 54.9380 7.20 Ir 77 192.2 760 22.42 Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.90 Hg 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 Tl 81 204.37 11.85 Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.36 Po 84 210				234						
Fe 26 55.847 273 7.86 Pt 78 195.09 777 21.37 Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 T1 81 204.37 11.85 Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 At 85 210 Ax 34 826 9.747 Ge 32 78.96 4.8 Rn 86 222 9.73 Br 35 79.909 3.12 Fr 87 223 Kr 36 83.80 493.68									760	
Co 27 58.9332 298 8.9 Au 79 196.967 786 19.32 Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 T1 81 204.37 11.85 Cn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Ac 82 207.19 818 11.35 As 33 74.9216 5.73 At 85 210 82 9.747 Se 34 78.96 4.8 Rn 86 222 9.73 Kr 36 83.80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 <td></td> <td></td> <td></td> <td>272</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				272						
Ni 28 58.71 312 8.90 Hg 80 200.59 13.546 Cu 29 63.54 322 8.94 T1 81 204.37 11.85 Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 As 33 74.9216 5.73 At 85 210 At 85 210 Sn 35 79.909 3.12 Fr 87 223 Sr 38 87.62 2.54 Sr 38 87.62 2.54 Sr 38 87.62 2.54 Sn 50 118.69 500 7.28 Sn 50 118.69 500 7.31 Sn 50 1										
Cu 29 63.54 322 8.94 T1 81 204.37 11.85 Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Ac 80 208.980 826 9.747 Ge 32 72.59 5.36 Ac 82 210 Ac 82 82 20 82 9.747 Ac 85 210 Ac 85 210 Ac 88 22 88 86 222 9.73 Ac 88 87 62 80 86 222 9.73 Ac 88 87 62 80 86 222 9.73 Ac 88 87 62 86 Ac 89 227 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72									700	
Zn 30 65.37 331 7.14 Pb 82 207.19 818 11.35 Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Po 84 210										
Ga 31 69.72 5.91 Bi 83 208.980 826 9.747 Ge 32 72.59 5.36 Po 84 210 34 78.96 4.8 85 210 <									01.0	
Ge 32 72.59 5.36 Po 84 210 As 33 74.9216 5.73 At 85 210 Se 34 78.96 4.8 Rn 86 222 9.73 Br 35 79.909 3.12 Fr 87 223 Ra 88 226 Rb 37 85.47 1.53 Ra 88 226 Ac 89 227 254 Th 90 232.038 11.3				331						
As 33 74.9216 5.73 Se 34 78.96 4.8 Br 35 79.909 3.12 Kr 36 83.80 493.68 2.6 Rb 37 85.47 1.53 Sr 38 87.62 2.54 Y 39 88.905 5.51 Zr 40 91.22 6.4 Nb 41 92.906 410 8.4 Nb 41 92.906 410 8.4 Nb 41 92.906 410 8.4 Tc 43 99 Ru 44 101.07 12.2 Rh 45 102.905 450 12.5 Rh 45 102.905 450 12.5 Rh 45 102.905 450 12.16 Ag 47 107.870 485 10.50 Rh 49 114.82 490 7.28 Sn 50 118.69 500 7.31 Sb 51 121.75 6.691 At 85 210 Rn 86 222 9.73 Rn 86 222 9.73 Ra 88 226 Ac 89 227 Th 90 232.038 11.3 Pa 91 231 U 92 238.03 908 18.68 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lw 103									826	9.747
Se 34 78.96 4.8 Rn 86 222 9.73 Br 35 79.909 3.12 Fr 87 223 Kr 36 83.80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 Pa 91 231 91 231 91 91 92 238.03 908 18.68 98 11.3 92 92 238.03 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 18.68 90 908 908 18.68 90 908 908 908 908 908 908<										
Br 35 79.909 3.12 Fr 87 223 Kr 36 83.80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 D Pa 91 231 Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Ru 44 101.07 12.2 Bk 97 Pd 46 106.4 460 12.16 Bk 97 Pd 46 106.4 468.0 8.65 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 I										
Kr 36 83.80 493.68 2.6 Ra 88 226 Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 Pa 91 231 Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Bk 97 Cd 48 11.3 11.3 11.3 11.3 Fm 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2										9.73
Rb 37 85.47 1.53 Ac 89 227 Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 Pa 91 231 Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sb 51 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>Fr</td><td></td><td></td><td></td><td></td></td<>						Fr				
Sr 38 87.62 2.54 Th 90 232.038 11.3 Y 39 88.905 5.51 Pa 91 231 Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sh 51 121.75 6.691 Lw 103				493.68						
Y 39 88.905 5.51 Pa 91 231 Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103										
Zr 40 91.22 6.4 U 92 238.03 908 18.68 Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103										11.3
Nb 41 92.906 410 8.4 Np 93 Mo 42 95.94 420 10.2 Pu 94 Tc 43 99		39								
Mo 42 95.94 420 10.2 Pu 94 Tc 43 99 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103			91.22		6.4	ע		238.03	908	18.68
Tc 43 99 Am 95 Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103	NЪ		92.906		8.4	Np	93			
Ru 44 101.07 12.2 Cm 96 Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103	Mo	42	95.94	420	10.2	Pu	94			
Rh 45 102.905 450 12.5 Pd 46 106.4 460 12.16 Ag 47 107.870 485 10.50 Cd 48 112.40 468.0 8.65 In 49 114.82 490 7.28 Sn 50 118.69 500 7.31 Sb 51 121.75 6.691 Lw 103	Tc	43	99			Am	95			
Rh 45 102.905 450 12.5 Bk 97 Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103	Ru	44	101.07		12.2	Cm	96			
Pd 46 106.4 460 12.16 Cf 98 Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103	Rh	45	102.905	450			97			
Ag 47 107.870 485 10.50 Es 99 Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103		46	106.4	460						
Cd 48 112.40 468.0 8.65 Fm 100 In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103										
In 49 114.82 490 7.28 Md 101 Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103										
Sn 50 118.69 500 7.31 No 102 Sb 51 121.75 6.691 Lw 103										
Sb 51 121.75 6.691 Lw 103										
· I				200						
16 32 127.00 0.24 KU 104						1				
			127.00		0.24	- Ku	104			


^{*}Mean ionization potential.

Material	Density (gm/cm ³)				
Air	0.001293				
Asbestos	2.0 - 2.8				
Asphalt	1.1 - 1.5				
Bone	1.7 - 2.0				
Brick	1.4 - 2.5				
Cement	2.7 - 3.0				
Clay	1.8 - 2.6 2.25 - 2.40				
Concrete, siliceous	2.25 - 2.40				
Ebonite	1.15				
Gelatin	1.27				
Glass (common)	2.4 - 2.8				
Glass (flint)	2.9 - 5.9				
Granite	2.60 - 2.76				
Graphite	2.30 - 2.72				
Gypsum	2.31 - 2.33				
Limestone	1.87 - 2.76				
Linoleum	1.18				
Marble	2.47 - 2.86				
Paraffin	0.87 - 0.91				
Plaster, sand	1.54				
Pressed wood:					
Pulp Board	0.19				
Sandstone	1.90				
Slate	2.6 - 3.3				
Tile	1.6 - 2.5				
Water	1.000				
Water (heavy)	1.105				
Wood:					
Oak	0.60 - 0.90				
White Pine	0.35 - 0.50				
Yellow Pine	0.37 - 0.60				

Source: "Medical X-Ray Protection up to Three Million Volts," National Bureau of Standards Handbook No. 76, 1961;

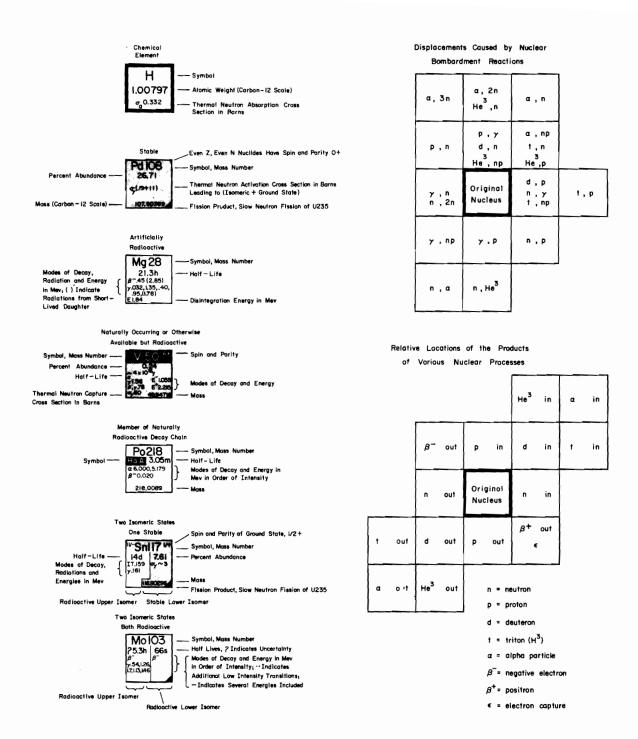
"Handbook of Chemistry and Physics," Chemical Rubber Co., 48th ed., 1967-1968; and

Trout, E. Dale, et al., "Conventional Building Materials as Protective Barriers," Radiology, Vol. 76, No. 2 (Feb. 1961), pp. 237-244.

LIST OF ELEMENTS

Atomic			Atomic		
Number	Symbol	Name	Number	Symbol	Name
0	n	neutron	52	Te	tellurium
1	H	hydrogen	53	I	iodine
2	He	helium	54	Xe	xenon
3	Li	lithium	55	Cs	cesium
4	Be	beryllium	56	Ba	barium
5	В	boron	57	La	lanthanum
6	C	carbon	58	Ce	cerium
7	N	nitrogen	59	Pr	praseodymiun
8	0	oxygen	60	Nd	neodymium
9	F	fluorine	61	Pm	promethium
10	Ne	neon	62	Sm	samarium
11	Na	sodium	63	Eu	europium
12	Mg	magnesium	64	Gd	gadolinium
13	Al	aluminum	65	Tb	terbium
14	Si	silicon	66	Dy	dysprosium
15	P	phosphorus	67	Но	holmium
16	S	sulfur	68	Er	erbium
17	C1	chlorine	69	Tm	thulium
18	Ar	argon	70	Yb	ytterbium
19	K	potassium	71	Lu	lutetium
20	Ca	calcium	72	Hf	hafnium
21	Sc	scandium	73	Ta	tantalum
2 2	Ti	titanium	74	W	tungsten
23	v	vanadium	75	Re	rhenium
24	Cr	chromium	76	Os	osmium
25	Mn	manganese	77	Ir	iridium
26	Fe	iron	78	Pt	platinum
27	Co	cobalt	79	Au	gold
28	Ni	nickel	80	Hg	mercury
29	Cu	copper	81	T1	thallium
30	Zn	zinc	82	Pb	lead
31	Ga	gallium	83	Bi	bismuth
32	Ge	germanium	84	Po	polonium
33	As	arsenic	85	At	astatine
34	Se	selenium	86	Rn	radon
35	Br	bromine	87	Fr	francium
36	Kr [∕]	krypton	88	Ra	radium
37	Rb	rubidium	89	Ac	actinium
38	Sr	strontium	90	Th	thorium
39	Y	yttrium	91	Pa	protactinium
40	Zr	zirconium	92	U	uranium
41	Nb	niobium	93	Np	neptunium
42	Mo	molybdenum	94	Pu	plutonium
43	Tc	technetium	95	Am	americium
44	Ru	ruthenium	96	Cm	curium
45	Rh	rhodium	97	Bk	berkelium
46	Pd	palladium	98	Cf	californium
47	Ag	silver	99	Es	einsteinium
48	Cd	cadmium	100	Fm	fermium
49	In	indium	101	Md	mendelevium
50	Sn	tin	102	No	nobelium
51	Sb	antimony	103	Lw	lawrencium

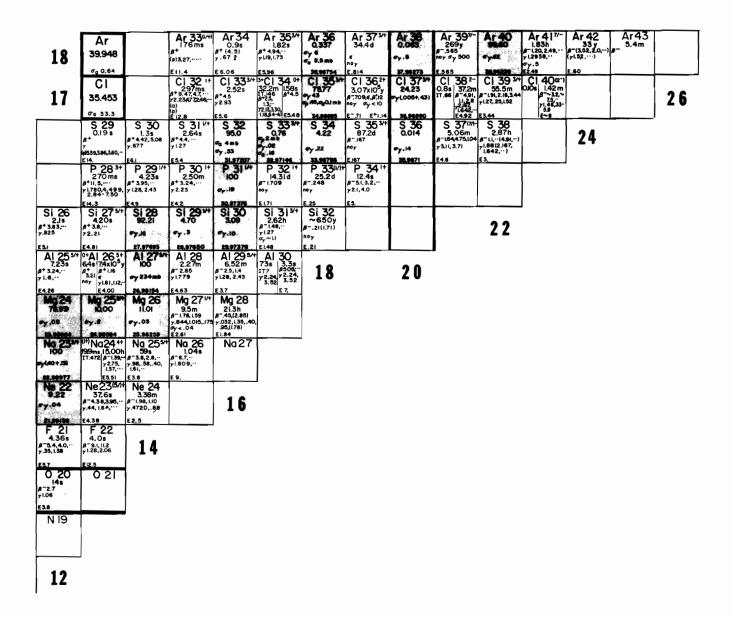
CHART OF THE NUCLIDES

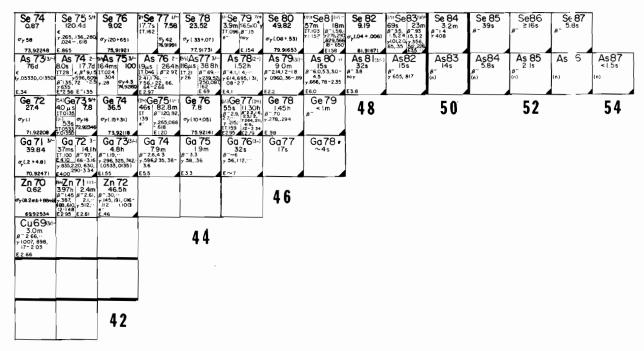

U.S. ATOMIC ENERGY COMMISSION

Operated by the General Electric Company

TENTH EDITION—REVISED TO DECEMBER 1968

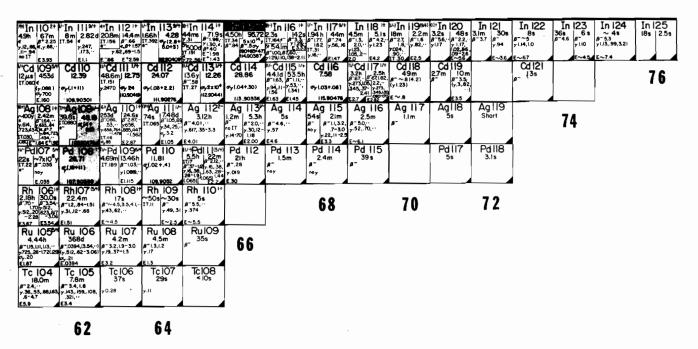
Prepared by: Norman E. Holden F. William Walker

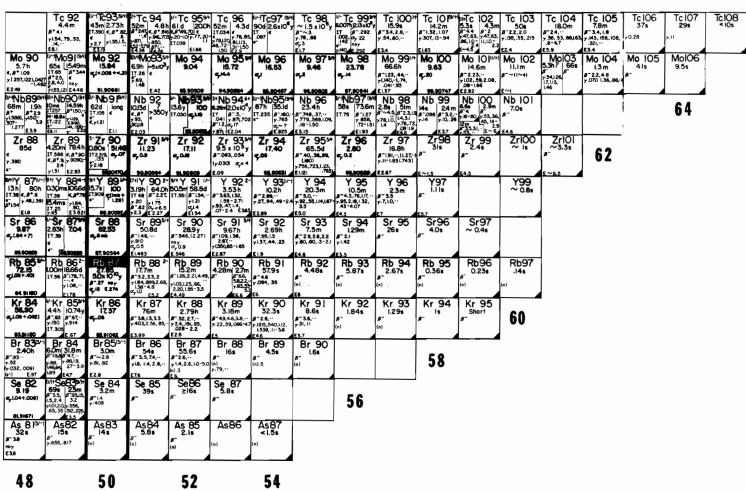

		/

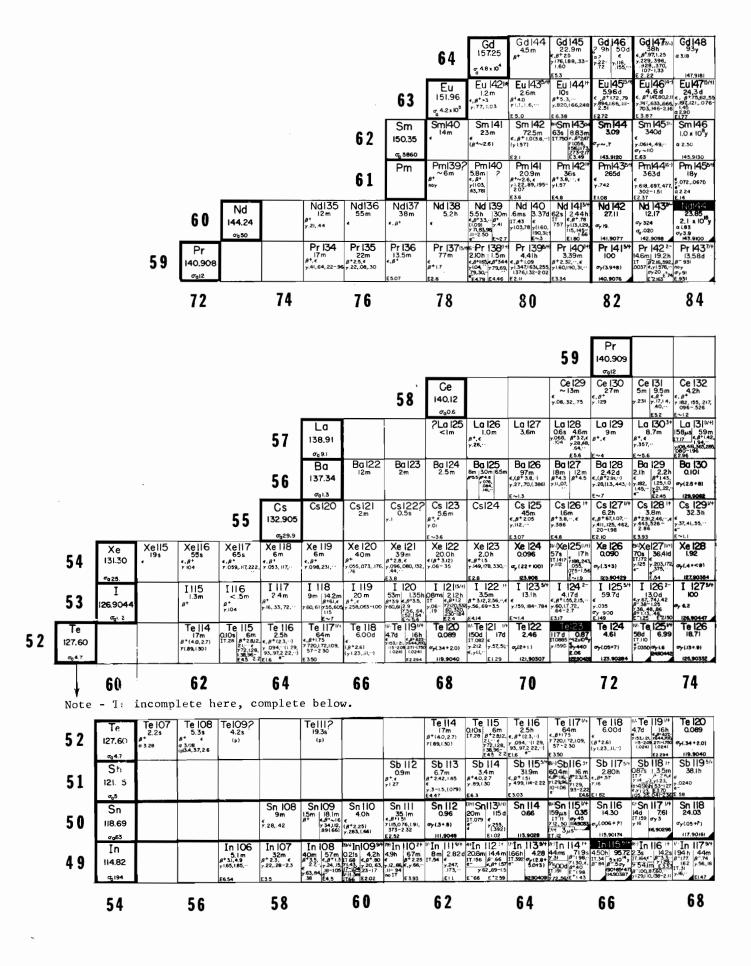

SYMBOLS

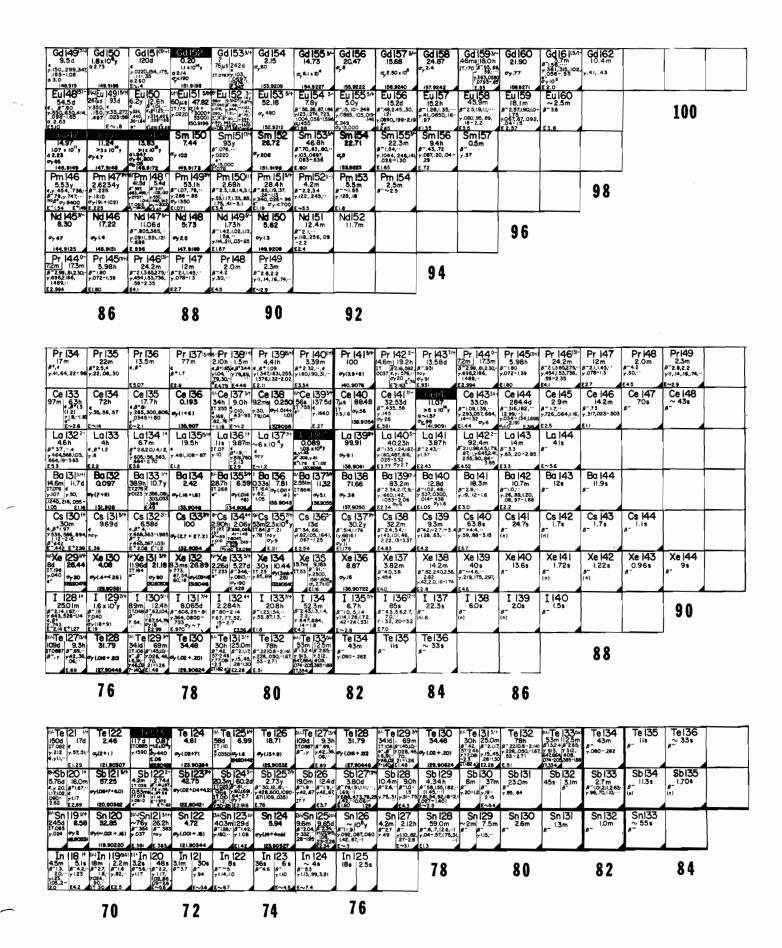
	TIME		RADIATIONS	AND	DECAY
ms	milliseconds (10 ⁻³ s)				
μ s	microseconds (10 ⁻⁶ s)	α	alpha particle	€	electron capture
s	seconds	β^-	negative electron	IT	isomeric transition
m	minutes	β+	positron	D	radiation delayed
h	hours	γ	gamma ray	SF	spontaneous fission
d	da ys	n	neutron	Ε	disintegration energy
у	years	Р	proton	e-	conversion electron

			j												16	S 32.064
															10	σ _{α.52}
															15	P 30.9738
																σ _q .19
													14	Si 28.086		Si 25 0.220s g+
													_	G .16	A123	(#4.25, 195,347 ,82-5.90
												13	A l 26.9815		AIZS	1+ A 24 4+ 0.129s 2.09s 17.44 3444 17.33 119 71.57 21 17.37,275 (a) ~ 2 E14.4 E14.0
													σα 234mb	Mg 21	Mg 22	yl.37,275 (a) ~ 2 Ei4.4 Ei4.0 Mg 23³4
										12	Mg 24.305			0.121s g+ (pi3.44,4.03,	3.99s g+ 7.074,.58	125 8+31, 7.44
											σα 63 mb Na		? Na 19	4.81,6.45,··· E13	E 4.8	
										11	22.9898		,03s (p)	Na 20 40s 8*11.3,5.6 7,1.633	Na 2 3/4 22,8s 8+2.51, 7.35	Na 22 ^{3†} 2.602y 8*.546,,4 71.2745
										No	σ _q .534	Ne I7	Ne I8	7 1.633 (a) 2.15, 44.4, E14.0 9,111 Ne 191/+	£3.5	σy 4 x 10 4 E2.84
									10	Ne 20.179		IO5ms e+ (p)4.9.40,5.4.···	1,5s 8+3,42,238 71,043	17.5s #+2.22	Ne 20 90.51	Ne 2134 0266
									F	σ _α .04	ļ	17.018 F 16	E4.45 F17 (5/)+	E3.24 F 8 ^{1†}	19.39244 F 914	80.0000 F 202+
								9	18.9984			~ 10 ⁻¹⁹ s	66s β+≀.74 noγ	109.8m a+s35, €	100 ey ,01	F 202+ 11.2s 8-5.4 71.633,
									σ _α .οι	013	0 14 71.0s	16.0117 O 15 1/-	62.76 O 16	E1.65	18.99640	E703
								8	15.9994	8.7ms g+ (p)6,40,6,97	71.0s 8+1.81, 4.1 y 2.313	1225 8+1.74 noy	0 16 99.759 	0.057	0.204 0.204	26.8s β=3.25, 4.6 γ.20,1.36,··
							NI NI	T	σ _a .27 mb	13.0248 N 12	E5.14 N 13 1⁄-	E2.76	, is seed to 1.5 1/− N 15 1/−	N 16 2-	17,000150	E4.82
						7	N 14.0067			II 12. ·· II.Oms β+16.4.·· γ4.43,··	9.99m 8+1.19	N 14 # 99.63 51.82	0.37 cy-02mb	7, I3s β-43, 10.4, ··	N 17(V)- 4.14s g- y.87, 2.19	N 18 0.63s β-9.4 γ1.98,1.65,.82,
						-	- σ _α ι»	C 9	C 10	(3a) E17.4 C 3/-	C 12	σ ₇ .08 14.003074 C 13 1∕-	15.00QH	y 6.130, 7.119, ·· (a) 1.7 E10.42 C 15 1/+	(n) 1.21, .40, 1.81 E 8.7	2.47 £13.9
						6	C 12.01115	127ms β+ (ρ) 9.3, i2.3	19.4s e+1.87,••	20.4 m 8+.97	98.89 6,34mb	I.II c, 0.9mb	5730y	2.3s β⁻4.5,9.77	C I6 0.74s β-	CI7
					В	Γ	σ ₆ 3.4 mb	9.03(I B 8 ⁽²⁺⁾	y.72,1.03 E 3.6 B 9	E1.98	12.00000	13.00335 B 2 †	ος σς<1μb Ε.156 Β 133-	y 5.299, ·· E9.77 BI4	(n) E8.0 BI5	
				5	10.811			774ms β+ 14, (2 α) 3	≥3 x 10 ⁻¹⁹ s	19.8 4 3.84 x 10⁵	80.2 45,5mb	20.4ms g=13.4,9.0	19ms #=13.4,9.7 73.68,**	014		
					கு 760 Ве		Be 6	Be 7(3/)-	9.01333 Be 8	6.012939 Be 9 34	Be IO	74.440,·· (a).2 E13.4 Be II	Be I2			
				4	9.0122		≳3×10 ⁻²¹ s	53.3d € ×4776	~ x 0 ⁻¹⁶ s	100 c _y 9mah	2.7 x 10 ⁶ y β=.556	13.7s 8-11.5, 9.3, y2.12,6.8,4.6-	11.4 ms β- (n)		10	
			Li		o G 9 mb		6.0197 Li 534	σ _p 5.4 ± 10 ⁴ E.862 Li 6 ft	8.005308 Li 73-	9.01219 Li 8 ²⁺		8.0 E11.5	Lili			
		3	6.940				~ 10 ⁻²¹ s p, a	7.56 4.940 4.0.08	92.44 9.036	850ms	Li 9(3/)- 0.175s 8-11.0, 13.5 (n) .7 (2a) E13.6					
			رچ⊓ He	_		He 3 IA	5.0125 He 4	Ø.00315	7.01 60 Q	E16.0						
	Å	2	4.0026			0.00013 c _p 5.33 x 10 ³ c _y < 0.1mb	~ 100` ≪°	He 53- 2 x 10 ⁻²¹ s	802 ms β-351 my		He 8 122ms 8-10.5, ·· 7.98		8			
•	T		α _α 7mb H		H 1 1/4	3.016030	4.002603 H 3 III	5.0123	E 3.51		y.98 (h) (E11.5					
_		1	1.00797		99.985 4,332	0.015 c _y .52mb	12.33 y β⁻.0186 [№] ₹6μb E.0186				6					
Z	ı		o ₆ 0.332		L007825	2.014102 N 1/†	E.0186									
		0				II.Om β⁻.782 E.782		3	4							
	•				•	1.008665		l								
			_		—	1	2									
			N	١												
			l I	A												

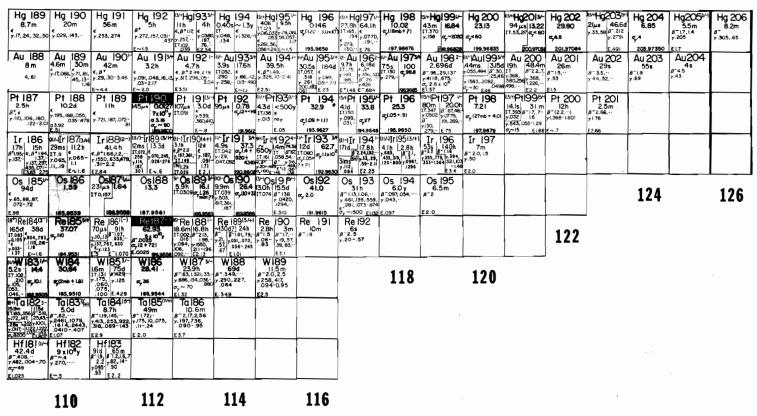


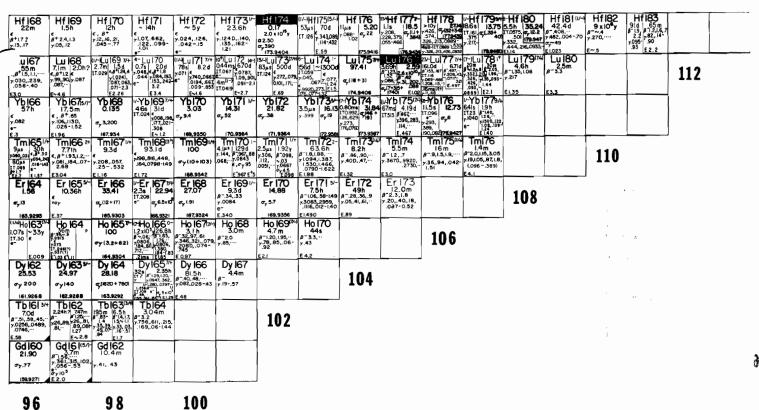

									-				0- 70	0-31	0- 70	1410 770/11
								34	Se 78.96				Se 70	Se 71 4.5m #* 3.4	Se 72 8.5d (A+2.50,3.34, y.046(835,630,	42m 7.1h
								34	σ ₀ 11.8				y .427,···	y./5,···	y.046 (835,630, E~.6	7.076, 1.65, 4 25,56, 7.360, 067 £2,74
									As			As 68?	As 69	As 70 52.5m	As 7 (5/)-	As 72 2-
								33	74.9216			β+ 		8+2:(1.4,·., € y1.040, 668, 1.114, 745, 1.75-4.43 E6.22	€ 8+.8i y.175,.023,··	8+2.50,3,34,**,
						-			σ₀4.3	Ge 65	Go SS	Go 67	E3.9	E6.22	E2.01	7.835, 630, 69- E 4.36 P4Ge 71 1/-
				32	Ge 72.59					1.5m 8+5.5,·· y.67,1.72	Ge 66 2.4 h 8±1.3,2.0, €	Ge 67 19.0m β+3.1,2.3,,€	Ge 68	Ge 695/- 51µ5 39.21 7.085 (,8+1.21,	Ge 70	20.0ms
				J L	σ _α 2.4					y.67,1.72 E6.5	y.383, 044, .06871	y.17,34-34	y(1.077,··) E~.5	y 1.107, 574, 872, 235 - 204 E 2.227	σ ₇ (3+3.0) 69.9242 5	y.175 noy E.235
					Ga				Ga 63(3/	Ga 64 o+	Ga 65(3/)- 15.2m #+2.11,1.39,2.24	Ga 660+	Ga 67 3/- 78.2 h	Ga 68 1+ 68.2m 6*1.90,∵, €	Ga 69 1/-	Ga 70 +
				31	69.72	1			β+ •	8+28,6.0, y.992,3366,808	8+2.11,1.39,2.24 82,··, € y.115,054-2.33	β+4.153, ',€ y1.039,2.752, 834-4806	y 09330, 65,30 ,0913 - 888	#+1.90,, € 1,1.077, .578-	هربع	2 .im 8-1.66, y1.040,.173,
			Zn		σ ₀ 3.1	┪	Zn 60	7n 6l 🗵	7n 62	7n 63 3	E3.26	E5.175	£1.000	E2.920	7n 68	E-1.66, E+.654
		30	65.37		l	1	Zn 60 2.4 m 7.061, 670,	Zn 61 (3/ 87s 8+4.9,	Zn 62 9.15h €,8+.66,	Zn 63 3/- 38.6m 8+235,, 6 7.67,.96,.81-3.1	Zn 64 48.89 % 0.81	Zn 65 5/- 243.7d 4, 8+.325	Zn 66 27.81	V-Zn 67 4-11 9.3 μs 4.11 y.0933 σy 6.7	Zn 68 18.57 5,(0.075+0.80)	9+Zn 69 '/- 3.7h 58m 11.439 #93
			σ ₀ ι.10				£ 4 16	E 5.9	.548, E1.68	E3.365	63.92914	E1,349	σ _γ ι 65,92605	66,9274	67,92486	E.93
		• •	Cu 63.546			Cu 58 3.21s 8+7.5.46	Cu 59	Cu 60 2- 23.0m 8+2.00,3.00	Cu 61 3/-	9.80m	Cu 63 3/-	Cu 64 H	Cu 65 3/-	Cu 66 14	Cu 67(3)- 61.6h 840,.48,.58	Cu 68(1)+ 31 s 8-3.50,2.26,
		29	σ _α 3.8			y (.45, 2.9	9+3.8, 71.30, 87, 45, 3 42-1.70	3.92, \$1.333,1792, 82, 47-4.55 E6.6		β+2.92;·, €	σ _y 4.7	€ y1.348 β=.573 σy < 6 x β+.654 103		γ1.039,834 σ _γ 160	y.185,.090, <i>0</i> 930	1.24,
			Ni		Ni 56	Ni 573/	Ni 58	Ni 59 3/	Ni 60	Ni 61 3/-	NI 62 3.66	Ni 63 1/- 92 y	Ni 64	Ni 65 3/-	Ni 66	Ni 67
		28	58,71		6.2d € v.l63.8i2.746	36.1h €,8+.84,.71, y1.38,1.92,.127 1.76,	67.77 σ _γ 4.8 σ _α 0.7mb	B x IO ⁴ y € na ₇	26.16 σ _γ 2 9	1,25 σ _γ ~ 2.5 σ _a 0.05	3,66 σ _γ (4	92y g-0659	l.16 σ _y 1.7	2.55h 8-2.14.6.10 y1.481,1115,.366	54.6h g20	50s 8~4.1,2,3.2 y.90, 89,1.26
			σ ₀ 4.57		y.163,.812,746 472,.276, E2.11	E3.23	57,93534	E1.073	59.93079	60.93106	61.92834	E.0659	63.92796	σ _γ 20 E 2.14	E.20	E4.1
27	Co 58.9332			Co 54°+ 14m 0.194s 8*45518*73	Co 557 18h 8*1.51,1.04~	Co 564 77,3d € €,81,46,	Co 57	7-5+Co 58 2 91h 71.4d 17 025 4.8 48	Co 59 7	2+Co 6O 51 10.47m 5.258 17.0586 8 318 8-1.55 71.333 7.333 7.20 7.58	Co 61 17	16m 130m	Co 63	#*Co 64 (1* 28s < 28s #~~3.5		
41	σ _α 37.4			y1.41, 113,041 E8.252	y.931,1408,47 ,0920 - 3.117 E3.46	7, 847,1238,73 -3.55 E4.57	y.122,.014,.136,-	OμS σγ 17 10 17 053 Ε 2 309	o _σ (19+18)	β-1.55. γ1.333, γ1.333, 1173, σ _γ 2.0 σ _γ 58 E 2.819	8-1.22 7.070	8 2.88, 9 88 9 117,147, 174,2.03, E5.22	y .068?	7.095		
				100402		£4.51		#1.055/E 2.309		0730 <u>F</u> 2.819	13.12.	1 1322				
	24		26		28		30		32		34		36		38	
													Со			Co 54°+
												27	58.9332			Co 54°+ L4m 0.194s 8*455 8*7.3 71.41,
													σ ₀ 57.4			E8.252
												26	Fe 55.847		Fe 52 8.5 h 8*.80,(2.63), «	≈Fe 53m; 2.53m8.53m v.702. #~28.
												20	σ ₀ 2.55		y.17,.38D E 2.37	2.33m8.33m y.702, #'~2.8, 1.011, 2.4.1.6,¢ 1.329, 7.38,···· 2.340 E3.98
										Mn				Mn 50°+ 2m 0.288	Mn 5 5/-	2+Mn 52 6+ 21.4m 5.63d 8+2.63 4,8:575
									25	54.9380 % 13.3				9+ 7.66- 1.45	8+2.2.1. 7.76,1.17	8+2.63 €,6*575 IT.38 y (.434, y (.43, .936,744
								Cr	1	- 6 10.0	Cr46		Cr 48	Cr 49 ⁵ /	Cr 50	Cr 51 7/-
							24	51.996	ľ		_β + 1.1 s		24h € y.3i,.116	41.8m #*1.54,1.39, y.09,.06,.15,	4.345 0716	27.8d 7.3201,····
								σ _ο 3.1					E1.4	E2.56	49.94605	E.752
							23	V 50.942	l			V 46 1.0ms 0426s	V 473/- 312m	V 48 4+ 16.13d 8+.70. €	V 49 7- 331 d	0.24 0.24
							23	σ ₀ 5.03	l			1 1	y 1.79, 1.61, ···	y.983,1.3H,	noy	0.24 ~ 4 x 10 ¹⁰ y 1.54 E*1.035 7.00 E*2.15 7.00
						Ti		Ti 41 89ms		Ti 43	Ti 44 47y	Ti 45"- 3.078h	Ti 46	TJ 47**	Ti 48	Ti 492-
					22	47.90		β+ (p) 4.61.3.14.		A+ 5.8	€(8 ⁺ 1.47) >0784D, .0678D, (1.156,) E.16	8+104, € 7.72-1.67	σy 0.0	#1.20 ## 1.7	5y 7.8	9,1,0
						σ ₀ 6.1		3.80,··· E12.8	So 417/-	E6.8	(1.156,11) E.16 34 C.437-	E2,059	44,95000 Co 46 V	40.15177 So 46 11	47,94786	90,94797 Sc 48 ^{6†}
					21	Sc 44.956		Sc 404- 0.182s #*5.7, 9.6,	Sc 4 7/- 0, 60s s+5.5	61s 0683s	34 Sc 437/- 042ms 3,93 h 17,162 91,20,81 7,375	5+ Sc 44 2+ 58.6h 50- 152h IT27i ,0784/1474 6 0678 71.54 7	Sc 45 1	Sc 46 44 18.78 83.82d 1T.14 #1.357	Sc 47** 3.347d #-44,80	1.82d 8-85,48 y131,963,1037, 176-1.212
						σ ₀ 25		y 3.73, 73, ··· E14, 32	E6.50	71.52, (23,436 no ₇ E7.1 E6.43	E 2.22	7 E398 E3647	9 (12+15) 44.24306	IT.M # 357.7 yu20#89 oy 7.7 E2.367	y.159 E.600	y131,983,1037, ,175-1.212 €3,98
							Ca 30	Ca 3934	· Cr 4C	Ca 417/-	Ca 42	Ca 437	Co 44	Ca 45(7/)-	Cq 46	Ca 477- 4.53d
			20	Ca		173 ms	0.78	0.88s	96.97	8 10 4	0.64	0.145	2.06	162.7d	0.0033	
			20	40.08		Ca 37 173 ms g+ (p)3,16,	Ca 38	Ca 39 ³⁴ 0.88s 8+5.5	Ca 40 96.97 σγ 0.40 σ _e 3 mb	Ca 4 7- 8 x 10 y	σy 0.7	A.	A 17.	y.0125	~y 0.7	7 1,297,.489- ,608
			20	40.08 σ ₀ 0.43		(p)3.16, E11.6	y 5.5 E7	8*5.5 no _y E6.50	σγ 0.40 σ ₂ 3mb 39,86259	£.43	σ ₇ 0.7 41.95963 1/ Δ 134	42.05.70 K 42.2-	%12 €20049 Κ Δ334	725, 7.0125 E.252 K AA(2-)	ey 0.7 45.9637	7 1.297,.489- .808 El.98
			20 19	40.08		(p) 3.16, ··· E11.6 K 36 ⁽²⁻¹ O. 27s p+ 9.9, 5.3, 74, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	75.3 E7 K 37 ^{3/4} 1.23s	E6.50 + 0+ K 38 3+ 0952s 7.68m 8+5.0 8+2.7	σ _γ 0.40 σ _α 3mb 39,96259 Κ 3934 93,08	£.43	σ ₇ 0.7 41.95963 1/ Δ 134	42.05.70 K 42.2-	%12 €20049 Κ Δ334	725, 7.0125 E.252 K AA(2-)	45.6637 K 45 ^{3,7+} 17 m	7 1,297,.489- 608 K 46 115 8
		-		40.08 σ ₀ 0.43 Κ 39.102 σ ₀ 2.1	Ar 34	(p) 3.16, E11.6 K 36 ⁽²⁾ 0.27s 8+9.9,5.3,76, 1,1970,2.434, 2.207,	75.5 E7 K 37 ^{3/4} 1.23s 4+5.1, 2.5 72.79	E6.50 0.952s 7.68m 8*5.0 0.952s 7.68m 8*5.0 0.97 7.2.7.** E6.0 E5.93	σ _Q 3 mb σ _Q 3 mb 39,86259 K 3934 93,08 σ _Y 2,1 σ _Q 4,3 mb 38,96371	0.0188 0.0188 0.283 057 71.461 57.70 0,4.4 07.300	6,91 #0,95653 K 4 34 6,91 #y 1.6 40,96165	K 42 2- 12.42h 3-3.52,2.0 71.52,	7 12 \$1,005-12 K 43.34 22h β-83.46-1.62 γ.374,619.22-1.01 Ε1.82	7.25 7.0125 E.252 K 44(2-) 22m 8-4.9 7.116,2.1,.48-50 E.5.2	45.6637 K 45 ^{3,7+} 17 m	7 1,297,.469- 1,608 E1,98 K 46
	ا ۵۰	Ar 39948		40.08 \$\sigma_0.43\$ K 39.102 \$\sigma_0 2.1 Ar 33(\(\daggera\)) \$\sigma_1^{\text{F}} \text{ Forms}	BT (4.5)	(p)3.16, E11.6 K 36 ⁽²⁾ 0.27s a+9.9.5.3,74, y,1970,2.434, 2.207, E12.9 Ar 35 ^{3/4}	F7 K 3734 1.23s 1.	E6.50 10+ K 38 3+ 0952s 7.68m 8+5.0 8+27 100 22.17 E6.0 E5.93 Ar 373/+ 34.4d	σ ₂ 3mb 39,99259 K 393+1 93.08 σ ₂ 2.1 σ ₂ 4.3mb 38,99371 Ar 38 0.063	0.0116 0.0116 1.282 107 71.461 9770 9.4.4 9.39 E.1314 E.1806 Ar 397- 2699	6,91 40,9663 K 4,134 6,91 6,91 6,91 6,96185 Ar 40 99.60	K 42 2- 12.42h 1-3.52,2.0 71.52, E3.52 Ar 4177- 1.83h	**************************************	7.25 7.0125 E.252 K 44(2-) 22m 8-4.9 7.116,2.1,.48-50 E.5.2	45.6637 K 45 ^{3,7+} 17 m	7 1.297, 469- 508 E1.98 K 46 115 s \$6.3, \$1.30,3.70,
	18	39.948		40.08 σ ₀ 0.43 K 39.102 σ ₀ 2.1 Ar 33((**) 1.76 ms (ε) 3.27,	β ⁺ (4.5) γ.67 ?	(p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.94, (p)	K 373/1 1.23s 1.23s 2.79/1 2.79	8*5.5 0952s 7.68m 8*5.0 8*27 noy 72.17 E6.0 E5.93 Ar 37 3/4	σy 0.40 σ _e 3mb 39,89259 K 393 ⁴⁴ 93.08 σy 2.1 σ _e 4.3mb 38,99371 År 38 0.063 σy .8	2018 107 138 107 148 170 134 134 139 134 139 139 139 139 139 139 139 139	6,91 6,91 6,91 6,91 6,91 6,91 6,91 6,91	K 42 2- 12.42h = 3.52,2.0 7,1.52, E3.92 Ar 4 17- 1.83h = 1.00,2.49, 7,1.29.36, 7,1.29.36, 7,1.29.36,	X 43 54 22h 8-83,46-182 2374,818,22- 1.01 E1.82 Ar 42 33 y 8-(3.52,20,) (y.1.52,)	7.25 7.0125 E.252 K 44(2-) 22m 8-4.9 7.116,2.1,.48-50 E.5.2	45.6637 K 45 ^{3,7+} 17 m	7 1.297, 469- 508 E1.98 K 46 115 s \$6.3, \$1.30,3.70,
				40.08 σ ₀ 0.43 K 39.102 σ ₀ 2.1 Ar 33 ^{((*)} 176 ms (6)3.27, E11.4	β ⁺ (4.5) γ.67 ?	(p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.94, (p)	K 373/1 1.23s 1.23s 2.79/1 2.79	E6.50 PO K 38 3+ 0952s 7.68m p 5.0 p 22.7 noy y 21.7 E6.0 E5.93 Ar 37 3/4 enoy	σ _γ 0.40 σ _g 3mb 39,86259 K 303 th 93,08 σ _γ 2.1 σ _g 4.3mb 38,96371 Ar 38 0.063 σ _γ .8	E.43	6,91 6,91 6,91 6,91 6,91 6,91 6,91 6,91	K 42 2- 12.42h = 3.52,2.0 7,1.52, E3.92 Ar 4 17- 1.83h = 1.00,2.49, 7,1.29.36, 7,1.29.36, 7,1.29.36,	**************************************	7.25 7.0125 E.252 K 44(2-) 22m 8-4.9 7.116,2.1,.48-50 E.5.2	9, 0.7 45,9637 K 45,37+ 17 m p−2,1,1,1,4,0 p−1,175,1,71, £4,2	7 1.297, 469- 508 E1.98 K 46 115 s \$6.3, \$1.30,3.70,
	18 17	39.948 ₇₀ 0.64 C I 35.453		40.08 σ ₀ 0.43 Κ 39.102 σ ₀ 2.1 Ατ 33(**) 176(**) (0)3.27,	β ⁺ (4.5) γ.67 ?	(p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.94, (p)	K 373/1 1.23s 1.23s 2.79/1 2.79	6.50 100	σy 0.40 σ _e 3mb 39,89259 K 393 ⁴⁴ 93.08 σy 2.1 σ _e 4.3mb 38,99371 År 38 0.063 σy .8	E.45 2010 7132	6,91 6,91 6,91 6,91 6,91 6,91 6,91 6,91	K 42 2- 12.42h = 3.52,2.0 7,1.52, E3.92 Ar 4 17- 1.83h = 1.00,2.49, 7,1.29.36, 7,1.29.36, 7,1.29.36,	X 43 54 22h 8-83,46-182 2374,818,22- 1.01 E1.82 Ar 42 33 y 8-(3.52,20,) (y.1.52,)	7.25 7.0125 E.252 K 44(2-) 22m 8-4.9 7.116,2.1,.48-50 E.5.2	45.6637 K 45 ^{3,7+} 17 m	7 1.297, 469- 508 E1.98 K 46 115 s \$6.3, \$1.30,3.70,
		39.948 ₇₉ 0.64		40.08 σ ₀ 0.43 K 39.102 σ ₀ 2.1 Ar 33 ^{((*)} (*) 3.27, (*) 3.27, E11.4 C1 32 15 2.27,	β ⁺ (4.5) γ.67 ?	(p)3.16, E11.6 K 36(2) 0.278 p+9.9.5.378, y1.970.2.434, 2.207, E12.9 Ar 35 ^{3/4} , 1.825 p+4.94 y119,1.75	K 373/1 1.23s 1.23s 2.79/1 2.79	6.50 6.50	σy 0.40 σ ₈ 3mb 39,86259 K 3934 93.08 σy 2:1 σ ₆ 4.3mb 38,96371 Ar 38 0.063 σy.6 37,66273 CI 37 ³⁴ 24.23	200 10 10 10 10 10 10 10 10 10 10 10 10 1	6,91 6,91 6,91 6,91 6,91 6,91 6,91 6,91	K 42 2- 12.42h = 3.52.20 71.52.7 E3.52 Ar 417- 1.83h = 1.20,2.49.7 71.29.36.7 Gy. 5	X 43 54 22h 8-83,46-182 2374,818,22- 1.01 E1.82 Ar 42 33 y 8-(3.52,20,) (y.1.52,)	7.25 7.0125 E.252 K 44(2-) 22m 8-4.9 7.116,2.1,.48-50 E.5.2	9, 0.7 45,9637 K 45,37+ 17 m p−2,1,1,1,4,0 p−1,175,1,71, £4,2	7 1.297, 469- 508 E1.98 K 46 115 s \$6.3, \$1.30,3.70,
		39.948 ₇₀ 0.64 C I 35.453		40.08 σ ₀ 0.43 Κ 39.102 σ ₀ 2.1 Ατ 33(**) 176(**) (0)3.27,	β ⁺ (4.5) γ.67 ?	(p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 3.16, (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.9, 5.3, 3.4 (p) 4.94, (p)	K 373/1 1.23s 1.23s 2.79/1 2.79	8 - 5 10 10 10 10 10 10 10	σy 0.40 σ ₈ 3mb 39,49269 K 393+ 93,08 σy 2.1 σ ₆ 4.3mb 38,99371 Ar 38 0.063 σy .8 37,96273 C1 373+ 24,23 σy (,005+,43)	E.43 Q.018, 713, 10, 710, 10, 10, 10, 10, 10, 10, 10, 10, 10,	σy 0.7 41,9563 K 4154 6.91 σy 1.6 40,96183 Ar 40 99,60 σy 82 38,94236 C 39 3/4 55,5m β-1,91,218,344 γ127,25,152	K 42 12.42 h - 3.62 2.0 7.1.52 E 3.52 Ar 4 77- 1.83 h - 1.20, 2.49, 7.1.52 E 3.62 Ar 4 77- 1.83 h - 1.20, 2.49, 7.1.52 E 3.52 Ar 4 77- 1.83 h - 1.20, 2.49, 7.1.52 E 3.52 Ar 4 77- 1.83 h - 1.20, 2.49, 7.52 7.52 7.52 7.53 7.53 7.55	X 43 54 22h 8-83,46-182 2374,818,22- 1.01 E1.82 Ar 42 33 y 8-(3.52,20,) (y1.52,)	7.25 7.0125 E.252 K 44(2-) 22m 8-4.9 7.116,2.1,.48-50 E.5.2	9, 0.7 45,9637 K 45,37+ 17 m p−2,1,1,1,4,0 p−1,175,1,71, £4,2	7 1.297, 469- 508 E1.98 K 46 115 s \$6.3, \$1.30,3.70,



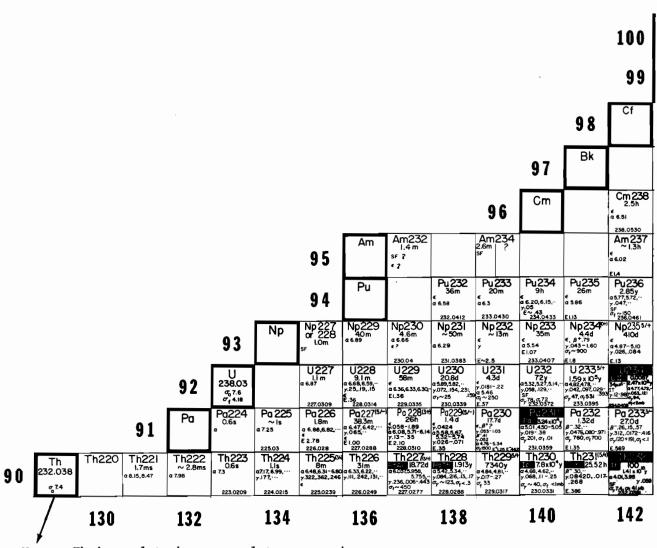

Co 557-	Co 56 ⁴	Co 57 7-	5+Co 58 2+ 91h 71.4d 11 025 c.g. 46.	Co 59 7-	2+Co 60 5+ 10.47m5,258 11.0586 7 318 7-1.55, 171333, 71.333, 1173, 71.333, 1733 7733, 1733 7758 E2 819 Fe 59 37	Co 61 (7/1	1.6m 3.9m	Co 63	4"Co 64 (") 28s < 28s			
† 1.51, 1.04, · ,€ 931,1408, 477, 920 = 3.117	€, 8 + 1.46,	€ y 122, 014, 136, ··	7 811 0714.X	σ _γ (19+18)	17 0586 8 318, 8 1.55, 71 333, 71 333	β^122 γ 070	β 288, 7 88 7 × 117147	β ⁻ 36 γ 0882	γ.095 β-~3.5			42
3.46	E4.57	E.637	1045 07172103	58.93319	σ _γ 58 Ε2819	E+29	174,2.03, E5.22	E36				
Fe 54 5.82	Fe 553/- 2.7y	Fe 56 91.66	Fe 57 "- 2.19	Fe 58	Fe 59 3/- 45 d 8- 46 7,273/573	Fe 60 ~ 10⁵y	Fe 613*(-) 6.06m				4.0	
τ _γ 2.3	€ noy	σ _γ 2 6	σ _γ 2.5	σ _γ 1 2	y1099,1292,192	y.05860, 0277 (1332 173, -1	# 2.6,2 5,28, · 71.20,102, 30, .12 - 2 7				4 0	
53.93962	E.232	55.93494	56,93540	57,9333	EI 573	E.19	£ 3.8		-			
Mn 53"- 2 x 10 ⁶ y	Mn 54 31 313 d	Mn 5555	Mn 56 34 2.582h 8-2.85,1.04,73,	1.7m	Mn 58		ļ		1	20		
oy y i.9 x 10 ² .598	y.8348 σy < 10 £1.379	σ _γ (3.3 54.93805	y.8467,L811,2.113, £3.702	y1.22, 014, 136, .2271 E 2.7	y.36-2.8					38		
Cr 52	Cr 5334	Cr 54	Cr 553		E (
83.79	9.50	2.365	3.53m β-25,···	5.9 m β⁻ 1.5				36				
σ _y 0.8 51.94051	σ _γ 18 52.94065	σ _γ 0.38 53.93888	y 1 52,2.24 E2.59	y 093,.026 £1.6			'	30				
V 51 7-	V 52 3+	V 53	V 54	21.0								
99.76	3.75m 8⁻2.5. ···	2.0m	55s 8-33				!					
σ _γ 4.9	y1.434,	y 1.00	7.835,.99,2 21]							
50,94396	E3.97	E34	€7				L					
Ti 50 5.34		Ti 52)		2.4						
ry < 0.2		β-1.8 β- 7.125, 7(1.43) .017,				3 4						
48,94479	E 2.46	E1.97				J						
Sc 49(7)* 57.5m 17.20(Sc 50 0.4s 1,73m 17,258 # - 3.6	Sc 51 12 s a-~5]	32								
1.78	,112,1.56,	y 1.44, 2.16		JZ								
2.008		E 6.52										
Cq.48	Ca 493/-	Ca 50		l								
γι.ί	8-2	β- γ.072,(.26))									
47,9625	E 5.26	E 5.4										
K 47												
3 ⁻⁴ .1, [∞] 6,· ,2.0,2.6		30										
6.65												

								4 9	In 114.82			In 106 5.1 m #31,4.9	In 107 32m • 23,	In IO8	0.21s 4.2h
									G₁94			y 1.65, 1.85,·· E6.54	y.22,.28-2.3 E3.5	40m 57m \$40m 57m \$3.5, (\$4.5, \$4.15, \$1.33 2.7: \(\cdot \), \(\cdo \cdot \), \(\cdo \cdot \), \(\cdo \cdo \cdo \cdot \), \(\cdo	71.43, 17-104, 23-1.7 17-164, E2.02
						4 8	Cd 112.40	Cd IOI	Cd IO2	Cd 103	Cd IO4 55m (8*2.7)	Cd IO5 57m €, 8 + 1.69,	1.22	6.5h	Cd IOB
						40	თე2460		y.118,481,104,		y.084,.087,, (.556) ** E~ 1.2	y.08,.35,1.68, 1.31, E ~ 2.6	971 105,90846	7(093),.033~ 1.22 E1.417	σ _γ ι. ι 107,904 19
				47	Ag 107.868		Ag99	Ag IOO 8m 8+5.8	10.8m	² Ag 02 ⁵ 8m 14m ρ+4.06, «,β+2.3, 1.8 3.4,3.1 y-556,72	5.8s 1.10h	29m 67m 8+2.7 4,8+.99	41.Od	18.4d 24.1m	**Ag 107 v-
				41	G_63.6		6+3.3,2.4,1.7 71.04,1.70,.66- 3.3	y.56,.73	γ.26,.083-1.16 E4.7	β*4.06, 4.β*2.3, 3.4,3.1 y.556,72 23-2.72 86-3.3	•- y.27,.15,.11, .13, E2.6	y 556,77, 94,17- E4.27 1.81	y.344, 280,064 .021 - 1.088 E1.3	7,512, 717,451, 7,512, 26- 194- 2,08 E2,96	17.093 et0.44 34.40
			46	Pd 106.4			Pd 98	Pd 99 23m	3.7d	Pd 1015*1 8.3h 4.#*.78,··	0.96	Pd 103(5/1)	Pd 104 10.97	Pd 105% 36µs 22,23	27.33
				თ გ8				β+2.0,··, ∢ γ.136,.264,.673,· € 3.8	€~.6	7.024,.296,.590 .270~1.31		y(.040),.053-50 E.56	108.9040	7.307 (DA.906) E.49	e _y (.013+.28) 106,90348 _
		45	Rh 102.905		Rh95 4.8m	Rh96 ~i.5m2 ~9m	Rh 97 33m **1.8,21,2.5	Rh 98 ~3m 8.7m IT \$72.5.4	Rh 99 4.7h 15.0d 6.8*.74 (.8*103)	Rh 100	8*)Rh 10 12 4.47d 35	Rh 102 2.ly 207d 4.8-1.15 7.475, 8-1.30.8 632,698,473,632 48-1.79	55m 100	5+Rh 104+ 436m 42s	7-Rh1057+ 38: 35.5h
		43	σ ₆ 148		y0.94, I.36	7.83 7.83,63 IT? .69	¢ y.08-2.5	E4 2	y.35,62 y.53,35, .89-141 090,18	E3.64.	** E.56	7.475 8130.8 632.698 7.473.63 48-1.79 115	(187) (088028	4.36m 42s 11.077 8 2.47 7.08,080 7.5061,24 7.586,77 0,40 7.1382 E2.47	17.129 6".565, 25,
	44	Ru 101.07		Ru 93	Ru 94	Ru 95 ⁽⁷⁾⁺¹	Ru 96	Ru 9754	Ru 98	Ru 99**	Ru 100	Ru 10P	Ru 102	Ru 1035* 39.8d 821,11,72,**	Ru 104
		σ ₆ 2.6			y.37, .89, .52	€, 8 ° 1.0,1.3,7,1. y.336,110,.627, 290 ° 2.33 E2.03	95.90790	7.E3 7.E275 E1.2	67. 90629	95,00004	5,5.0 98,80422	47,5 100,90664	(OL90436	y.497,.05316(0, (.040) E.74	ey.8 108.20643.⊿
43	Tc			Tc 92	(1/-1Tc93(9/1) 43m 2.73h 17.390 (1.81.82	2+Tc 94 52m 4.8h 8+247 4.8+.86	1/-Tc 9594 61 d 200h	Tc 96 52m 4.3d	(V-TC97 (9/1 90d 2.6x10 ⁶ y	Tc 98, ~1.5 x 10 y	1/- Tc 9994 6007h 213x10 y	TC 100 ¹⁴ 15.9 5 8-3.4,2.8,··	TC 10 (9/1) 14.2 m 8-1.32,1.07	87 FC 102 5.3 s 4.3m 8-44 8-2 747.63, 747.63,	Tc 103
43				y1.54, 79, 33, ,14, E6.1	E3.19 €, β+ 82, 6 γ2.7 E3.19	y871, 850, 52-379 871 £436 £426	61 d 200h 6,8149,70 € 9,20-10,7,77,20- 17,039 E1.66	17.034 € 7.78.85, 7.78.120 81.13, 48.72 31-150 1.50 £2.9	.097 F	#~~.3 y.76,.66 c,3 E1.7	002, 05, 22 142 noy 140, 6,292	y.54,50,·· E3.4	y.307,.1394 E1.63	7.47.63, .86,10- .1,1.0- .2.2 	y.135,.35,.215 E2.4
	46		48		50		52		54		56		58		60
	70		70		30		JZ		JŦ		30		30		UU
														Ŧ0	
													43	Тс	
													Мо	Mo 88?	Mo 89?
												42	95.94	27m 8+2.5 y 2.69	7 m # + 4.05, 4.95
												Nb	. ஏ2.68		Nb 88
											41	92.906			14m # 3.2 y.08,.27,40.67,
								Zr	Zr8l	Zr 82	Zr83	द्धाः।5 Zr84	Zr 85	Zr 86	Zr 87
							40	91.22	~ 10m .	~ KOm	~7m	16 m	15m 1.4h	16.5h	l.6h #*2.10,·-
								σ ₀ ,182			Y 82	Y 83	Y 84	1.16,) E~! (1/-)Y 85(9/4)	E 3.50
							39	88.905			ø• 12m	7.5m	41 m 8*2.5,3.5, 7.60,98,104,	2.7h 5.0h 8*15 8*22, 2.1	8+ Y 86 4- 48m 14.6h 17.00 €,8*1.2, y.208 6-3.1
								கு 1.28 Sr		Sr 9 0	Sr 8l	Sr 82	Sr 837+ 32.4h	Sr 84	/-3r85 ⁽⁹⁴⁾
							38	87.62		1.7h € y.58	29m ∌+ •~	25d (8+3.15)	32.4h €, 8*123, 80, ··· y.762, 38210423 .094-2.15	0.56	70m 64.7d 17.008, € .23 y.237
					Rb	1		451.4 Rb77	Rb78	Rb79 ^{33→}	ľ	Fat A	e	83 94343	€, y.15 € î.11
				37	85.47				6m y.455,.664,1.110, .103 - 2.013	23m g+ y.688,.183,.130- .915	348 # 41 y.616	32m 4.7h 8*14 €,8*105, IT.085 v.190,446	64h 1.25m 6,8*.00 8*3.5 9,777, 9,777, 1,41	8ms 83d y.0423 y.521,530, 553,009.	*Rb 84 2- 20m 33.0d 17.26.4,8*80.65 465 ,880,1.01 ,249 8*.89 ,7.88 285 2860
				Kr	a ,0.4	Kr 74	Kr 75	Kr 76	Kr 77"		^g /*†Kr 79 °/			Kr 82	4,780 E 85 2 80 4 Kr 83**
			36	83.80		16m β+3.ι 10γ	~ 5m β+ γ.14,.16	14.8h (y.267,.316, .0345	l.2h #+1.85,168,··,€ y.130,.146,(108);•	0.354 c _y (.2) + 4.5)	50s 34.9h 17.127 «.8*60.32 7.261.606 397.044- 133 E1.63	Kr 80 2.27 4,(4.6+9.4)	13s 2.lxi0 ⁵ y	11.56 c _y (20+10)	1.86h H.55 17.032 x,173 y,0090
	Br		Br70?	a, 23.9	<u> </u>	E 4.1	Br 74	Br 75(344	E3.0 Br 761111	77:92040 94Br 773/- 4.3m 56h	Br 78 '	79.91636 9"Br 793"	E.3 5-Br, 80 '*	949Br,81 4-	Br 82 5
35	79.904		23s (p) 2.5				Br 74 4m 36m 8* 8*4.7 7.55,85 7.635,	97 m g+1.72,1.1,.65 € y.285,.620,··	# 3.58, ··. « y.56,.65,1.21, .29-4.5	9"Br 773/- 4.3m 56h 17.00 6,9*.36 239,521,066-1005 E1.37	.125ms 6,4m IT.150 #*2.5, y.032 194, ∉ y.614	17.21 G,(2448.0)	17.048 8 2.02,14 y.037 y.616,	17.27 cy.2.8+ y.28	0.Im 30.4n 17.046 β* 44 β*236, γ777,554 1.66 69,092-
	વ્યુ≉ક Se			Se 70	Se 71	Se 72	(V-)Se73(9/1) 42m 7.1h	Se 74	Se 7554 120.4d	"Se 76 9.02	**\$e 77"- 17.7s 7.58	78,91833 Se 78 23,52	E*1.87 E-2.02 V-Se 7974 3.9m =6.5xb3		
34	78.96			39m g+ y.427,	#.5m #*3.4 y.15,**	8.5d <(#12.50,3.34) y.046(.835,.630,	7.10 7.076 7.076 7.076 7.076 7.360	σ _γ 58	€ γ.265, i36, 280, 024~6i8	9.02 e ₍ (20+65)	17.78 7.58 17.162 4,42	23.52 e _y (.33 + 97)	3.9m ≤6.5x(0) IT.096 #7.15 e ⁻ no _y	49.82 c _y (.08+.53)	57m 18m 17.i03 8156, yi.15? y.276,290 829,566, .i8 - 650 E1.58
	چ۱۱.8 As		As_68?	As 69	As 70	As 7 (5/)	As 722-	73.92248 As 73(3/-)	As 742-	75.91921 91As 753	As 762	77.91731 9/4) As 773-	As 782-1	As (913/1-	AS BU"
33	74.9216		~ 7m	5m #*2.9 y.23	52.5m 8+2.1,14 e y 1,040, 568 UH4. .745, 175-443 E6.22	l 64h	26h 8+2,50,3,34,··.€	76d € (y.05330,£(350)	B.Os 17.7d 17.28 ε.β ε.β.1.5 y 596, 609 β ε 35,72 ε 2.5	9"As 753- 16.4ms 100 17024 304 7.28	1.9µs 26.4h 17.046 8°2.97, 2.41,1.76,	9/4) As 773- 16/4s 38.8h 17.21 8-69, 7.26 7.239,521	1.52h β-4.1.1.4, γ.614,.695,1.31, .08-2.7	9.0m 8-2.14,1.2-1.8 y.0960,.3689	156 #=60,5330-45 y.666,.78-2.35
	σ ₀ 4.3			E 3.9	E6.22	E2.01	E4.36	E.34	7.635 E*2.56 E*1.35		7:56,1-22,-66, E 2.97 - 64 - 2.66	E.69.162	E4.1	E 2.2	E6.0





						Ha	Hg179	Hgl80	Hgl8I	Hgl82	Hg 83	Hg184	Hg 185	Hgl86	Hg 187	Ha 188
					80	Hg 200.59	3.5s a 6.0e	6s a 5.96	Hgl8l 3.6s a 6.00,5.91	I IOs	β*. •	β ⁺ , ∢ γ.157, .237	52s	i.4m ε, β+ γ.li,.25,··	3m 4, 6* 7.1040	Hg 188 3.7m 4,8,7 45,142
						σ _α 3.7×10 ² Αμί77	Au 178	A179		J Au I8I		49.54 Au 183	Aul84	Au 185	a 5.14 ?	y0.14,.114,.193,··
				79	AU 196.967	1,3s a 6.12	39 a 5.92	Au 79 7.5s 4 5.85		118		49s	I.Om 4,8* 7.163,.273,.362	4.3 m a 3.07	€, <i>B</i> ′	? Au 187 0.14s 8m y.11,16, 4.69
		- BA	Pi173	Pt 174	4,94.8 Pt 175	Pt 176	Pt177	Pt 178	Pt179	Pt 180	Pt 8	Pt 182		#D+ 104	y.i6,.22,.30,.41	Pt 186
	78	Pt 195.09	Short a 6.19	0.7 s a 6.03	2.1 9	6.6s a 5.73	6.9 s a 5.52	21 s a 3.44	33s	52s	51s a 5.02	2.9m € a 4.84	7 m	10ms 42m 16m 7.675 7.68, 1.72,1.65	1.lh	2.3h
		⊈10 [r 7	Te172	16173	Tel 74	Tri75	Iri76	Irl77						y.155,.192,.394,··	7- 104	2 4.23 7.065, 14, 19, .68, 140,
77	Ir 192.2	1.0s a 5.9t	Iri72 29 4 8.81	Îr]73 38 0 5.67	Iri74 48 e 5.46	Iri75 58 a 5.39	8s e 5.12	21s a 5.01				Ir (8) short	Ir 182 €.8+	Ir 183 58m	Ir 184 3.2h - 264 120 391	Ir 185
• •	σ ₆ 428			,		<u> </u>		0-170		0.170	0-170	0.100	y.13,.26,···			7.024667
76	Os 190.2							Os176 3.6m y.776,1291,		Os178 5m	Osl79	0s180 24m	US 8 2.8m 105π €,817.75 €	Os182 <im 21.5h<br="" ="">y.06-56; y.51,16,.028- .37(.020-1.44) Re 8 (5/4)</im>	(1/-) Os 183(94 9.9h 14h 17.171 7.382,	0.016
	σ ₀ 15					<u> </u>		.857,	0.170			7.020	,67-1.47 .118;	37(.020-1.44)	71.10, 315,145 1.035, .067,	
75	Re 186.2							Rel75	Rel76 3m 7.240,.110	Re 177	Re 178	20m	2.45m	Rel8(5/4)	Re 182 12.7h 164h 1917.554 100.0047 1020 032-205 1.44 E2.86	1.0ms 70d 17.194 - 11.30 7.046
	چ 67					<u> </u>					#*3.1 y.237,.106, .939,18*3.56	y(.222),.299, 430,1.68, .083-206	€, 8+1.8 y.902,.104, .076826 E 3.8	y (.366), .361, .639, .020- l.54	.032-2.05 1.44 E2.86	041-407 E~.9
74	W 183.85						W173	₩174 29m	W17511/ 34m	2.5h	W 177 2.2lh €	W 178 21.5d € (\$*.89,.80) (~093, 20-147)	04W 179t74 6m 38π 17.222, ∢	8-W ISO 5.4ms Q.M IT.391 a,~10 y.450, .351,.734	14.6µ1 130d	MISS
14	& ¹⁶								y.26,.80,1.3, 1.6,	y.034100	x116,.186,156, .030 -1.30					
72	Ta 180.948						Ta 172	Ta 173	Ta 1744	IO.5h	8.1 h	Tai77m.	1+ Ta 78 9.3m 2.2h	1941 a 179(74)	To 150 8.13h 0/423	#Tq[8] ## 82## 98
73	g 22						y.092-3.3	y.037181	7.090935	7.126,.207,.267 .051-1.15	1	y.113,.0716- 1.058	90 y 332, y 0932, 20-147 (-0869 E 1.9	1941 0 790% 14 µs ~600d 7.031 d noy	7.102 176.9475	7.482, SCORRE 346, 156, 37-16.8ps (T.006
70	Hf			Hf 168	Hf 169	Hf170	Hf171	Hf 172	Hf 1731	0.17 2.0110 ¹⁰ y	(1/-)Hf175(5/-) 53µs 70d	Hf 176	254Hf 177+	Hf 178 >10y 273 7426, 548834 574, 17388 326, 213, 0889	Hf 1794	5.5h 35.24 17.0075 2, 2.2 7.332 (1994)
72	178.49 %106			#+£7 ? y.13,.17	#+ 2.4,1.3 y.05,.12	7.12,.16,.21, .04577	71.07.662, .122,.099-	7.024,.126, .04215	y.124D,.140, .135,.162- 1.21	2.50 a 2.50 o _y 390 173.9404	53µs 70d IT 126 5.343,089 .114-432 E,59	7.088- 47.22	.228,379 .055-466	574, 177949 326, 213, 0889 468-117086 1-32 7 328, 23, 438, 083	375 7 40 y.217-	501 178947 332, 178947 444,216,0933
	$\overline{}$	94		96		98		100				104				
	7	y A		46		чx		100		102		104		106		108
	Not		f inco	_	horo	_	ata ba							100		
	Not		f inco	_		comp1										
	Not		f in co	mplete	here, Hf 178.49	Comp1	Hf 58									
	Not		f incom	_	Hf 178,49 %106	comp10	Hf 158									
	Not		ı	mplete	Hf 178.49 %106 Lu 155 0.07s	Hf I57 0.128 0.238 Lu I56 0.238 ~0.58	Hf 58									
	Not		f incom	12 Lu 174.97	Hf 178.49 6,106 Lu 155 0.07s	Comp16 Hf I57 0.12s 0.364 Lu I56 0.23s ~0.5e 0.54 0.54	Hf 58									
	Not		71	/2 Lu 174.97	Hf 178.49 %106 Lu 155 0.07s	Comp16 Hf I57 0.12s 0.369 Lu I56 0.23s ~0.56 0.54 0.54 Yb I55 1.65	Hf 58						Yb162 ~ 23m	Ybl63	Ybi64	Yb165
	Not		ı	Lu 174.97	Hf 178.49 4,106 Lu155 0.07s 2.63 Yb154 0.39s	Hf 157 0.12s 0.369 Lu 156 0.23s ~0.5s 0.54 0.54 0.55 0.55 0.55 0.55	Hf 58						Yb 162 ~ 23m *,041	Ybl63	€ β+2.9	Yb 165 IOm #1.5s,
	Not		71 70	Lu 174.97 g. Yb 173.04 g. 37	Hf 178.49 \$105 Lu155 0.07s \$353 Yb154 0.39s \$333	COMp1. Hf 157 0.12s 0.368 Lu 156 0.23s ~0.5s 0.534 0.534 0.534 0.535 Tm 554 2.98s 5s	Hf 58						~ 23m ,041 Tm 61 30m	Ybl63 IIm Tml62	≨+2.9 Tml63'*	Yb 165 10m *1.5e,
	Not		71	Lu 174.97 4 Yb 173.04 437	Hf 178.49 %105 Lu155 0.07s 3.63 Yb154 0.339 43.33	COMp1. Hf I57 0.12s 0.369 Lu I56 0.23s ~0.5s 0.554 0.554 YbI55 1.65 0.521	Hf 58						~ 23m ,041 Tm 61 30m	Ybl63 IIm Tml62	≨+2.9 Tml63'*	Yb 165 10m *1.5e,
	Not	e - H:	71 70 69	LU 174.97 474 Yb 173.04 437 Tm 168.934 413	Hf 178,49 g,105 0,075 0,075 0,075 0,395 0,395 0,395 0,595 0,595 0,595 0,595	COMp1. Hf	Hf 58 3s • \$27	low.	Er!56	Er 157	Er 158	E ₇ 59	~ 23m 7.041 Tm 6 30m 7.046373 Er 60	Ybl63 IIm 22m 9m 22m 9c 22m 102 52-3 1763 Er 6 190	Tml6314 1.8h # 1.1.4 # 242,022- 1.80	Ybi65 IOM #1.56,
	Not		71 70 69	LU 174.97 474 Yb 173.04 437 Tm 168.934 413	Hf 178,499 \$100 \$100 \$150	COMp1. Hf I57 0.12s 0.369 Lu 56 0.23s ~0.59 0.534 0.534 0.535 Yb 55 1.65 0.532 Tm 54 2.98a 0.486 Er 153 3.65 0.487	Hf 58 3s 0 527	Eri55 5.3m	< 4 m	Er157	2.4h 6+.8 y(.067),07296	Er 159 36m (2004.37- 2.50	~ 23m *,041 Tm 6 30m *,046373 Er 60 29h *,29h *,729,966 *,067-2.81	Ybl63 IIm 22m 22m 22 5-3, 24 38,3 7,102. 3,1h 3,1h 3,1h 2,12,62. 2,10,28.	Tml63 ¹ 4 1.8h 1.8h 1.9 ± 1.1.4 1.104,242,022-180 12.27 Er 162 0.136 2,180	Yb 165 10m #1.5e,
	Not	68	71 70 69 Er 167.26	Tm 168.934 413	Hf 178,499 \$100 \$100 \$150	COMp1. Hf I57 0.12s 0.369 Lu 56 0.23s ~0.59 0.534 0.534 0.535 Yb 55 1.65 0.532 Tm 54 2.98a 0.486 Er 153 3.65 0.487	Hf 58 3s 0 527	Eri55 5.3m	< 4 m	Er157	2.4h 6+.8 y(.067),07296	Er 159 36m (2004.37- 2.50	~ 23m *,041 Tm 6 30m *,046373 Er 60 29h *,29h *,729,966 *,067-2.81	Ybl63 IIm 22m 22m 22 5-3, 24 38,3 7,102. 3,1h 3,1h 3,1h 2,12,62. 2,10,28.	Tml63 ¹ 4- 1,8 ¹ 11,4 1,8 ¹ 11,4 1,004,242,022- 1,800 Ez,27 Er 162 0,136 4,980 161,9267 44+10 161 ¹⁷ - 6,581 2,55	Ybi65 IOM #1.58,
	Not	e - H:	71 70 69 Er 167.26 (,161.0° Ho 164.930	Tm 168.934 gils	Hf 178,499 \$100 \$100 \$150	COMp1. Hf 157 0.12s 0.36s 0.23s ~0.5e 0.54 0.55 0.52i Tm 54 2.96s 0.45c 0.45	Hf 58 3s 0 527	Eri55 5.3m	< 4 m	Er157	2.4h 6+.8 y(.067),07296	Er 59 36m (206,37- 24m 13m (31,317,303,81 31,317,313,81 31,317,31,31,31 31,317,31,31	~ 23m *,041 Tm 6 30m *,046373 53.5 Er 60 29h *, (64-57;) *,720,-966, 2,087-2.8 2,087-2.8 *,087-2.8 *,087-2.8 *,087-2.8 *,087-2.8 *,087-2.8	Ybl63 IIm Tml62 79m 22m	Tm 63 4 .8h .8+1 .4 .8-1 .4 .8-242,022- .80 .80	Yb 165 10 m *1.50,
	Г	68 67	71 70 69 Er 167.26	Tm 168.934 g.115	Hf 178,49	COMp1. Hf 157 0.12s 0.36s 0.23s -0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s	Er 54 	Er I55 5.3m 4.01 Ho I54 3.25m I18m 87.91 18336#22 477,186- 1.25	Ho 55 2 65m 47m 8+ or 4 8+2.1 0 3.96 x040,	Er 157 ** 24m y.ii7-2.00 Ho 156 4.* 35,23 r.i38,266,366, i00-1.41	2.4h # + 8 7 (.067),07296 e - Ho 157 15 m # + 7.087-1.20 Dy 156 0.052	Er 59 36m (2.26).37- 2-140 58(s ⁴)	~ 23m *,041 Tm 6 30m *,046373 Er 60 29h .0272.8 .0457, .072.8 .072.8 .08373 Ho 59 8.28 33m .0338 .0338	Ybi63 IIm Z2m 502 523 24 583 720 583	Tml63'4- 1.8h 1.8h 1.8h 1.8h 1.80 1.8	Yb 165 10 m *1.50,
	66	68 67 Dy	71 70 69 Er 167.26 (,161.0° Ho 164.930	Tm 168.934 g.115	Hf 178.49 \$\frac{178.49}{\squares}\$ \$\frac{155}{\squares}\$ \$\frac{155}{\squares}\$ \$\frac{158}{\squares}\$ \$\frac{152}{\squares}\$ Ho	COMp1. Hf 157 0.12s 0.36s 0.23s ~0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s	Er 54 53 6.5m 9.3m 6.400 6.395 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0	Eri55 5.3m 4.01 Hol54 3.25m 13.91 7.335422 7.335422 7.335 Dy 153 6.6 7.34 7.354 7.354 7.354 7.354 7.354 7.354 7.354	Ho 155 2/65m 47m 47m 47m 47m 33.36 121 1040, 105 105 106 106 107 108 108 108 108 108 108 108 108 108 108	Er 157 ** ** ** ** ** ** ** ** ** ** ** ** *	2.4h \$+.8 \$+.8 \$1.0671,072-98 e ⁻ HO 157 15m \$+.087-1.20 Dy 156 0.052 \$2 xi0 ¹⁴ y	Er 59 36m (206),37- 2-H0 158 (s ²) 2-H1 158 (s ²) 31-128 (s ²) 31	~ 23m (*,041) Tm 6 30m (*,046-373) Er 60 (29h (*,047-28) Vol. (#-37,) Vol. (#-37,	Ybl63 IIm 22m 22m 22m 324 33,0 31h 31h 31h 324 33,0 324 33,0 321 325 321 325 321 325 321 325 321 325 325 325 325 325 325 325 325 325 325	Tml63'4 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8	Yb 165 10 m p+1.06, m-1 yo 0.06, 1.00 1.9 m p+2.94, 1.12, 1.00 1.9 m young 1.2 sa E 1 1633- 75 m (-, p-1.3 sa) 1.2 sa E 1 1633- 75 m (-, p-1.3 sa) 1.2 sa E 1 1633- 1.3 sa) 1
1	66	68 67 Dy 162.50 4,950	71 70 69 Er 167.26	Tm 168.934 q.113	Hf 178.49 \$\frac{178.49}{21050} \$\frac{155}{0.075} \$\frac{0.395}{0.395}	COMp1. Hf 157 0.12s 0.36s Cu156 0.23s ~0.5s 0.5s 0.5s 0.5s 0.4s Fm154 2.96s 0.4s 0.4s Er 153 3.6s 0.4s7 Ho 152 52s 0.4s7 Ho 152 52s 0.4s7 Fm154 0.4s6 Dy 151 0.4s6 0.4s6 Dy 151 0.4s6 0.4s6 0.4s6 Thi50 0.4s7	Er 54 53 6.5m 9.3m 6.400 6.395 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0	Eri55 5.3m 4.01 Hol54 3.25m 13.91 7.335422 7.335422 7.335 Dy 153 6.6 7.34 7.354 7.354 7.354 7.354 7.354 7.354 7.354	Ho 155 2/65m 47m 47m 47m 47m 33.36 121 1040, 105 105 106 106 107 108 108 108 108 108 108 108 108 108 108	Er 157 ** ** ** ** ** ** ** ** ** ** ** ** *	2.4h \$+.8 \$+.8 \$1.0671,072-98 e ⁻ HO 157 15m \$+.087-1.20 Dy 156 0.052 \$2 xi0 ¹⁴ y	Er 59 36m (206),37- 2-H0 158 (s ²) 2-H1 158 (s ²) 31-128 (s ²) 31	~ 23m (*,041) Tm 6 30m (*,046-373) Er 60 (29h (*,047-28) Vol. (#-37,) Vol. (#-37,	Ybl63 IIm 22m 22m 22m 324 33,0 31h 31h 31h 324 33,0 324 33,0 321 325 321 325 321 325 321 325 321 325 325 325 325 325 325 325 325 325 325	Tm 63/4 1.8h 1.h 1.	Yb 165 10m p+1.5e,,e 7.000,069,,e 1.00, 1.9m p+2.94,,e 7.9m y 004,21-2.38 E. 16334 7.5m y 04,21-2.38 E. 16334 7.5m Ho 162 14 18.88 ry 580 Tb 160 3- 72.48
65	66 Tb 158.924	68 67 Dy 162.50 4,950	71 70 69 Er 167.26	Tm 168.934 q.113	Hf 178,49	COMp1. Hf 157 0.12s 0.36s 0.23s 0.2	Er	Er 155 5.3m 3.25m 1.8m 3.25m	Ho 155 265m 47m 23.36 270 Dy 154 13h 225 Tb 1533243 Tb 1533243	Er 157 -24m 	2.4h \$+.8 \$+.8 \$1.0671,072-98 e ⁻ HO 157 15m \$+.087-1.20 Dy 156 0.052 \$2 xi0 ¹⁴ y	Er 59 36m (206),37- 2-H0 158 (s ²) 2-H1 158 (s ²) 31-128 (s ²) 31	~ 23m (*,041) Tm 6 30m (*,046-373) Er 60 (29h (*,047-28) Vol. (#-37,) Vol. (#-37,	Ybl63 IIm Tml62 79m 22m	Tm 63/4 1.8h 1.h 1.	Yb 165 10m p+1.5e,,e 7.000,069,,e 1.00, 1.9m p+2.94,,e 7.9m y 004,21-2.38 E. 16334 7.5m y 04,21-2.38 E. 16334 7.5m Ho 162 14 18.88 ry 580 Tb 160 3- 72.48
	66 Tb 158924 627 Gd 44	68 67 Dy 162.50 c, 930	71 70 69 Er 167.26	Tb/48	Hf 178,49	COMp1. Hf 157 0.12s 0.36s 0.23s 0.2	Er	Eri55 5.3m 4.01 Hol54 325m Hol54 325m Hol59	Ho I55 Pl65m 47m 47m 47m 47m 47m 47m 47m 47m 47m 47	Er 157 *** *** *** *** *** *** ***	2.4h ***- ***- ***- **- **- **- **- **- **	Er 159 36m (206.37- 2-140 158 (57) 2-140 158 (57) 33-143 (30)	~ 23m (*,041) Tm 6 30m (*,046-373) Er 60 (29h (*,047-28) 7.047-28) 8.2s 33m (*,047-28) 7.037-38) 8.2s 33m (*,047-28) 7.037-38) Dy 58 (090 (*,047-28) 15 570-48 (180) 15 570-48 (180) 15 570-48 (180) 160)	Ybl63 IIm 22m 22m 22m 22d 32d 32d 32d 32d 32d 32d 32d 32d 32d	Tm 63/4 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h	YDIG5 IOM P*1.09,0** 7.000,069, 12.94,0** 12.9
Gd 157:25	66 Tb 158924 c ₂ 27 Gdl44 4.5m	68 67 Dy 162.50 930	71 70 69 Er 167.26	Tbi48 Tbi48 Tolday Tolday	Hf 178,49	COMp1. Hf 157 0.12s 0.36s 0.23s 0.2	Er	Er 155 5.3m Hol54 3.25m 13.91 3.25m 13.91 3.25m 13.91 3.25m 13.91 7.04 100, 082 3.5 152 Tol52 Tol52 Gdi5[87]	Ho I55 Pl65m 47m 47m 47m 47m 47m 47m 47m 47m 47m 47	Er 157 *** *** *** *** *** *** ***	2.4h \$1.67\(\).007\(\).072\(\).907\(\).072\(\).907\(\).072\(\).907\(\).007\(\	Er 159 36m (2001,37- 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60	~ 23m (*,041) Tm 6 30m (*,046-373 (*)35 Er 60 (*)29p (*)57	Ybi63 IIm Tmi62 79m 22m 1.02, 1.23, 1.24 1.03, 1.04 1.03, 1.05 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	Tm 63/4 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h	YD165 100m 100m 100m 100m 100m 100m 100m 100
	66 Tb 158924 c ₂ 27 Gdl44 4.5m	68 67 Dy 162.50 (3930	71 70 69 Er 167.26	Tb/48	Hf 178,49	COMp1. Hf	Er	Er 55 5.3m -1.54 3.25m 1.8m 3.39 3.39	Ho I55 Pl65m 47m 47m 47m 47m 47m 47m 47m 47m 47m 47	Er 157 24m y-117-2.00 Ho 156 55m 4,9-18,2-9,13 10.2h 1	2.4h \$1.67\(\).007\(\).072\(\).907\(\).072\(\).907\(\).072\(\).907\(\).007\(\	Er 159 3 6m (200.37- 2.60) 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60	~ 23m , 041 Tm 6 30m , 046:373 Er 60 , 299-28 , 208-28 35m , 208-28 35m , 189-28 , 208-28 35m , 189-28 , 208-28 35m	Ybi63 IIm Tmi62 79m 22m 22, 3, 3, 3, 4, 2, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	Tm 63/4 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h 1.8h	Ybi65 IOm #1.56,, #1.06,, #1.06,, Tmi64 **) I.9m #2.34,, #7.06, #7



									90	Th 232.038	Th213 .15s 4.769	Th214 .135 a 7.68	Th215 1.25 a 7.39,7.52, 7.33	Th216 28ms a7.92	Th217 <.5ms a 9.25	
						89	Ac	Ac209 0.1s a 7.58	Ac210 ~0.35s a 7.46	Ac211 ~0.25s a 7.48	Ac2I2 ~0.93s a7.30	Ac213 0.8s a 7.36 213.01	Ac214 8.2s a7.21,7.08, 7.00 214.01	Ac2l5 0.17s a 7.60	Ac216 0.38ms 0.38ms 2 9.11 9.07 820,828	
				88	Ra	Ra 206 0.4 s a 7.27	Ra207 1.35 4 7.13	Ra208 i.2s a 7.15	Ra209 4.7s	Ra2IO 3.8s	Ra211 15s a 6.91 211.001	Ra2I2 13s 46.87 212.000	Ra 213 2.7m a 6.62,6.73, 6.52 213.000	Ra214 2.68 a 7.14 214.000	Ra215 1.56ms 4.8.70,7.88,8.17 215.0027	Ra216 <1ms a 9.3
		87	Fr	Fr203 0.7s a7.15	Fr 204 2.2s 3.3s a7.03 a6.97	Fr 205 3.7s a 6.92	Fr 206 15.7s a 6.79	Fr 207 15 s a 6.77	Fr 208 38s 4 6.65	Fr 209 54s a 6.65	Fr 210 3.0m a 6.57	Fr 211 3.08m a 6.53	Fr 212 19m 4626,638,641, 634,	Fr 213 34.7s a 6.77 E2.10 212.9962	Fr214 3.4ms 5.0ms 48.55, 48.42, 8.36, 6.36, 6.36	Fr2I5 << Ims α~9.36,
		,		116		118		120		122		124		126		128
							87	Fr	Fr203 0.7s a7.13	Fr 204 2.2s. 3.3s a7.03 a6.97	3.7s	Fr 206 15.7s a 6.79	Fr 207 15s a 6,77	Fr 208 38s 36.65	Fr 209 54s 0 6.65	Fr 210 3.0m 46.57
				86	Rn		Rn200?	Rn201 3s	Rn202 Is 6.64	Rn2O3 28s 45s 45s 46.50	Rn 204 75s a 6.42.	2.8m a 6.26	207.00 Rn 206 6.3m a 6.26	208.00 Rn 207 IIm	209.00 Rn 208 22m 4 4 6.15	Rn 209 30m
85	At	At 194 Short	At 195 Short	At 196 0.3s	At 197 0.4s 6.96	A† 198 1.5s 5s α6.85 α6.75	At 199 7s	At 200 4.3s 42s 46.54 46.41,	At 201 1.5m	At 202 2.6m? 3.0m a 6.23 a 6.13	At 203 7.4m 6 a 6.09	At 204 9.1 m	At 205 26m	At 206 2.8h 3lm	£~3.0 A† 207 1.79h	At 208 6.2h 1.6h 7.685. 660.177
						1		6.46		F01	ENS B	. F~71		7.07 For 6.0	F3.7	a 5.65
	108		110		112		114	6.46	116	€~8.1.	118	E~7.1	120	F~6.0	122	a 5.65 E~ 5.0
	108		110	85	112	At 194 Short	114 At 195 Short	At 196 0.3s	116 At 197	At 198 1.5s 5s a6.85 46.75	118 At 199	A†200 4.3s 42s a6.54 6.46	120	I I	122	a 5.65 E~ 5.0
	108		110	85		At 194 Short Po 193 Short a 6.96	Δt 195	At 196	At 197 0.4s 6.96 Po 196 ~ 5.5s	A† 198 1.5s , 5s	118 At 199 75 6664 Po 198 1.75m	At200	120 At 201 1.5m Po 200 11.5 m	At 202 26m? 30n a6.23 a6.13	122 2 At 203 7.4m 4 6.09 E~5.88 V PO 202 44m 45.56	At 204 9.1m 4 a 203 30m 4 a 30
	108	83			At Po 192	Po 193	At 195 Short Po 194 0.6s	At 196 0.3s a 706 Po 195 2.0s 5s a 6 70 a 6.6	At 197 0.4s 6.96 Po 196 ~ 5.5s	A† 198 1.5s 5s a6.85 a6.75 Po 197 26s 56s a6.36 a6.26	118 At 199 75 6664 Po 198 1.75m	At 200 4.3s 42s a6.4i 6.46 Po 199 4.2m 5.2m	120 At 201 1.5m Po 200 11.5 m	At 202 26m? 30n ac.23 ac.3 Po201 90m 15.4	122 At 203 7.4m 6.09 E~5.8 V PO 202 4.4m 6.56 E~3.0	At 204 9.1m 4 5.95 E~7.1 Po 203 30m 4 5.38 E~4.5 Bi 202 5
	108	83	84 Bi 208.980	Po Bi 190	Po 192 0.5s a 6.59	Po 193 Short a 6.96 Bi 192 ~ 40s	At 195 Short Po 194 0.65 a 6.65 Bi 193 32s ~70 a 6.5	At 196 0.35 2706 Po 195 2.0s 5s 26 70 26.61 85s 356	At 197 0.4s 56.96 Po 196 ~ 5.5s 66.92 Bi 195 ~ 6.90 1 10 1 10 7 2.204	A† 198 1.5s 55 a685 6675 6685 568 a6.39 5686 a6.39 5686 a6.39 5686 a6.39 5686 a6.39 5686	At 199 75 6.64 Po 198 1.75m 6.16 Bi 1977 6.2 Pb 196 37m 750, 240, 253, 254	A1200 4.35 425 6.64 6.66 Po 99 4.2m 5.2m 6.66 6.95 1.9m 7.99-1.064	120 At 201 1.5m 6.34 Po 200 11.5 m 5.86 E~3.6 Bi 199 % 24.7m 5.36 Pb 198 2.4h 7.173.290.	At 202 26m? 30n a 6.23 a 6.13 E 6.23 B 1200 35m 41.03, 462 E 6.53 839PD 1996 12.25m L5h 11424 4.54 4.57 4.57 4.57 5.66	122 At 203 7.4m a 6.09 b P0 202 44m a 5.56 c ~3.0 7 Bi 2019 53m Illim 53m I	At 204 9.1m 4 595 E-71 Po 203 30m 4 538 E-45 Bi 202 5 95m 4 7,422,96 E-53 30mpb20[54 E-87 E-87 E-87 E-87 E-87 E-87 E-87 E-87
	108	82 T1 204.37 _{93.37}	84 Bi 208.980 q, 34mb Pb 207.19 q, 18	Po Bi 190	P0192 0.55 a 6.59 Bi 191 2 145 a 6.59 a 6.31	Po 193 Short a 6.96 Bi 192 ~ 40s	At 195 Short Po 194 0.65 a 6.65 Bi 193 3.25 ~70 a 6.5 a 5.89	At 196 0.35 2705 PO 195 2.05 5 2.05 1 2.05 1	At 197 O.4s 56.96 Po 196 ~ 5.5s a 6.52 Bi 195 ~ 6.00 a 5.4 Pb 194 film film film film film film film film	At 198 1.5a 55 a6.85 66.75 PO 197 265 565 a6.50 66.26 Bi 196.7 7.090.383 T1 194 32.8m 34m 5,097 7,097 7,097 7,097	At 199 75 a 6.64 Po 198 1.75m a 6.18 Bi 197? a 6.2 Pb 196 37m c 522,40,253 c 540,253 c 540,25	A1200 4.35 425 0 6.54 6.64 6.66 PO 199 4.2m 5.2m 6.60 6.99 1.9m 7.98-1.064	At 201 1.5m 6.34 Po 200 11.5 m 6.36 Ex3.6 Ex3.6 Bi 99 % 24.7m 6.550 F D 98 2.4h 7.173.280, 0.31-865 Ex3.6 Ex3.	At 202 26m? 30n a 6.23 a 6.13 E 6.23 B 1200 35m 41.03, 462 E 6.53 839PD 1996 12.25m L5h 11424 4.54 4.57 4.57 4.57 5.66	122 At 203 7.4m a 6.09 b P0 202 44m a 5.56 c ~3.0 7 Bi 2019 53m Illim 53m I	At 204 9.1m 4 595 E-71 Po 203 30m 4 538 E-45 Bi 202 5 95m 4 7,422,96 E-53 30mpb20[54 E-87 E-87 E-87 E-87 E-87 E-87 E-87 E-87
80		TI 204.37 G _{3.7} Hg 185 52s	84 Bi 208.980 q, 34mb Pb 207.19	Po Bi 190	Po 192 0.5s a 6.59	Po 193 Short a 6.96 Bi 192 ~ 40s	At 195 Short Po 194 0.63 a 6.65 Bi 193 3.24 ~70 a 6.5 a 5.59 T1 191 10m 4 Hg 190 20m	At 196 0.35 2706 Po 195 2.0s 5s 26 70 26.61 85s 356	At 197 O.4s 56.96 Po 196 ~ 5.5s a 6.52 Bi 195 ~ 6.00 a 5.4 Pb 194 film film film film film film film film	At 198 1.5a 55 a6.85 66.75 PO 197 265 565 a6.50 66.26 Bi 196.7 7.090.383 T1 194 32.8m 34m 5,097 7,097 7,097 7,097	At 199 75 a 6.64 Po 198 1.75m a 6.18 Bi 197? a 6.2 Pb 196 37m c 522,40,253 c 540,253 c 540,25	A1200 4.35 425 6.64 6.66 Po 99 4.2m 5.2m 6.66 6.95 1.9m 7.99-1.064	At 201 1.5m 6.34 Po 200 11.5 m 6.36 Ex3.6 Ex3.6 Bi 99 % 24.7m 6.550 F D 98 2.4h 7.173.280, 0.31-865 Ex3.6 Ex3.	At 202 26m? 30n a 6.23 a 6.13 E 6.23 B 1200 35m 41.03, 462 E 6.53 839PD 1996 12.25m L5h 11424 4.54 4.57 4.57 4.57 5.66	122 At 203 7.4m a 6.09 PO 202 PD 202 B 201 B	At 204 9.1m 4 5.95 E~7.1 Po 203 30m 4 5.39 E~4.5 Bi 202 5 95m 4 7.422.96

Note - Hg incomplete here, complete on previous page.

	Th220	Th221 1,7ms a 8.15,8.47	Th222 ~ 2.8ms a 7.98	Th223	Th224 l.is a7.17,6.99, y.177,	Th 225 ⁶³⁴ 8m a 6.48,6.31-6.80 y.322,362,246	Th226 3(m 26.53,6.22, 7.111,.242,.131,	Th227544 18.72d 06.0375.958, 5.755, 7.236,506-443	$\sigma_{y} \sim 123, \sigma_{i} < .3$	Th22954 7340y 44.84,481, 7017-27 5,33	Th230 RC 7.8x10 y a4.68,4.62, y.068,.1125 a,~40, a, < Imb	Th23 (5A) 25.52h 20.52h 20842D,.017- 268	100 p 141 x 10 y 141 x 10 y 14.0(3.50 2,724 3,4146	Th233 22.2m 9-1,24, y.029-,90 01450 07 15 E1,245	Th 234 24.10d 8-19,10 7.06960,030- 07~1.8 6.27 67<.026	Th2 _{#-} <3
c218 Short	Ac2l9 Short a B.66	Ac220 24ms a 8.00, ··	Ac 221 0.05s a 7.64, 7.43	223,0209 Ac 222. 5s a 7.00,6.96	24.0215 Ac 223 2.2m a6.648,6659,- y.0817	225.0239 AC 224 2.9h ,216,132 6.044,6203, 6.139. 224.0217	226.0249 AC 225 ^(3/-) 10.0d 25.82,5.79,5.73 20.37529	AC 226 227.0277 AC 226 295 295 20721230 206826	228.0268 AC 2273- 60 21.772 y 8-044 9 < 2 7-099-025	229.0317 Ac228 3 ⁺ 5-111 6.13h B-111,45-2.10 y.058,099,911, .078-1.64	Ac229	Ac 230 < Im β-2.2	Ac231 15m 8-2.1 y.18,	E1.245	E.27 04 SEE	
Ra217 < 0.3ms	Ra218 Short.	Ra 219 IOms a 7.66,7.96	221.0157 Ra 220 ~ 2.3 ms a 7.46 6.90 y.465	222.0178 Ru221 293 26.60,6.758, 6.665, 7.089,152,176,	223.0(9) Ra222 38s a 6.56, y.325,	Rd 223/* 11.43d 93/145.605 270,031-580	3,64d 25,684,5,447, 2,241,.29065	Ro225 ^(5/-) 14.8d	0,790 2270278	Ra227 41.2m	E~1.1 R0 228 Ms 11 5.75y B 048,024 y.0067? Gy~36 Gy<2	E~2.9 Ra229 €5 m	Ra230 ≤1h		_	
217.0064 Fr216 Short	218.007 Fr 217 Short a 8.31	219.010 Fr 218 ~ 5ms a 7.65,	220.0110 Fr 219 21 ms	221.0139 Fr 220 28s a 6.68,6.64	222.0154 Fr 221 A.8m a 6.34,6.12, v 288.063:412	Fr 222	224,0202 Fr223(3/+) 22m 8°1,15 7050,080,061-94 25,34 21,34 21,34 223,0197	Fr 224	Fr225	Fr226 1.4m β-	E.055				144	
216.00	130	218.0075	132	220.0123	134	£2.03	136	E~3.L	138		140		142			
r 211 3.08m 5.53	Fr 2 2 19m a6.26,638,641,	Fr 213 34.7s	Fr214 3.4ms 5.0ms a 8.55, a 8.42, 8.48, 8.36,	Fr215 << Ims a~9.36,··	Fr216 Short a 9.01	Fr 217 Short a 8.31	Fr 218 ~ 5ms a 7.85,	Fr 219 21 ms a 7.30,	Fr 220 28s a 6.60,6.64.	F 221 4.8m a 6.34, 6.12, y.218, .063-412	Fr 222 15m g-	Fr223 ^(3/1) 22 m 8 1.15 7 200,000,001-91	Fr 224 2.7m	Fr225 3.9m	Fr226	
210,9953 Rn 210 2,4h 6,04	Fn 21 III/-1 15h 15h 25.785-1.80 25.78,5.85,5.62 7.069,17,23 E2.89	Rn 212 25m 4 6.27	213.999X Rn2I3 19ms 4 8.09	215.0004 Rn 214 Short 9.04	216.00 Rn 215 ~ 1µs a 8.67	217.005 Rn 216 .05ms a 8.05	218.0075 Rn 2178/1 .5ms a 7.74	35ms a 7.13, 6.54 y.6)	220.0123 Rn 219 3.96s 6.817,6.551, 6.423, 7.271,401,	Rn 220 55.6s a 6.288,5.747 y.542 cy<2 220,0114	E2.03 Rn 221 25m #-	25.34 E1.149 223.0197 Rn 222 3.8246 25.486, 7.51 7y~72 222.0175	E~3.1 Rn 223 .7h	Rn 224 I.9h	Rn225 4.5m	Rn2
41209 ^{6/-)} 5.5h	At 210 ⁽⁵⁺⁾ 8.3h y1.180, 245, 1483 046-2.35 a5.36-5.52	211,9907 A† 2119/- 7.21h 7.67 (27448,y1.06,89	212.9939 At 212 0.12s 0.22s 0.706 7.06 7.06 211.9907	a 9.07	214.999 At 214 ~ 2 \mu s a 8.78,	216,0003 A: 2 1, .10ms a 8.00,7.60 y~.40 214,9987	217.0039 At 216 .35ms a 7805,	218,0056 At 217 32 ms a 7,07, y.260,455,.595 no β 217,0046	219.0095 A: 218 ~ 2s a 6.695, 6.653, 6.797 218.0086	A: 219	E~1.0	222.0175				14
124		126	KI.49V	128	213,3303	130		132		134		136	_	138	•	
At 205 26m	At 206 2.8h 3lm 45.70,	At 207	At 208 6.2h 1.6h 7.685,	At209 th 5.5h 7, 78,55,195,00	8.3h	At 2119/- 7.21h 7.67 (07488.1.06.89	a 7.82, a 7.66,	At 213 Short a 9.07	At 214 ~ 2µs a 8.78,	.IOms a 8.00, 7.60 y~40	At 216 .35ms a 7.805,	At 217 32ms a 7.07, y.260,455,.595	A: 218 ~ 25 a 6.695,6.653, 6.75	A: 219 0.9m a 6.27		
Po 204 3.5h	E~6.0	Fo 206	25.65 E~5.0 PO2O75 2.8 5.7h 11.26 4.8°89	Po 208 2.896y	Po 209 ¹ 103y 4.88, 7.261,.263	2 5.86 E.750 Po 210 Raf 138.400 a 5.305, y.803	211.990 (25#)Po2118 258 27389 Acc		Po213 (9 4 µs a 8.38,7.62	214.9987 Po214 Frat 164µ: a 7.688, 6.89 y.792	a 7.384,··	Po 216	218.0086 Po 217	219.0113 Po 218 3.05# a 6.000,5.179 8 0.020		
Bi 2039/ II.8h 18+ 135, 74 1060-190 14.85?	11.3h € y.079,.375, .080-1.21	6 E1.80 5 Bi 2059 15.31d €,β+.97 y,703,1766,09 2.57(0262,96	Dome E2.31	207.0012	7.91 208.982 7.921 10.5 7.510 208.982 7.510 208.	7 803 7 (5 5mb + < 0.3 7 209.98288 P Bi 2094 100 > 2 x 10 y C (15mb + 19mb)	197Ri2IO 1	Ar.(2.14m	Bi 212	213.99520 Bi 2136/ 46m 8-142,1.02 y.440, a5.87,5.55	P.443 214,9994 Bi 214(III) 19.8m (19.88 (19.87) (19.886 (19.1) (19.886 (19.1) (19.886 (19.1) (19.886 (19.1) (19.886 (19.1)	57	217.01	218,0089	_	
	E~4.4 hy+Pb2O3* y 6.2s 52.1h 17.825 y .279, .401, 6 E.82		10H2h205	Pb 206 y 0.126ms 23, 11.516, 203 07, 3 y 803, 881, 7	IMPh2074 60.80 22.6 111.06 7.570 (5.71	208.98039 Pb 208 52.3 c, ~ 15 mb 207.97865	Pb2099 3.31h 8-54	210,9873	Ph 21 89/	Pb 212 10.641 8-34,58, 9-239,300,.115 6.58	Pb 213 10.2 m	Pb 214 Rap 26.8π β 69,74,103, γ 352, 295,053 Ε104				
JULY 1991-241-490	17:17:02	T1 203		_		TI 207/m 4.77m 8-144, 6144, 90/90 91/1.3s	.04-109	T1209	*) T 2 0 RIC 1.3r \$^19,1.3,2.3 (n) 7.79,30,01-2.4	n				134		
	0.58ms 12.2 17.480 7.44, 96,	e)1.0			1 '	IT 1.0 35					_					
Hg 200 23.13 4,460 199.96633	17.480 7.440 7.440 15.49 16.19 17.49 19.49	Hg 202. 2 29.80 4,4.8	E 763 E+3	204.97444 Hg 204 6.85	EI.524 Hg2O5 ^{II/-} 5.5 m 8-1.7.1.4 7.205	Hg 206 8.2m 9.305,65	E4.995				!	132				

Note - Th incomplete here, complete on previous page.

									I	_		260?	2612		Γ
							105					> IOms a 9.7	0.1-3s a 9.4		
							104			257 ~4.5s a 9.00,8.95,878 8.70	258? Ilms	259 ~3s a8.77,8.86	260 ? 0.3s	261? ~1m ¤8.2-8.3	
					103	Lr				Lr 256 ~ 35s « 8.4,	Lr 257	Lr 258 or 259			
				102	No	No 251 0.8s a s. 60, s. 6s	No 252 2.4s a 8.41 SF	No 253 1.6m a 8.01	No 254 56s a B.I SF 254.091	No 255 3.0m a 8.08	No 256 3.2s a 8.43 sF	No 257 23 s a 8.23,8.27			
			101	Md				Md252 8m		233.03	Md 255 28m 4 7.34 Ev.85 255,0906	Md 256 1.3h a 7.18	Md 257 ~ 5 h € 7.08 SF	Md 258 54d a 6.73,6.78	
Fm	Fm244 ~ 3.3ms	Fm245	Fm246 1.3s a 8.24 SF	Fm247 9s 35s a8.18 a7.87, 7.93	Fm 248 .61m a 7.87, 7.83 SF 248.0771	Fm 249 ~2.6m ~7.53	Fm 250 30m a 7.43 250.0796	Fm 251 7h a 6.9 y. 41 Ev. 2	Fm 252 23h 4 7.04, 7.00 SF 252.0826	Fm 253 2.6 d 4 6.95, 6.68, 7.145,272 E.19	Fm 254 3.24h 47.20,7.6,7.06 7.041,098,.15 35	Fm 255 ⁷⁴ 20.1 h 27.02,6.97,6.41- 7.081,.059, SF 67,26 255,09	l	Fm 257(9/+ 80 d a 6.52,6.70, y.062,118, .24,	Fm 258 < 0.2s
Es			Es 245		Es247 5,0m 47,33	Es 248 25m	Es 249 2h 4 a 8.77 E 1.41 249.0763	Es 250	Es 251 1.5d a 6.48 Ev. 6 251,0799	ES252(74) ~ 140d a 8.64,5.9- 6.6 y.40,.0757 252,0828	Es 2537/4 20.5d a 6.645.73-6.63 y,0418,0088-90 5F, (180 + 14) 253.0847	2 Es 25474 39.3h 27.8d 5.48.13, 26.44 5.48.044 5.04 (27.07.99) 6.49 (27.07.99) 6.49 (27.07.99) 6.49 (27.07.99) 6.49	Es 255 39d 8-19 6 6.31,6.27,6.22 5F 6-7 ~ 40	Es 256	Es 257 < 20h
Cf24I	Cf 242 3.4m a 7.36	Cf243 IIm e a 7.06,7.17	Cf 244 20m a 7.21	E~3A Cf 245 44m a 7.14 E1.52	Cf 246 36h a 676,672, y.042,096,146 SF 246,0688	Cf 247 2.5h 7.295,42,46	249,0763 Cf 248 350d a 6.27, sF 248,0723	Cf 249° 352' a58(590,593, 6.20; y.399(,333,253, SF q.~270, quex 249,0747 Rk 24,0747	Cf 250	900 y 95.675.84,6.01, y.18,.22	2.65y	17.6d 9-27 45.98, 5.92	Cf 254 60d sr a5.83,5.79 $\sigma_{y} < 2$		
			Bk 243 4.6h 5.75, 95, 84 46,57, 6.54,6 18- 7:107, 04:55 E 1.49	Bk 244 4.4h 7.218.69,145- 1.51 46.67,6.62 E~2.2	Bk 245(3/-) 4.98d 4.293, 361, 365 6.386, 615, 36, 7.207, 47, 166 6.84	Bk246 2- 1.8d 7:80,1.08,734-	Bk 247 1.4 x 10 ³ y a 5.52,5.68,531 y.064,.27	>9y 16h	.3ms 311d	250 ² 21ms 3.22h 7.043 8.73,1.76	Bk 251 57m				
Cm239 2.9h 7.188 E~1.7	Cm 240 26.8d a 6.29 sr 240.0555	Cm24(I/A 35d 5,47,50 45,45,73-608 7,145	163d a 8.11,6.07, ·· y.0440,10294 SF a, ~ 25, a, < 5	32y 25.78,5.74,5.27- y.28,23,21,-6.07 6 6,250 6,700	Cm 244 34ms 18.1y 17.75.90. 65.81 9043,100 577482 15.11 90423 10.43	Cm 245" 8.3 x 103 y 4 5.36, 5.30, y .173, .13 4 ~ 270 4 2000	Cm246 4.71 x 10 ³ y a 5.39, 5.34 SF o _y 9 246.0672	Cm247 25µa 1.6×10'y y.22 G _{y.180} o _{f.108}	Cm 248 3.52 x 10 ⁵ y a 5.06,5.04 sr gy 248,07	Cm 249 64m 9-9 9-2 E.9	Cm250 I.I x 10 ⁴ y sf		Cm252 ≤2d		
Am238	Am239(5/4 12.1h 7.278.228 0.45-227 0.578 2.048 E.B.		Am 24 9- 433 y a 5.49,480-5.55 y 0596,0264-77 SF Gy k-3mb+90 Gr 3 241,0567	Am242 ^H 6ma 5Hills.Oih 5m 527 6 87 17.049 7.042 7.042 206 47.042 7.01500 7.2500	Am2435 7370y as 235, 476 5.35 y. 078 y. 078	Am 2446- 9ma (i-1 10.17 9f 26m p 30 6 5.0 7.75, 043 7.043 90 9 2000 9 2000	Am245/5/4 2.04h		Am247 22 m 9- y0.285,0.226 E~1.7						
Pu 23777- 0.18s 45.6d 17.45 7.033-09 25.37, 5.66 6, ~2100	Pu 238 1 87.4 y 85.50,546, 9,044,,10081 2,540, 9,17	Pu239 1/ 24,390y 45,155,11,	Pu 240 6600y a 517, 512, ·· 7,045, 104-,688 SF 67,280, 0538	14.3y 8-021 64.90,4.85, y.149, 5,23844,41005	Pu 242 3.87 x 10 ⁵ y a 4.90, 4.85 y 04 g 20, g < .2	Pu24 <i>3</i> ‴	Pu 244 8.3 x 10 ⁷ y a 4.59, 4.54	Pu 2459	Pu 246 10.85d 8-15,.33 7.044,.027-						
Np 236 >5x lovy 22h 8 7 045 9 2800 7 045 8 2800 8	ND23/9 2.14 x 10 ⁸ y a 4.52-4.87 y.02924	SF	Np 23954	1() Np240 7.5m 65m 8-2.18. 839	Np 241 16.0m g-13 y.13,.18		244.50						156		158
∰alm av	U236, 2.42 x 10 ⁷ y 0.449, 7.05 5.5 67.5.35 0456	U237 1/+ 6.75d 8-23, 25, - 7.0595, 208, 014- 37 05, 480, 07 < .35	90.27 Sf 4.81 10 y 2 4.20, y 0.40 y 2.10, mar. Smb	U 2395/1 23.5m 6-1.21,1.29,- 7.0747.0435,031- 9.22, 07.15	U240 14.1h 8-36 7.044						154				
1 Pn 234	Pa 235	Pa236 2m -3.3	Pa237 39m 8-230,135,- 7.46,92,.09- 1.4 E2.30	- 14G					152						
Th233 22.2m 8-124, 7.029-90 ©1450 0, 15 €1,245	1 1 1 2 3 2	Th235	- 507				150								
	144		146		148										

 	 ,	 	 	
				• •
				,

SECTION II RADIOISOTOPE, DECAY, AND RADIOASSAY DATA

	Page
COMMONLY AVAILABLE RADIONUCLIDES LISTED ALPHABETICALLY	86
ALPHA EMITTERS BY INCREASING ENERGY	88
BETA EMITTERS BY ENERGY AND HALF-LIFE	90
AVERAGE AND MAXIMUM BETA ENERGY BY RADIONUCLIDE	92
GAMMA EMITTERS BY INCREASING ENERGY	95
ACTIVITY MASS RELATIONSHIP - SPECIFIC ACTIVITY Method of Calculation	103 104
UNIVERSAL DECAY TABLE	105
RADIOACTIVE DECAY, SEMI-LOG PLOT	108
NATURAL RADIOACTIVE DECAY Thorium Series	110 111 112 113
ERROR OF COUNTING RATE DETERMINATIONS The 95% Error in cpm, Function of Total Count and Length of Count. The 90% and 95% Error in cpm, Function of Counting Rates The 90% and 95% Error in cpm, Function of Counting Rate and Length of Count	114 115 118
MOST EFFICIENT DISTRIBUTION OF COUNTING TIME	119
STATISTICAL LIMITS OF COUNTER RELIABILITY	120
RESOLVING TIME ERROR	121
PENETRATION ABILITY OF BETA RADIATION	122
BETA PARTICLE RANGE ENERGY CURVE	123
BETA RADIATION INITIAL HALF-THICKNESS IN ALUMINUM vs. MAXIMUM ENERGY	124
RANGE vs. ENERGY FOR ALPHA PARTICLES IN AIR (STP)	125
RANGE vs. ENERGY FOR SLOW PROTONS IN AIR (STP)	126
DETERMINING COUNTING EFFICIENCY FOR INTERNAL PROPORTIONAL COUNTERS	127

COMMONLY AVAILABLE RADIONUCLIDES LISTED ALPHABETICALLY

Radionuclide	Half-Life*	Radiation†	Radionuclide	Half-Life*	Radiation
Americium-241	458y	α ,e $^-$, γ	Erbium-169	9.4d	β , e^- , γ
Antimony-122	67h	β^-, β^+, γ	Europium-152	12y	$\beta^-, \beta^+, e^-, \gamma$
Antimony-124	60d	β^- , γ	Europium-154	16y	β^-, e^-, γ
Antimony-125	2.7y	β^{-}, e^{-}, γ	Europium-155	1.81y	β^-, e^-, γ
Argon-37	35d	γ	Gadolinium-153	242d	e^- , γ
Arsenic-74	17.9d	β^-, β^+, γ	Gallium-68	68.3m	β^+ , γ
Arsenic-76	26.5h	β-,γ	Gallium-72	14.1h	β-,γ
Arsenic-77	38.7h	β^-, γ	Germanium-71	11.4d	γ
Barium-131	12d	γ , e	Gold-195	183d	e^-,γ
Barium-133	7.2y	γ , e^{+}	Gold-198	64.8h	β^-, e^-, γ
Barium-137m	2.55m	γ ,e	Gold-199	75.6h	β^-, e^-, γ
Barium-140	12.8d	β^-, e^-, γ	Hafnium-181	42.5d	β^-, e^-, γ
Beryllium-7	53d	γ	Holmium-166	26.9h	β^-, e^-, γ
Bismuth-207	30y	e^- , γ	Hydrogen-3	12.3y	β¯
Bismuth-210	5.01d	α, β^-, γ	Indium-113m	100m	e^-,γ
Bromine-82	35.34h	β-,γ	Indium-114	72s	β^-, β^+, γ
Cadmium-109	453d	e^-,γ	Indium-114m	50.0d	e^-,γ (D.R.)
Cadmium-115	53.5h	β^{-},γ	Iodine-125	60d	e^-,γ
Cadmium-115m	43d	β,γ	Iodine-129	1.7×10 ⁷ y	β^-, e^-, γ
Calcium-45	165d	β¯	iodine-130	12.4h	β-,γ
Calcium-47	4.53d	β-,γ	Iodine-131	8.05d	$\beta^{-}.e^{-},\gamma$
Carbon-14	5730y	β-	Iridium-192	74.2d	β^-, e^-, γ
Cerium-141	33d	β^-, e^-, γ	Iridium-194	17.4h	$\beta x, \gamma$
Cerium-144	284d	β^-, e^-, γ	Iron-55	2.6y	γ
Cesium-131	9.70d	γ	Iron-59	45d	β΄,γ
Cesium-134	2.05y	β-,γ	Krypton-85	10.76y	β, , γ
Cesium-137	30.0y	β^-, e^-, γ	Lanthanum-140	40.22h	β^- , γ
Chlorine-36	3.1×10 ⁶ y	β^-,γ	Lead-210	21y	$\alpha, \beta^-, e^-, \gamma$
Chromium-51	27.8d	e^- , γ	Lutetium-177	6.7d	β^-, e^-, γ
Cobalt-57	270d	e ⁻ ,γ	Magnesium-28	21h	β^-, e^-, γ
Cobalt-58	71.3d	β^+ , γ	Manganese-54	303d	e^-,γ
Cobalt-60	5.26y	β-,γ	Mercury-197	65h	e^-,γ
Copper-64	12.8h	$\beta^-, e^-, \beta^+, \gamma$	Mercury-197m	24h	e^-,γ
Dysprosium-159	144d	e^{-},γ	Mercury-203	46.9d	β^-, e^-, γ

Radionuclide	Half-Life*	Radiation†	Radionuclide	Half-Life*	Radiation†
Molybdenum-99	67h	β-,γ	Silver-110m	253d	β ,e ,γ
Neodymium-147	11.1d	β ¯,e¯, γ	Silver-111	7.5d	β-,γ
Nickel-63	92y	β¯	Sodium-22	2.60y	β^{+} , γ
Niobium-95	35d	β-,γ	Sodium-24	15.0h	β^-,γ
Osmium-191	15d	β ⁻ ,e ⁻ ,γ	Strontium-85	64d	e^-,γ
Palladium-103	17d	γ	Strontium-87m	2.83h	e^-,γ
Palladium-109	13.47h	β^-, e^-, γ	Strontium-89	5 2 d	β-,γ
Phosphrous-32	14.3d	β¯	Strontium-90	28.1y	β (D.R.)
Polonium-210	138,4d	α, γ	Sulfur-35	88d	β¯
Potassium-42	12.4h	β-,γ	Tantalum-182	115d	β¯,e¯,γ
Praseodymium-142	19.2h	β-,γ	Technetium-99	2.12×10 ⁵ y	β¯
Praseodymium-143	13.6d	β-	Technetium-99m	6.0h	e^-,γ
Praseodymium-144	17.3m	β-,γ	Tellurium-132	78h	β¯,e¯,γ
Promethium-147	2.62y	β¯	Terbium-160	72.1d	β^-, e^-, γ
Protactinium-233	27.0d	β¯,e¯,γ	Thallium-204	3.8y	β̄,γ
Protactinium-234	6.75h	β¯,e¯,γ	Thulium-170	130d	β^-, e^-, γ
Radium-226	1602y	α, e^-, γ (D.R.)	Tin-113	115d	γ
Rhenium-186	90h	β¯,e¯,γ	Tin-119m	250d	e^-,γ
Rhodium-106	30s	β-,γ	Titanium-44	48h	e^-,γ (D.R.)
Rubidium-86	18.66d	β̄,γ	Tungsten-185	7 5d	β¯
Ruthenium-97	2.9d	e¯,γ	Tungsten-187	23.9h	β^-, e^-, γ
Ruthenium-103	39.6d	β¯,γ	Uranium-238	4.51×10 ⁹ y	α ,e, γ (D.R.
Ruthenium-106	367d	β (D.R.)	Xenon-133	5.27d	β^-, e^-, γ
Samarium-151	87y	β¯,e¯,γ	Ytterbium-169	32d	e^-,γ
Samarium-153	47h	β̄,ē,γ	Yttrium-90	64h	β-,γ
Scandium-46	83.9d	β̄,γ	Yttrium-91	58.8d	β-,γ
Selenium-75	120.4d	e¯,γ	Zinc-65	245d	β^+ , e^- , γ
Silver-110	24.4s	β-,γ	Zinc-69	57m	β
			Zirconium-95	65d	β ,γ (D.R.)

^{*}s = second, m = minute, h = hour, d = day, y = year, D.R. = daughter radiation. †Conversion electrons (e-) are listed if they are prominent in the electron spectrum. Decay products may give rise to other types of radiation. This is indicated, where prominent, by the notation (D.R.).

Source: Half-lives and radiation are taken from <u>The Table of Isotopes</u>, by C. M. Lederer, J. M. Hollander, and I. Perlman (6th ed.; New York: John Wiley & Sons, Inc., 1967).

ALPHA EMITTERS BY INCREASING ENERGY

MeV	Source	Half-life	Yield* (%)	MeV	Source	Half-life	Yield* (%)
1.83	Nd-144	2.4×10 ¹⁵ y	100	5.168	Pu-240	6580y	76
2.14	Gd-152	1.1×10 ¹⁴ y 1.05×10 ¹¹ y	100	5.234		7.95×10 ³ y	11
2.23	Sm-147	1.05×10 ¹¹ y	100	5.267		72y	32
2.46	Sm-146	7×10 ⁷ v	100	5.276	Am-243	7.95×10 ³ y	88
2.50	Hf-174	2×10 ¹⁵ y	100	5.305		138.4d	100
2.73	Gd-150	2.1×10 ^ĕ y	100	5.306		9.3×10 ³ y	7
3.18	Gd-148	84y	100	5.324		72y	68
3.18	Pt-190	$6 \times 10^{11} \text{y}$	100	5.342	Cm-246	5.5×10 ³ y	19
3.95	Th-232	$1.41 \times 10^{10} \mathrm{y}$	23	5.344	h-228	1.910y	28
4.011	Th-232	$1.41 \times 10^{10} \text{ y}$	77	5.362	Cm-245	9.3×10 ³ y	80
4.15	U -238	4.51×10 ⁹	23	5.386	Cm-246	5.5×10 ³ y	81
4.200	U -238	4.51×10 ⁹ y	77	5.42	Bk-249	314d	0.0015
4.366	U -235	7.1×10 ⁸ y	18	5.427	Th-228	1.910y	71
4.396	U -235	7.1×10 ⁸ y	57	5.443	Am-241	458y	13
4.415	u - 35	7.1×10 ⁸ y	4	5.447	Ra-224	3.64d	6
4.44	U -236	2.39×10^{7} y	26	5.448	Bi-214	19.7m	0.012
4.493		$2.39 \times 10^{7} \text{ y}$	74	5.456	Pu-238	86y	28
4.556	U -235	7.1×10 ⁸ y	4	5.486	Am-241	458y	86
4.57	Bi-210m	3×10 y	6	5.490	Rn-222	3.823d	100
4.597		7.1×10 ⁸ y	5	5.499	Pu-238	86y	72
4.599	R a- 226	1602y	6	5.512	Bi-214	19.7m	0.008
4.617	Th-230	$8.0 \times 10^{4} \text{ y}$	24	5.52	Bk-247	1.4×10 ³ y	58
4.684	Th-230	$8.0 \times 10^4 \mathrm{y}$	76	5.537	R a-223	11.43d	9
4.722	U -234	2.47×10 ⁵ y	28	5.605	Ra-223	11.43d	26
4.733	Pa-231	$3.25 \times 10^{4} \text{ y}$	11	5.666	Cf-251	800y	55
4.765	Np-237	2.14×10 ⁶ y	17	5.68	Bk-247	1.4×10 ³ y	37
4.770	Np-237	2.14×10^{6} y	19	5.684	Ra-224	3.64d	94
4.773	U -234	2.47×10 ^b y	72	5.707	Th-227	18.2d	8
4.778	U -233	1.62×10 ⁵ y	15	5.714	Ra-223	11.43d	54
4.782	Ra-226	1602y	95	5.73	Ac-225	10.0d	10
4.787	Np-237	2.14×10 ⁸ y	51	5.742	Cm-243	32y	12
4.811	Th-229	7340y	11	5.745	Ra-223	11.43d	9
4.821		1.62×10 y	83	5.755	Th-227	18.2d	20
4.842	Th-229	7340y	58	5.763	Cm-244	17.6y	23
	Pu-242	3.79×10 ⁵ y	24	II	Cm-243	•	73
4.896 4.899	Pu-241	13.2y	0.002	5.79	Ac-225	10.0d	28
	Th-229 Pu-242	7340y 3.79×10 ⁵ y	11	5.806	Cm-244	17.6y	77
4.903 4.92	Pu-242 Bi-210m	3.79×10 y 3×10 ⁶ y	76 26	5.812	Cf-249	360y	84
4.95	Ac-227	21.6y	36 1.2	5.816	U -230	20.8d	32
4.951	Pa-231	$3.25 \times 10^4 \text{ y}$	22	5.83	Ac - 225	10.0d	54 75
4.96	Bi-210m	3×10 ⁶ y	58	5.846	Cf-251	800y	45 7.1
4.967	Th-229	7340y	6	5.868 5.87	At-211 Bi-213	7.21h 47m	41 2
5.013	Pa-231	3.25×10 ⁴ y	24	II			
5.028	Pa-231	3.25×10 ⁴ y	23	5.887 5.976	U -230 Th-227	20.8d 18.2d	68 23
5.054	Th-229	7340y	7	5.987	Cf-250	13.2d 13y	23 17
5.058	Pa-231	$3.25 \times 10^4 \text{ y}$	11	5.994	Cm-243	32y	6
5.105	Pu-239	24,400y	12	6.002	Po-218	3.05m	100
5.123		6580y	24	6.031	Cf-250	13y	83
5.143		24,400y	15	6.037	Th-227	18.2d	24
5.156	Pu-239	24,400y	73	6.051	Bi-212	60.6m	25
		~ . ,		0.031	D1 1 -	00. J OIII	

ALPHA EMITTERS BY INCREASING ENERGY--Continued

MeV	Source	Half-life	Yield* (%)	MeV	Source	Half-life	Yield* (%)
6.061	Cm-243	32y	6	6.640	Es-253	20.47d	90
6.071	Cm-242	163d	26	6.65	At-218	2s	6
6.076	Cf-252	2.65y	15	6.70	At-218	2s	94
6.090	Bi-212	60.6m	10	6.777	Po-216	0.15s	100
6.115	Cm-242	163d	74	6.818	Rn-219	4.0s	81
6.119	Cf-252	2.65y	84	7.027	Fm-255	20.1h	93
6.126	Fr-221	4.8m	15	7.07	At-217	32ms	100
6.22	Th-226	30.9m	19	7.14	Rn-218	35ms	100
6.278	Bi-211	2.15m	16	7.158	Fm-254	3.24h	14
6.28	At-219	0.9m	97	7.200	Fm-254	3.24h	85
6.287	Rn-220	55s	100	7.28	Po-211m	25s	91
6.34	Th-226	30.9m	79	7.384	Po-215	1.78ms	100
6.340	Fr-221	4.8m	82	7.448	Po-211	0.52s	99
6.424	Rn-219	4.0s	8	7.687	Po-214	$164 \mu extsf{s}$	100
6.437	Es-254	276d	93	8.377	Po-213	$4.2 \mu s$	100
6.551	Rn-219	4.0s	11	8.785	Po-212	$0.30 \mu extsf{s}$	100
6.56	Ra-222	38s	96	8.88	Po-211m	25s	7
6.622	Bi-211	2.15m	84	11.65	Po-212m	45s	97

^{*}Percentage of the total decay events.

BETA EMITTERS BY ENERGY AND HALF-LIFE*

This table can help identify unknown beta emitters whose half-life and energy have been determined by standard laboratory techniques. A detailed compilation of nuclear data, such as National Bureau of Standards Circular 449 and supplements, should be consulted for details of these emitters and their decay.

Emitters of conversion electrons and positrons as well as emitters of beta rays are included, since all these particles produce similar effects when absorption methods are used to determine energy. Whereas isotopes can decay by emission of beta particles of different energies, the emitter is listed in the energy group corresponding to each beta, provided its contribution to total beta activity is greater than 5%. All the betas from one emitter will lie in the same half-life interval. Isomers and metastable states of nuclides are included, but these properties are not indicated here.

Only isotopes with halflives greater than six hours are listed; in general, a shorter half-life limits identification by the methods described.

Daughters with shorter halflives than their parents are listed in italics under the half-life of the parent. In the natural series, the shortlived daughters are listed under the half-life of the nearest antecedent having a halflife over six hours.

Half-Life	E _{max} (<i>Heu)</i> 0-0.1	0.1-0.3	0.3-0.5	0.5-0.7
0-12 hr.	Zn ⁶²	Telse Bizos Pazzs	135 1198 Ph212 Ac228 Pa234	Zne2 Srei Pd101 Talee Ph212 Ac228 Pa234
12 hr-1 d		Noso Pd112 Au183	Y97 Mbee 123 124	Cu64 Ga72 Br78 1180 Pr142 Gd158 Pt107 Np288 Am242
1-3 d	Ho ¹⁶⁰ Lu ¹⁷⁸ Ta ¹⁷⁷ Th ²⁸¹	As ⁷¹ Zn ⁷² Ba ¹³⁵ Ce ¹⁴⁸ Sm ¹⁵⁸ Th ¹⁵³ Th ²³¹ Pe ²³² Np ²³⁹	Cu ⁶⁷ Br ⁷⁷ Br ⁶² Ho ⁶⁶ /n ¹¹⁵ Sn ¹²¹ Te ¹³¹ W ¹⁸⁷ Ti ²⁰⁰ Pe ²³² Np ²³⁹	Sc48 Cu ⁰⁷ Ge ⁰⁰ Ga ⁷² As ⁷² As ⁷⁷ Rh ¹⁰⁵ Cd ¹¹⁵ Te ¹⁰¹ Co ¹⁴³ Sn ¹⁵³ W ¹⁰⁷ Os ¹⁰³ Np ²⁸⁶
3-5 d	Ho! 00 Yb175	To 132 Oy 150 Yb 175 Re 196 Pt 193	Sc47 Yb175 Au 186 8 214	Sc47 Ce47 Ye7 124 Te103 Pb214
5-10 d	Хө≀за ТЬ≀55	Cs131 Tm167 Lu171 Lu172 Lu177 y237	Sn!25 131 Xe133 Tb161 Er!66 Lu!77	1181 Cs132 This
10-13 d	Nd147 Iries	Carsi Nd 147	120 Cs 38 Ga 40 Nd 47 Pb211	C*130
13-15 d			Re ²²⁵	
15-20 d		0s101	Eu 150 pa230	V40 A874
20-30 d		Pa283 Th234 Pa284	Pa233 Pa234	Pazzs
30-40 d	Rh103	Nb ⁰⁵ Ru ¹⁰³ 7e ¹²⁹	Ce 141	Ce141
40-50 d		Fe ⁵⁰ Hg ²⁰³	Fe59 Hf101	
50-100 d		\$35 MD05 \$6124 Tm120	Imies Aiez Scat Coes Xiez IPies	Sb124 Tb100 Ir102
100-150 d	6d151	¥101	Ta 62	Ta192
150-200 d		Ce*5 Lu ¹⁷⁴		Lu ¹⁷⁴
200-250 d			Znº5	
250 d-1 y	Rules Agils	Ce ¹⁴⁴	Co ⁵⁷ Ce ¹⁸⁸	Agilo
1-2 y	Te 171	Eu 1 55	Sn121	
2-3 y	Cs 1 S 4	Sb125 Pm147		Ms22 Sb125 Cs134
3-5 y		Lu172		
5-10 y	Ra ²²⁶		Co 40 Ac220	Cd 3 Ac 2 20
10-20 y	H\$ Pb210 Pu241	Eu132 Eu154 <i>y</i> 287	Eu152	Kr#6 Eu162 Eu164
20-30 y	Ac ²²⁷			Sr ⁹⁰ Cs ¹³⁷
30-50 y				
50-100 y	Sm151			
> 100 y	N 68 Pd107 Re187 AC ²²⁷ Ra ²²⁸ Th ²⁸¹	C14 Rb27 Tc00 120 Cs125 Th281 Pg288 Th284 Mg280		Be ¹⁰ (n ¹¹⁵ Am ² 42

0.7-0.9	0.9-1.1	1.1-1.3	1 3-1.5	1.5-1.7	1.7-1.9	1.9- 2.1		2.3- 2.5	2.5-2.7	2.7- 2.9	2.9- 3.1	3.1- 3.5	3.5- 3.7	3.7- 3.9	3.9- 4.2
Fe ⁵² Ga ⁶⁶ Se ⁷³ Ge ⁷⁷ Rb ⁶² Te ¹²⁷ Sm ¹⁵⁶ Ta ¹⁸⁰	Sr ⁹¹ 135 Xe ¹³⁵ Er ¹⁷¹	Ac ²²⁸ Pa ²³⁴	Se ⁷³ Ge ⁷⁷ Sr ⁹¹ 135 Er ¹⁷¹	AC ²²⁸	Eu 52 7/208 Ac 228	Tm 66	G877 Pd101 B{212 Ac228		Hn52 \$191	γ93	Cu ⁶²				Ga66
K43 Zn69 Br76	Co55 Ga72 Pd 198 Ag 112 1130 Eu 157 Gd 159 r 184	Br76 #6 ⁹⁷ Rh 100	Na ²⁴ Co ⁵⁵ 1 ¹³³	Ge ⁷² Nb ⁸⁰ Tb ¹⁵⁴ Eu ¹⁵⁷	Br76	K ⁴² Zr97 Rh 100 Ra 188 r 194	Pr 142 Rs 186		6a72 Rh 100	Ag 112 Tb 154		Ga ⁷²	K42 Br ⁷⁶ Ag 112		Ag 112
N 67 As ⁷¹ n 15 Lai40 Sm 53 Ho ¹⁶⁶ Os ¹⁸³ Np ²³⁸	Ga ⁷² Pm 148 Pm 151 Os 183 Au 196 Ti200	Ge 69 Mo 99 Cd La 40 Ce 3 Os 3 Pa 2 3 2 Np 2 3 8		Cu ⁶⁶ Ga ⁷² Zn ⁷² Te ¹³¹ La ¹⁴⁰	As ⁷² As ⁷⁶ Ho ¹⁶⁶	\$b122	780 Ta ¹³¹ La ¹⁴⁰	As ⁷⁶	Cu ⁸⁸ Ga ⁷² As ⁷²		ÅS ⁷⁶	Ga ⁷² As ⁷²			
Te ¹²⁷ Sb ¹²⁷ ¹³² Ho ¹⁶⁶ Pb ²¹⁴	Zres Raiss 8(214	Rh1 00 Sb1 27 /1 32		Sb127 /132 Bi214	HO186 B[214	Ca ⁴⁷ Rh ¹⁰⁰	124 132 Pr 40 B1212		£h100			B[214			
Sb118	Ag!!! 81213	Bi 210	B1213		As ⁷²			Sn ¹²⁵ Pm ¹⁴⁶	As ⁷²		20118	A:572			
126 La! 40 Hd! 47	110 ⁹² Ва ¹⁴⁰	126 La 140	La!40	La140			La140								
	Pr143				p32										
R	As ⁷⁴		As ⁷⁴	As ⁷⁴	Rb ⁶⁶			Eu†56							
	Ta176	Pa ²³⁴						Pa ²³⁴							
Rb84	Rb84 <i>Te</i> 129		Tel 28	Rb64											
				Cdiis		Inila									
TD160	Sb124		Co56 Sr69	Y91 Sb124				Sb124							
Te 127 Tm 170	Tm170		Sn ¹²³												
				<u> </u>		-					-			_	_
Rh 102		Rh 102				_	_								
Rh1 06					Ga ⁸⁸			Rh106			Pr144	Rh106	Rh108		L
						<u> </u>	Bí212								
T1204							81212				_				
		Ac ²²⁶		AC ²²⁸	Ac228		Ac226								
Eu1 54	Eu 1 52	81210	Eu 152		Eu 1 54										
		Cs 137 Fr223					700								
		AlZe					8f ²¹²				\top	original Hollden,	nt is a rev table by Physicis	Naomi t, Anal	A.
Clae		Np ²⁸⁸	Kae Scaa									Branch,	U.S.A.E	. c.	

Nuclide	Energy	in MeV	Nuclide	Energy	in MeV	Nuclide	Energy	in MeV
Nuclide	(av)	(max)	Nucride	(av)	(max)	Nucride	(av)	(max)
n - 1	0.301		Mn- 57	1.099	2.600	Rb- 87	0.079	0.274
н - 3	0.005	0.018	Fe- 59	0.116	1.560	Kr- 88	0.367	2.600
He- 6	1.571	3.515	Fe- 60	0.069	0.240	Rb- 88	2.084	5.177
Be- 10	0.229	0.555	Co- 60	0.094	1.478	Kr- 89	1.395	3.920
C - 14	0.049	0.158	Co- 60A	0,604	1.545	Rb- 89	0.596	3.920
C - 15	2.871	9.775	Fe- 61	1.193	2.800	Sr- 89	0.583	1.470
0 - 19	1.708	4.601	Co- 61	0.463	1.231	Sr- 90	0.200	0.544
0 - 20	1.242	2.850	Co- 62	0.983	2.831	Y - 90	0.931	2.245
F - 20	2.486	5.403	Co- 63	1.577	3.600	Kr- 91	1.561	3.600
F - 21	2.624	5.683	Ni- 63	0.017	0.066	Rb- 91	1.849	4.200
Ne- 23	1.903	4.372	Cu- 64	0.188	0.573	Rb- 91A	1.271	3.000
Ne- 24	0.794	1.980	Ni- 65	0.667	2.100	Sr- 91	0.624	2.665
Na- 24	0.553	4.170	Ni- 66	0.064	0.224	Y - 91	0.615	1.548
Na- 25	1.510	3.801	Cu- 66	1.062	2.630	Sr- 92	0.213	1.500
Na- 26	3.124	6.700	Cu- 67	0.146	0.577	Y - 92	1.454	3.600
Mg- 27	0.689	1.763	Cu- 68	1.284	3.000	Y - 93	1.185	2.890
Mg- 28	0.155	0.457	Zn- 69	0.324	0.913	Zr- 93	0.015	0.063
A1- 28	1.244	2.868	Ga- 70	0.644	1.650	Y - 94	2.368	5.320
A1- 29	1.034	2.500	Zn- 71	0.921	2.240	Nb- 94	0.156	0.500
A1- 30	2.307	5.050	Zn- 71A	0.580	1.500	Nb- 94A	0.480	1.300
Si- 31	0.588	1.476	Zn- 72	0.116	1.600	Zr- 95	0.115	1.130
Si- 32	0.028	0.100	Ga- 72	0.429	3.166	Nb- 95	0.046	0.930
P - 32	0.694	1.709	Ga- 73	0.433	1.480	Y - 96	1.507	3.500
P - 33	0.076	0.248	Ga- 74	1.021	4.300	Nb- 96	0.244	0.707
P - 34	2.075	5.100	As- 74	0.405	1.355	Zr- 97	0.713	1.910
S - 35	0.048	0.167	Ga- 75	1.425	3.300	Nb- 97	0.464	1.267
C1- 36	0.252	0.714	Ge- 75	0.404	1.137		0.086	0.300
S - 37	0.795	4.750	Ga- 76	2.741	6.000	Nb- 99	1.359	3.200
S - 38	0.463	3.000	As- 76	1.085	2.970	Mo- 99	0.398	1.215
C1- 38	1.515	4.924	Ge- 77	0.637	2.270		0.085	0.295
C1- 39	0.847	3.450	Ge- 77A	1.198	2.880		1.450	4.200
Ar- 39	0.219	0.565		0.221	0.684		0.419	2.230
K - 40	0.541	1.322		0.317	0.900		0.478	1.320
Ar- 41	0.479	2.515		1.471 0.945	4.270 2.300		0.436	1.200
K - 42 K - 43	1.446 0.301	3.559 1.838		0.058	0.158	2	1.835 0.792	4.200 2.000
Ca- 45	0.076	0.254		0.748	2.000		0.144	0.470
Sc- 46	0.112	1.465		1.663	3.800		1.025	2.500
Ca- 47	0.341	2.000		0.531	1.400	11	0.062	0.710
Sc- 47	0.160	0.601	II	0.137	0.444	II	0.002	2.400
Sc- 48		0.643	lf .	1.379	3.400		0.988	2.441
Ca- 49	0.758	1.984	12	0.335	0.960		0.451	1.240
Sc- 49	0.736	2.011		1.221	4.680		0.415	1.870
Sc- 50	1.538	3.500		0.709	3.200		0.167	0.563
Ti- 51	0.870	2.142	II	0.582	1.648		0.009	0.039
V - 52	1.069	2.532		1.037	2.500		1.415	3.541
V - 53	1.068	2.530		0.249	0.672		0.345	1.620
V - 54	1.438	3.300		0.284	0.826	II.	1.637	4.008
Cr- 55	1.220	2.850		0.622	1.777		0.425	1.201
Cr- 56	0.587	1.500		1.872	8.000	Pd-107	0.013	0.035
Mn - 56	0.860	2.850	II .	1.334	3.800	Ru-108	0.466	1.320
			L					

A = First excited state.

AVERAGE AND MAXIMUM BETA ENERGY BY RADIONUCLIDE -- Continued

Nuclide Rh-108	()		Nuclide		in MeV	Nuclide		in MeV
Ph-108	(av)	(max)		(av)	(max)		(av)	(max)
KII-100	1.821	4.500	I -126	0.298	1.250	Pr-146	1.292	3.780
Ag-108	0.624	1.650	Sb-127	0.375	1.500	Pm-146	0.233	0.725
Pd-109	0.359	1.025	Te-127	0.223	0.695	Nd-147	0.227	0.810
Ag-110	1.176	2.869	Te-127A	0.263	0.730	Pm-147	0.062	0.225
Ag-110A	0.070	0.530	Sb-128	0.199	2.900	Pm-148	0.682	2.450
Pd-111	0.848	2.130	Sb-128A	0.346	1.000	Pm-148A	0.150	0.680
	0.360	1.050	I -128	0.791	2.120	Nd-149	0.428	1.500
	0.078	0.277	Sb-129	0.729	1.870	Pm-149	0.364	1.071
	1.438	4.040	Te-129	0.498	1.590	Pm-150	0.762	3.122
	0.211	0.656	I -129	0.040	0.150	Eu-150	0.309	1.070
	1.397	3.300	I -130	0.276	1.020	Nd-151	0.617	1.995
	0.787	2.000	Cs-130	0.132	0.442	Pm-151	0.312	1.200
	0.181	0.575	Te-131	0.723	2.141	Sm-151	0.019	0.077
	0.519	1.400	Te-131A	0.183	2.457	Pm-152	0.858	2.200
	2.018	4.600	I -131	0.180	0.810	Eu-152	0.288	1.840
	0.776	1.984	Te-132	0.047	0.220	Eu-152A	0.696	1.876
•	1.249	2.900	I -132	0.512	2.920	Pm-153	0.614	1.650
	0.318	1.110	Te-133	0.964	2.400	Sm-153	0.233	0.804
	0.605	1.631	Te-133A	0.567	2.400	Pm-154	0.995	2.500
	0.201	0.630	I -133	0.418	1.540	Eu-154	0.228	1.850
	0.281	0.838	Xe-133	0.099	0.343	Sm-155	0.558	1.530
•	2.211	5.000	I -134	0.663	2.410	Eu-155	0.044	0.247
	1.387	3.290	Cs-134	0.152	1.453	Sm-156	0.175 0.425	0.730 2.447
	0.294 0.348	1.000 1.000	Cs-134A I -135	0.170 0.319	0.550 1.433	Eu-156 Tb-156A	0.423	0.140
	0.245	0.745	Xe-135	0.319	0.919	Eu-157	0.366	1.270
	0.641	1.764	Cs-135	0.057	0.210	Eu-158	0.060	2.650
	0.267	0.800	Cs-136	0.108	0.657	Tb-158	0.271	0.845
	1.754	4.250	Xe-137	1.522	3.600	Eu-159	0.855	2.200
	0.560	1.500	Cs-137	0.195	1.167	Gd-159	0.294	0.948
	0.605	1.600	Xe-138	0.961	2.400	Eu-160	1.499	3.600
	1.061	2.650	Cs-138	1.095	3.400	Tb-160	0.189	1.700
	0.876	2.200	La-138	0.056	0.205	Gd-161	0.584	1.599
	1.202	2.900	Cs-139	1.600	4.000	Tb-161	0.155	0.577
	1.582	3.700	Ba-139	0.910	2.340	Ho-164	0.319	0.990
	0.111	0.383	Ba-140	0.282	1.010	Dy-165	0.440	1.280
	0.150	0.420	La-140	0.490	2.200	Dy-165A	0.275	0.840
Sb-122	0.527	1.971	Ba-141	1.158	2.833	Dy-166	0.060	0.400
In-123	1.391	3.300	La-141	0.958	2.430	Ho-166	0.610	1.852
In-123A	2.013	4.600	Ce-141	0.144	0.580	Ho-166A	0.088	1.100
Sn-123	0.455	1.260	La-142	1.823	4.250	Ho-168	0.716	1.900
	0.540	1.420	Pr-142	0.829	2.153	Er-169	0.096	0.340
	0.385	2.313	La-143	1.374	3.300	Ho-170	1.257	3.100
	1.340	3.200	Ce-143	0.371	1.380	Tm-170	0.315	0.967
	1.012	2.500	Pr-143	0.314	0.933	Er-171	0.355	1.490
	0.914	2.330	Ce-144	0.081	0.320	Tm-171	0.025	0.098
	0.788	2.040	Pr-144	1.208	2.984	Tm-172	0.511	1.830
	0.084	0.612	Ce-145	0.773	2.000	Tm-173	0.296	0.900
	0.737	1.900	Pr-145	0.682	1.799	Tm-174	0.980	2.500
St-126A	0.737	1.900	Ce-146	0.224	0.700	Tm-175	0.757	2.000

A = First excited state. B = Second excited state.

Nuclide	Energy	in MeV	Nuclide	Energy	in MeV	Nuclide	Energy	in MeV
	(av)	(max)	Nacirae	(av)	(max)	Nacriae	(av)	(max)
Yb-175	0.125	0.467	0s-195	0.746	2.000	Ra-228	0.014	0.055
Tm-176	1.761	4.200	Ir-195	0.297	1.000	Ra-230	0.401	1.200
Lu-176	0.104	0.362	Au-196	0.071	0.259	Ac-230	0.807	2.200
Yb-177	0.465	1.380	Ir-197	0.642	2.000	Pa-230	0.117	0.410
Lu-177	0.140	0.497	Pt-197	0.303	0.670	Ac-231	0.765	2.100
Lu-178	0.886	2.300	Ir-198	1.457	3.600	Th-231	0.059	0.305
Lu-178A	0.539	1.500	Au-198	0.315	1.371	Th-233	0.410	1.230
Lu-179	0.476	1.350	Au-199	0.084	0.460	Pa-233	0.063	0.568
Lu-180	1.339	3.300	Au-200	0.669	2.210	Th-234	0.046	0.193
Ta-180A	0.201	0.705	Au-201	0.519	1.500	Pa-234	0.146	0.500
Hf-181	0.119	1.050	Au-203	0.698	1.900	Pa-234A	0.515	1.500
Hf-182	0.149	0.500	Hg-203	0.057	0.212	Pa-234	0.476	1.400
Ta-182	0.094	0.524	T1-204	0.267	0.765	Np-236A	0.149	0.518
Hf-183	0.496	1.400	Hg-205	0.590	1.650	บ -237	0.067	0.248
Ta-183	0.191	0.776	T1-206	0.557	1.571	Np-238	0.206	1.240
Ta-184	0.419	1.360	T1-207	0.503	1.441	บ -239	0.401	1.210
Ta-185	0.624	1.718	T1-208	0.562	2.380	Np-239	0.135	0.723
W -185	0.124	0.427	T1-209	0.733	1.990	บ - 240	0.101	0.360
Ta-186	0.838	2.200	РЬ-209	0.195	0.637	Np-240	0.280	0.890
Re-186	0.941	1.066	Pb-210	0.005	0.061	Np-240A	0.662	2.156
W -187	0.236	1.307	Bi-210	0.390	1.161	Np-241	0.458	1.360
W -188	0.256	0.800	Pb-211	0.443	1.390	Pu-241	0.005	0.021
Re-188	0.776	2.116	Bi-211	0.181	0.600	Am-242	0.188	0.630
Re-189	0.237	0.750	Pb-212	0.106	0.586	Am-244	0.510	1.500
Re-190	0.556	1.700	Bi-212	0.783	2.255	Am-244A	0.107	0.380
Re-191	0.661	1.800	Pb-214	0.214	0.980	Am-245	0.287	0.910
Os - 191	0.036	0.139	Fr-223	0.382	1.150	Pu-246	0.053	0.330
Ir-192	0.175	0.670	Ra-225	0.089	0.320	Bk-248	0.194	0.650
Ir-192A	0.431	1.500	Ac-226	0.400	1.200	Cm-249	0.282	0.900
0s-193	0.350	1.127	Ra-227	0.444	1.310	Bk-249	0.026	0.102
Ir-194	0.755	2.233	Ac-227	0.010	0.043	Cf-253	0.073	0.270
						Es-254A	0.331	1.040

A = First excited state.

Source: O. H. Hogan, P. E. Zigman, and J. L. Mackin, <u>II. Spectra of Individual Negatron Emitters</u> (Beta Spectra, USNRDL-TR-802 [San Francisco: U.S. Naval Radiological Defense Laboratory, Dec. 16, 1964]).

SELECTED GAMMA EMITTERS BY INCREASING ENERGY

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
0.008	Er-169	9.4d	2b	0.3	Tm-169‡
0.022	Sm-151	87y	100ь	4	Eu-151‡
0.024	Sn-119m	250d	.01b	16	Sn-119‡
0.030	Ba-140	12.8d	6.3%	11	La-140
0.031	Mg- 28	21h		96	A1- 28
0.035	I -125	60d		7	Te-125‡
0.035	Te-125m	58d	5b	7	Te-125‡
0.037	Br- 80m	4.38h	2.9b	36	Br- 80
0.040	Rh-103m	57m	2.9%	0.4	Rh-103‡
0.040	I -129	1.7×10 ⁷ y	1.0%	9	Xe-129‡
0.047	Pb-210	21y		4	Bi-210
0.051	Rh-104m	4.41m	12.8b	47	Rh-104
0.053	Te-132	78h	414%	17	I -132
0.058	Gd-159	18.0h	3.5b	3	Tb-159‡
0.058	Dy-159	144d	100ь	4	Tb-159‡
0.059	Te-127m	109d	0.09b	0.19	Te-127
0.060	Am-241	458y		36	Np-237
0.063	Yb-169	32d	11,000Ъ	45	Tm-169‡
0.063	Th-234	24.1d		3.5	Pa-234m
0.068	Ta-182	115d	21ъ	42	W -182‡
0.068	Ti- 44	48h		90	Sc- 44
0.070	Sm-153	47h	210ь	5.4	Eu-153‡
0.077	Pt-197	18h	1.0b	20	Au-197‡
0.077	Hg-197	65h		18	Au-197‡
0.078	Ti- 44	48h		98	Sc- 44
0.080	Ba-133	7.2y	7b	36	Cs-133‡
0.081	Ho-166	26.9h	64b	5.4	Er-166‡
0.081	Xe-133	5.27d	6.5%	37	Cs-133‡
0.084	Tm-170	130d	130ь	3.3	Yb-170‡
0.084	Th-228	1.90y		1.6	Ra-224
0.087	Eu-155	1.81y		32	Gd-155‡
0.088	Pd-109 Ag-109m	13.47h 40s	10b 	5 - 	Ag-109‡

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
0.088	Cd-109	453d	3Ъ		
	Ag-109m	40s		5	Ag-109‡
0.088	Lu-176m	3.7h	35b	10	Hf-176‡
0.091	Nd-147	11.1d	2.6%	28	Pm-147
0.093	Th-234	24.1d		4	Pa-234m
0.095	Dy-165	139.2m	800ъ	4	Ho-165‡
0.099	Gd-153	242d	< 125b	55	Eu-153‡
0.099	Au-195	183d		10	Pt-195‡
0.100	Pa-234	6.75h		50	U -234
0.103	Sm-153	47h	210ь	28	Eu-153‡
0.104	Sm-155	23m	5.5ъ	73	Eu-155
0.105	Eu-155	1.81y		20	Gd-155‡
0.113	Lu-177	6.7d	2100Ъ	2.8	Hf-177‡
0.122	Co- 57	270d		87	Fe- 57‡
0.122	Eu-152	12y	5900Ъ	37	Gd-152 Sm-152‡
0.123	Eu-154	16y	390ъ	38	Gd-154‡
0.124	Ba-131	12d	8.8b	28	Cs-131
0.128	Cs-134m	2.9h	2.6b	14	Cs-134
0.129	Os-191	15d	6ъ	25	Ir-191‡
0.133	Hf-181	42.5d	10ь	48	Ta-181‡
0.134	Ce-144	284d	6.1%	11	Pr-144
0.134	Hg-197m	24h		42	Hg-197
0.136	Se- 75	120.4d	30ъ	57	As- 75‡
0.137	Re-186	90h	110ь	9	Os-186‡
0.140	Tc- 99m	6.0h	5.4%	90	Tc- 99
0.143	U -235	7.1×10 ⁸ y		11	Th-231
0.145	Ce-141	33d	6.0%	48	Pr-141#
0.147	Ta-182m	16.5m	0.07b	40	Ta-182
0.150	Te-131	25m	2.9%	68	I -131
0.150	Cd-111m	48.6m	0.2b	30	Cd-111‡
0.150	Kr- 85m	4.4h	1.57%	74	Kr- 85 Rb- 85‡

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
0.155	Re-188	16.7h	73Ь	10	0s-188‡
0.158	Au-199	75.6h		37	Hg-199‡
0.163	Ba-140	12.8d	6.3%	6	La-140
0.164	Xe-131m	11.8d	0.02%	2	Xe-131‡
0.166	Ba-139	82.9m	6.0%	23	La-139‡
0.172	Ta-182m	16.5m	0.07b	40	Ta-182
0.185	U -235	7.1x10 ⁸ y		54	Th-231
0.186	Ra-226	1602y		4	Rn-222
0.191	Mo-101	14.6m	5.0%	25	Tc-101
0.191	Pt-197	18h	1.Qb	6	Au-197‡
0.192	In-114m	50.0d	8Ъ	17	Cd-114#
0.198	Yb-169	32d	11,000Ъ	35	Tm-169‡
0.208	Lu-177	6.7d	2100ь	6.1	Hf-177‡
0.21	Ge- 77	11.3h	0.1b	61	As- 77
0.215	Hf-180m	5.5h	0.34ь	82	Hf-180‡
0.215	Ru- 97	2.9d	0.2b	91	Tc- 97
0.230	Te-132	78h	4.4%	90	I -132
0.233	Xe-133m	2.26d	0.16%	14	Xe-133
0.239	Pb-212	10.64h		47	Bi-212
0.239	As- 77	38.7h		2.5	Se- 77m
0.246	Sm-155	23m	5Ъ	4	E u-155
0.247	Cd-111m	48.6m	0.16	94	Cd-111‡
0.250	Xe-135	9.2h	6.2%	91	Cs-135
0.255	Sp-113	115d	0.9ь	1.8	In-113m
0.263	Ge- 77	11.3h	0.16	45	As- 77
0.265	Ge- 75	82m	0.3b	11	As- 75‡
0.265	Se- 75	120.4d	30Ъ	60	As- 75‡
0.279	Hg-203	46.9d	4ъ	77	T1-203‡
0.284	I -131	8.05d	2.9%	5.4	Xe-131m
0.286	Pm-149	53.1h	1.3%	2	Sm-149‡
0.293	Ce-143	33h	6.2%	46	Pr-143
0.295	Pb-214	26.8m		19	Bi-214

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
0.299	Tb-160	72.1d	46b	30	Dy-160#
0.305	Kr- 85m	4.4h	1.5%	13	Kr- 85 Rb- 85‡
0.307	Tc-101	14.0m	5.0%	91	Ru-101‡
0.308	Er-171	7.52h	9ъ	63	Tm-171
0.31	Pa-233	27.0d	7.4b	44	U -233
0.317	Ir-192	74.2d	750Ъ	81	Pt-192‡
0.319	Nd-147	11.1d	2.6%	3	Pm-147
0.320	Cr- 51	27.8d	17Ь	9	V - 51‡
0.325	Sn-125m	9.7m	0.1b	97	Sb-125
0.328	Ir-194	17.4h	110ь	10	Pt-194‡
0.333	Hf-180m	5.5h	0.34ь	93	Hf-180#
0.335	Cd-115 In-115m	53.5h 4.5h	1.1b	 50	 In-115
0.342	Ag-111	7.5d		6	Cd-111#
0.344	Eu-152	12y	5900Ъ	27	Gd-152 Sm-152‡
0.351	Bi-211	2.15m		14	T1-207
0.352	Pb-214	26.8m		36	Bi-214
0.356	Ba-133	7.2y	7b	69	Cs-133‡
0.36	Se- 83	25m	0.004ъ	69	Br- 83
0.362	Pd-103	17d	4.8b	0.06	Rh-103m
0.363	Gd-159	18.0h	3.4b	9	Tb-159‡
0.364	I -131	8.05d	2.9%	82	Xe-131 Xe-131‡
0.368	Ni- 65	2.56h	1.5b	4.5	Cu- 65‡
0.388	Sr- 87m	2.83h	1.3b	80	Sr- 87‡
0.393	Sn-113	1 15 d	0.9ь	64	In-113‡
0.393	In-113m	100m		64	In-113‡
0.403	Kr- 87	76m	2.7%	84	Rb- 87
0.405	Pb-211	36.1m		3.4	Bi-211
0.412	Au-198	2.698d	98.8b	95	Hg-198‡
0.427	Sb-125	2.7y		31	Sn-125
0.439	Zn-69m	13.8h	0.1ь	95	Zn- 69

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
0.441	I -128	25.0m	6.3b	14	Xe-128‡
0.444	Hf-180m	5.5h	0.34b	80	Hf-180‡
0.468	Ir-192	74.2d	750Ъ	49	Pt-192‡
0.477	Be- 7	53d		10.3	Li- 7‡
0.479	W -187	23.9h	38Ъ	23	Re-187
0.482	Hf-181	42.5h	10Ъ	81	Ta-181‡
0.487	La-140	40.22h	6.3%	40	Ce-140‡
0.49	Cd-115	53.5h	1.1b	10	In-115m
0.496	Ba-131	12d	8.8b	48	Cs-131
0.497	Ru-103	39.6d	2.9%	88	Rh-103m
0.511	Cu- 64	12.8h	4.5b	38	Ni- 64‡- Zn- 64‡
0.511	Ga- 68	68.3m		176	Zn- 68‡
0.511	As- 74	17.9d		59	Ge- 74‡- Se- 74‡
0.511	Na- 22	2.60y		180	Ne- 22‡
0.512	Ru-106 Rh-106	367d 30s	0.38%	21	 Pd-106‡
0.514	Sr- 85	64d	0.8d	100	Rb- 85‡
0.514	Kr- 85	10.76y	0.3%	0.41	Rb- 85‡
0.52	Se- 83	25m	0.004ь	59	Br- 83
0.527	Xe-135m	15.6m	1.8%	80	Xe-135
0.53	I -133	21h	6.5%	90	Xe-133 Xe-133m
0.53	Cd-115	53.5h	1.1b	26	In-115m
0.533	Nd-147	11.1d	2.6%	13	Pm-147
0.537	Ba-140	12.8d	6.3%	34	La-140
0.538	I -130	12.4h	28ь	99	Xe-130‡
0.554	Br- 82	35.34h	3Ъ	66	Kr- 82‡
0.559	As- 76	26.5h	4.5ь	43	Se- 76‡
0.564	Sb-122	67h	6Ъ	66	Te-122‡
0.570	Bi-207	30y		98	Pb-207‡
0.583	T1-208	3.10m		86	Pb-208#

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
0.596	As- 74	17.9d		61	Ge- 74‡ Se- 74‡
0.599	Sb-125	2.7y		24	Sn-125
0.603	Sb-125	60d	3.3b	97	Te-124‡
0.605	Cs-134	2.05y	28ь	98	Ba-134‡
0.609	Bi-214	19.7m		47	Po-214
0.619	Br- 82	35.34h	3Ъ	41	K4- 82‡
0.622	Ru-106 Rh-106	367d 30s	0.38%	11	 Pd-106‡
0.637	I -131	8.05d	2.9%	6.8	Xe-131 Xe-131m
0.658	Ag-110m	253d	3b	96	Cd-110‡
0.658	Ag-110	24.4s	89ь	4.5	Cd-110‡
0.662	Cs-137 Ba-137m	30y 2.55m	5.9% 	85 	 Ba-137‡
0.669	I -130	12.4h	28ь	100	Xe-130‡
0.67	I -132	2.3h	4.4%	144	Xe-132‡
0.686	W -187	23.9h	38ь	27	Re-187
0.695	Pr-144	17.3m	6.1%	1.5	Nd-144
0.697	Te-129m	34d	0.34%	6	Te-129
0.724	Zr- 95	65d	6.4%	49	Nb- 95
0.726	Ru-105	4.44h	0.9%	48	Rh-105m Rh-105
0.727	Bi-212	60.6m		7	T1-208 Po-212
0.740	Mo- 99	67h	6.1%	12	Tc- 99 Tc- 99m
0.743	I -130	12.4h	28ь	87	Xe-130‡
0.747	Zr- 97 Nb- 97m	17.0h 60s	6.2%	92 	 Nb- 97
0.748	Sr- 91	9.67h	5.9%	27	Y - 91 Y - 91m
0.756	Zr- 95	65d	6.4%	49	Nb- 95
0.765	Nb- 95	35d	6.4%	100	Mo- 95‡
0.773	I -132	2.3h	4.4%	89	Xe-132‡

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
0.777	Br- 82	35.34h	3ъ	83	Kr- 82‡
0.78	Te-131m	30h	0.44%	60	Te-131 I -131
0.796	Cs-134	2.05y	28ь	99	Ba-134‡
0.810	Co- 58	71.3d		99	Fe- 58‡
0.832	Pb-211	36.1m		3.4	Bi-211
.835	Ga- 72	14.10h	5.0b	96	Ge- 72‡
0.835	Mn- 54	303d		100	Cr- 54‡
0.847	Mn- 56	2.58h	13.3b	99	Fe- 56‡
0.85	Te-131m	30h	0.44%	31	Te-131 I -131
0.879	Tb-160	72.1d	46b	31	Dy-160‡
0.885	Ag-110m	253d	3ъ	71	Cd-110#
.889	Sc- 46	83.9d	13ь	100	Ti- 46‡
.898	Rb- 88	17.8m	3.7%	13	Sr- 88‡
0.90	Pa-234	6.75h		70	U -234
O.935	Cd-115m	43d	0.14b	1.9	Cd-115
.966	Tb-160	72.1d	46b	31	Dy-160‡
L.02	Mo-101	14.6m	5.0%	25	Tc-101
1.025	Sr- 91	9.67h	5.9%	30	Y - 91m Y - 91
L.063	Bi-207	30y		77	Pb-207‡
L.078	Ga- 68	68.3m		3.5	Zn- 68‡
L.078	Rb- 86	18.66d	0.7Ъ	8.8	Sr- 86‡
1.095	Fe- 59	45d	1.1b	56	Co- 59‡
1.115	Zn- 65	245d	0.45h	49	Cu- 65‡
1.115	N1- 65	2.56h	1.5b	16	Cu- 65‡
.120	Sc- 46	83.9d	13b	100	Ti- 46‡
.120	Bi-214	19.7m		17	Po-214
.122	Ta-182	115d	21ь	34	W -182‡
.14	I -135	6.7h	5.9%	37	Xe-135m Xe-135
.173	Co- 60	5.26y	19b	100	Ni- 60‡
.21	Y - 91	58.8d	5.9%	0.3%	Zr- 91‡
L.275	Na- 22	2.60y		100	Ne- 22‡

MeV	Nuclide	Half-Life	Production cross sec- tion* (barns) or fission yield (%)	Yield† (%)	Daughter
1.278	Eu-154	16y	390ь	37	Gd-154‡
1.28	I -135	6.7h	5.9%	34	Xe-135m Xe-135
1.292	Fe- 59	45d	1.16	44	Co- 59‡
1.293	In-116m	54.0m	154ъ	80	Sn-116‡
1.293	Ar- 41	1.83h	.61b	99	K - 41‡
1.308	Ca- 47	4.53d	0.3b	74	Sc- 47
1.332	Co- 60	5.26y	19b	100	Ni- 60‡
1.35	Mg- 28	21h		70	A1- 28
1.369	Na- 24	15.0h	0.53ь	100	Mg- 24‡
1.380	Ho-166	26.9h	64b	0.9	Er-166‡
1.408	Eu-152	12y	5900Ъ	22	Gd-152 Sm-152
1.426	Cs-138	32.2m	5.8%	73	Ba-138‡
1.434	V - 52	3.76m	4.9b	100	Cr- 52‡
1.460	K - 40	1.26×10 ⁹ y		11	Ca- 40 + Ar- 40 +
1.481	Ni- 65	2.56h	1.5ь	25	Cu- 65‡
1.524	K - 42	12.4h	1.2b	18	Ca- 42‡
1.57	Pr-142	19.2h	12ь	3.7	Nd-142‡
1.596	La-140	40.22h	6.3%	96	Ce-140‡
1.60	C1- 38	37.3m	0.4ь	38	Ar- 38‡
1.692	Sb-124	60d	3.3b	50	Te-124‡
1.764	Bi-214	19.7m		17	Po-214
1.780	A1- 28	2.31m	0.23ь	100	Si- 28‡
1.811	Mn- 56	2.58h	13.3ь	29	Fe- 56 ‡
1.863	Rb- 88	17.8m	3.7%	21	Sr- 88‡
2.614	T1-208	3.10m		100	Pb-208‡
2.754	Na- 24	15.0h	0.53ь	100	Mg- 24‡
6.13	N - 16	7.2s		69	0 - 16‡
7.11	N - 16	7.2s		5	0 - 16‡

^{*}Thermal neutron cross-section of target atom for nuclide of interest.

[†]Photon yield per disintegration.

^{\$}Stable nuclide

The specific activity (SpA) of a radioactive nuclide (disintegrations per unit time)/(unit mass), is calculated from the basic equation:

$$SpA = \lambda N = \frac{(1n \ 2) \ N}{T_{\frac{1}{2}}} .$$

Where: N = number of radioactive atoms per unit mass, and $T_{\frac{1}{2}}$ = half-life.

This basic equation can be transformed as follows:

by definition: $N = 6.0225 \times 10^{23} / atomic mass$

 $Ci = 3.7 \times 10^{10}$.

Substituting: SpA = $\frac{0.69315 \text{ N}}{T_{\frac{1}{2}} \text{ (secs)}} = \frac{0.69315}{T_{\frac{1}{2}}} \times \frac{6.0225 \times 10^{23}}{\text{atomic mass}} \times \frac{1}{3.7 \times 10^{10}} = \text{Ci/gm}.$

This equation is satisfactory when the half-life of the nuclide is expressed in seconds. If, however, the half-life is expressed in other units (such as minutes, hours, days, or years), a separate time conversion is required for each. By substituting the appropriate time conversion factors the following five equations can be obtained.

curies/gram or SpA
$$(T_{\frac{1}{2}} \text{ in secs}) = \frac{1.128 \times 10^{1.3}}{(T_{\frac{1}{2}}) (\text{atomic mass})}$$
 (1)

curies/gram or SpA
$$(T_{\frac{1}{2}} \text{ in mins}) = \frac{1.880 \times 10^{11}}{(T_{\frac{1}{2}}) (\text{atomic mass})}$$
 (2)

curies/gram or SpA
$$(T_{\frac{1}{2}} \text{ in hrs}) = \frac{3.134 \times 10^9}{(T_{\frac{1}{2}}) \text{ (atomic mass)}}$$
 (3)

curies/gram or SpA
$$(T_{\frac{1}{2}} \text{ in days}) = \frac{1.306 \times 10^8}{(T_{\frac{1}{2}}) \text{ (atomic mass)}}$$
 (4)

curies/gram or SpA
$$(T_{\frac{1}{2}} \text{ in yrs}) = \frac{3.578 \times 10^5}{(T_{\frac{1}{2}}) \text{ (atomic mass)}}$$
 (5)

Example: Calculate the specific activity of ¹³¹I whose half-life is 8.05d. Using equation (4) and the mass number as the atomic mass, make the appropriate substitutions:

$$SpA = \frac{1.306 \times 10^8}{8.05 \times 131} = 1.24 \times 10^5$$

The following specific activities were calculated from the above equations, using half-lives from <u>The Table of Isotopes</u>. Integer mass numbers were used rather than actual masses, except for ³H where the exact mass was used. (It should be noted that these specific activities are for pure forms of the nuclides only.) More extensive tables of specific activities are available. ²

¹Lederer, C. M., Hollander, J. M., and Perlman, I., <u>The Table of Isotopes</u>, (6th ed.; New York: John Wiley & Sons, Inc., 1967).

²Goldstein, G., and Reynolds, S. A., "Specific Activities and Half-Lives of Common Radionuclides," <u>Nuclear Data A</u>, Vol. 1, No. 5 (July 1966), pp.435-452.

SPECIFIC ACTIVITY

Radionuclide	Half-Life	Curies per gram	Radionuclide	Half-Life	Curies per gram
Hydrogen-3	12.3y	9.64×10 ³	Molybdenum-99	67h	4.72×10 ⁵
Carbon-14	5730y	4.46	Technetium-99m	6.0h	5.28×10 ⁶
Nitrogen-16	7.2s	9.79×10 ¹⁰	Ruthenium-106	367d	3.36×10 ³
Sodium-22	2.60y	6.25×10 ³	Iodine-125	60d	1.74×10 ⁴
Sodium-24	15.0h	8.71×10 ⁶	Iodine-130	12.4h	1.94×10 ⁶
Phosphorus-32	14.3d	2.85×10 ⁵	Iodine-131	8.05d	1.24×10 ⁵
Sulfur-35	88d	4.24×10 ⁴	Barium-133	7.2y	374
Chlorine-36	3.1×10 ⁵ y	3.21×10 ⁻²	Cesium-134	2.05y	1.30×10 ³
Argon-41	1.83h	4.18×10 ⁷	Cesium-137	30.0y	87.0
Potassium-42	12.4h	6.02×10 ⁶	Barium-140	12.8d	7.29×10 ⁴
Calcium-45	165d	1.76×10 ⁴	Lanthanum-140	40.22h	5.57×10 ⁵
Chromium-51	27.8d	9.21×10⁴	Cerium-141	33d	2.81×10 ⁴
Manganese-54	303d	7.98×10 ³	Cerium-144	284d	3.19×10 ³
Iron-55	2.6y	2.50×10 ³	Praseodymium-144	17.3m	7.55×10 ⁷
Manganese-56	2.576h	2.17×10 ⁷	Promethium-147	2.62y	929
Cobalt-57	270d	8.48×10 ³	Tantalum-182	115d	6.24×10^{3}
Iron-59	45d	4.92×10 ⁴	Tungsten-185	75d	9.41×10^{3}
Nickel-59	8×10 ⁴ y	7.58×10 ⁻²	Iridium-192	74.2d	9.17×10 ³
Cobalt-60	5.26y	1.13×10 ³	Gold-198	64.8h	2.44×10 ⁵
Nickel-63	92 y	61.7	Gold-199	75.6h	2.08×10 ⁵
Copper-64	12.8h	3.83×10 ⁶	Mercury-203	46.9d	1.37×10 ⁴
Zinc-65	245d	8.20×10 ³	Thallium-204	3.8y	462
Gallium-72	14.1h	3.09×10 ⁶	Polonium-210	138.4d	4.49×10 ³
Arsenic-76	26.5h	1.56×10 ⁶	Polonium-212	304ns	1.75×10 ¹⁷
Bromine-82	35.34h	1.08×10 ⁶	Radium-226	1602y	0.988
Rubidium-86	18.66d	8.14×10 ⁴	Thorium-232	1.41×10 ¹⁰ y	1.09×10 ⁻⁷
Strontium-89	52d	2.82×10 ⁴	Uranium-233	1.62×10 ⁵ y	9.48×10^{-3}
Strontium-90	28.1y	141	Thorium-234	24.1d	2.32×10 ⁴
Yttrium-90	64h	5.44×10 ⁵	Uranium-234	7.1×10 ⁸ y	2.14×10 ⁻⁶
Yttrium-91	58.8d	2.44×10 ⁴	Uranium-235	4.51×10 ⁹ y	3.33×10 ⁻⁷
			Plutonium-239	2.44×10 ⁴ y	6.13×10 ⁻²

UNIVERSAL DECAY TABLE

The following table gives the fraction of activity of a nuclide remaining, from .001 half-life to 1.000 half-life.

To use this table:

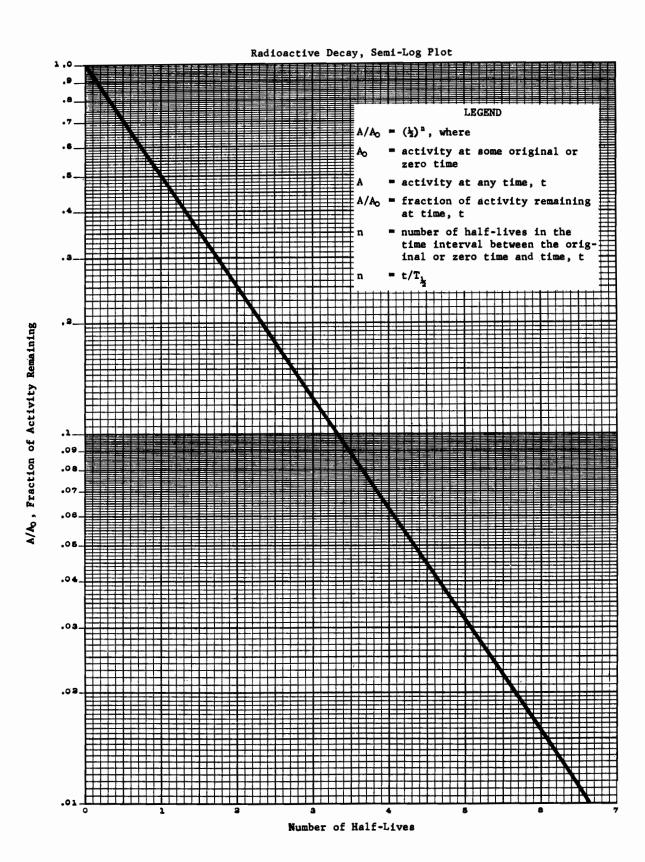
- 1. Divide elapsed time by half-life $(t/T_{1/2})$. Time must be in the same units.
- 2. With the answer obtained in Step 1, enter appropriate row along the side and the column at the top. The number obtained is the fraction of original activity remaining.
- 3. Multiply original activity by this figure to obtain present activity (or the amount remaining).

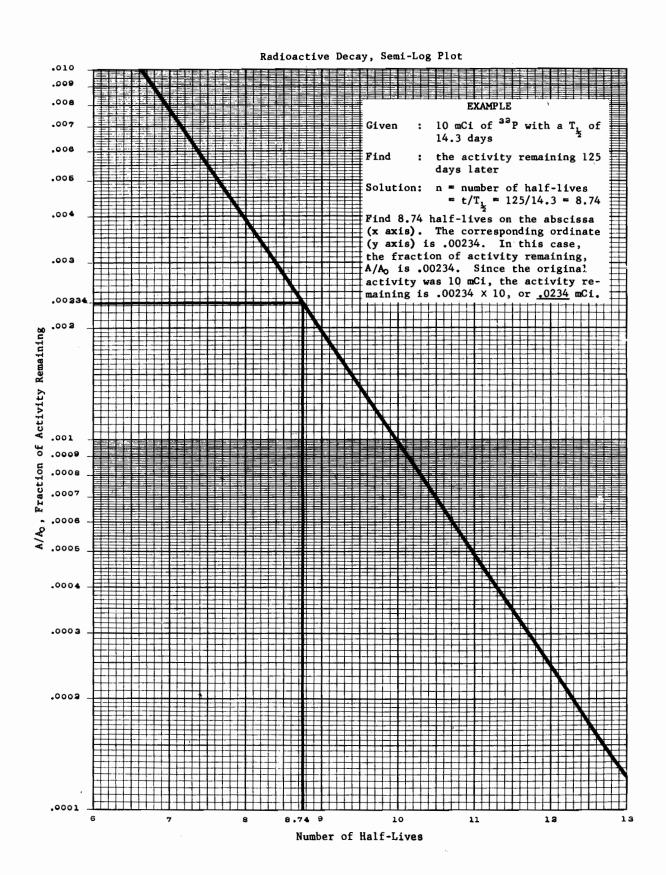
Example:

What is the activity of a 210 mCi PoBe source after 180 days? (T_{12} for PoBe = 138.4 days.)

- 1. The source has gone 41.6 days past 1.000 half-life, therefore 41.6/138.4 = .301.
- 2. Entering the .300 row from the left and the .001 column from the top gives .81169 as the fraction remaining.
- 3. Therefore, 210/2 = 105 mCi for 1.000 half-life and 105 mCi x .81169 = 85.23 mCi for the amount remaining at the end of 180 days.

UNIVERSAL DECAY TABLE


ACTIVITY REMAINING FOR $t/T_{\frac{1}{2}}$ FROM .001 TO 1.000



	•000	.001	.002	.003	.004	.005	.006	.007	.008	.009				
.000	1.00000	.99931	.99861	.99792	.99723	.99654	.99585	.99516	.99447	.99378				
.010	.99309	.99240	.99172	.99103	.99034	.98966	.98897	.98829	.98760	.98692				
.020	.98623	.98555	.98487	.98418	.98350	.98282	.98214	.98146	.98078	.98010				
.030	.97942	.97874	.97806	.97739	.97671	.97603	.97536	.97468	.97400	.97333				
.040	.97265	.97198	.97131	.97063	.96996	.96929	.96862	.96795	.96728	.96661				
.050	.96594	.96527	.96460	.96393	.96326	.96259	.96193	.96126	.96059	.95993				
.060	.95926	.95860	.95794	.95727	.95661	.95595	.95528	.95462	.95396	.95330				
.070	.95264	.95198	.95132	.95066	.95000	.94934	.94868	.94803	.94737	.94671				
.080	.94606	.94540	.94475	.94409	.94344	.94278	.94213	.94148	.94083	.94017				
.090	.93952	.93887	.93822	.93757	.93692	.93627	.93562	.93498	.93433	.93368				
. 100	.93303	.93239	.93174	.93109	.93045	.92980	.92916	.92852	.92787	.92723				
.110	.92659	.92595	.92530	.92466	.92402	.92338	.92274	.92210	.92146	.92083				
.120	.92019	.91955	.91891	.91828	.91764	.91700	.91637	.91573	.91510	.91447				
.130	.91383	.91320	.91257	.91193	.91130	.91067	.91004	.90941	.90878	.90815				
.140	.90752	.90689	.90626	.90563	.90501	.90438	.90375	.90313	.90250	.90188				
. 150	.90125	.90063	.90000	.89938	.89876	.89813	.89751	.89689	.89627	.89565				
.160	.89503	.89440	.89379	.89317	.89255	.89193	.89131	.89069	.89008	.88946				
.170	.88884	.88823	.88761	.88700	.88638	.88577	.88515	. 88454	.88393	.88332				
.180	.88270	.88209	.88148	.88087	.88026	.87965	.87904	.87843	.87782	.87721				
.190	.87661	.87600	.87539	.87478	.87418	.87357	.87297	.87236	.87176	.87115				
.200	.87055	.86995	.86934	.86874	.86814	.86754	.86694	.86634	.86574	.86514				
.210	.86454	.86394	.86334	.86274	.86214	.86155	.86095	.86035	.85976	.85916				
.220	.85857	.85797	.85738	.85678	.85619	.85560	.85500	.85441	.85382	.85323				
.230	.85263	.85204	.85145	.85086	.85027	.84968	.84910	.84851	.84792	.84733				
.240	.84675	.84616	.84557	.84499	.84440	.84382	.84323	.84265	.84206	.84148				
.250	.84090	.84031	.83973	.83915	.83857	.83799	.83741	.83683	.83625	.83567				
.260	.83509	.83451	.83393	.83335	.83278	.83220	.83162	.83105	.83047	.82989				
.270	.82932	.82874	.82817	.82760	.82702	.82645	.82588	.82531	.82473	.82416 .81847				
.280	.82359	.82302	.82245	.82188	.82131	.82074	.82017	.81960	.81904	.81282				
. 290	.81790	.81734	.81677	.81620	.81564	.81507	.81451	.81394 .80832	.81338 .80776	.80720				
.300	.81225	.81169	.81113	.81057	.81000	.80944	.80888	.80274	.80218	.80163				
.310	.80664	.80608	.80552	.80497	.80441	.80385 .79830	.80329 .79775	.79719	.79664	.79609				
.320	.80107	.80051 .79499	.79996	.79941	.79885 .79333	.79278	.79223	.79169	.79114	.79059				
.330 .340	.79554	.78949	.78895	.78840	.78785	.78731	.78676	.78622	.78567	.78513				
	.78458	.78404	.78350	.78295	.78241	.78187	.78133	.78079	.78025	.77970				
.350 .360	.77916	.77862	77809	.77755	77701	.77647	.77593	.77539	.77486	.77432				
.370	.77378	.77325	77271	.77218	.77164	.77111	.77057	.77004	.76950	.76897				
.380	.76844	.76791	.76737	.76684	.76631	.76578	.76525	.76472	.76419	.76366				
.390	.76313	.76260	.76207	.76154	.76102	.76049	.75996	.75944	.75891	.75838				
.400	.75786	.75733	.75681	.75628	.75576	.75524	.75471	.75419	.75367	.75315				
.410	.75262	.75210	.75158	.75106	.75054	.75002	.74950	.74898	.74846	.74794				
.420	.74742	.74691	.74639	.74587	.74536	.74484	.74432	.74381	.74329	.74278				
.430	.74226	.74175	.74123	.74072	.74021	.73969	.73918	.73867	.73816	.73765				
.440	.73713	.73662	.73611	.73560	.73509	.73458	.73408	.73357	.73306	.73255				
.450	.73204	.73154	.73103	.73052	.73002	.72951	.72900	.72850	.72799	.72749				
.460	.72699	.72648	.72598	.72548	.72497	.72447	.72397	.72347	.72297	.72247				
.470	.72196	.72146	.72096	.72046	.71997	.71947	.71897	.71847	.71797	.71747				
.480	.71698	.71648	.71598	.71549	.71499	.71450	.71400	.71351	.71301	.71252				
.490	.71203	.71153	.71104	.71055	.71005	.70956	.70907	.70858	.70809	.70760				
•500	.70711	.70662	.70613	.70564	.70515	.70466	.70417	.70368	.70320	.70271				

UNIVERSAL DECAY TABLE-Continued

ACTIVITY REMAINING FOR $t/T_{1/2}$ FROM .001 TO 1.000

	· ½													
	.000	.001	.002	.003	.004	.005	.006	.007	.008	.009				
.510	.70222	.70174	.70125	.70076	.70028	.69979	.69931	.69882	.69834	.69786				
.520	.69737	.69689	.69641	.69592	.69544	.69496	.69448	.69400	.69352	.69303				
.530	.69255	.69207	.69160	.69112	.69064	.69016	.68968	.68920	.68873	.68825				
.540	.68777	.68729	.68682	.68634	.68587	.68539	.68492	.68444	.68397	.68349				
.550	.68302	.68255	.68207	.68160	.68113	.68066	.68019	.67971	.67924	.67877				
.560	.67830	.67783	.67736	.67689	.67642	.67596	.67549	.67502	.67455	.67408				
.570	.67362	.67315	.67268	.67222	.67175	.67129	.67082	.67036	.66989	.66943				
.580	.66896	.66850	.66804	.66757	.66711	.66665	.66619	.66573	.66526	.66480				
.590	.66434	.66388	.66342	.66296	.66250	.66204	.66159	.66113	.66067	.66021				
.600	.65975	.65930	.65884	.65838	.65793	.65747	.65702	.65656	.65611	.65565				
.610	.65520	.65474	.65429	.65384	.65338	.65293	.65248	.65203	.65157	.65112				
.620	.65067	.65022	.64977	.64932	.64887	.64842	.64797	.64752	.64707	.64662				
.630	.64618	.64573	.64528	.64483	.64439	.64394	.64349	.64305	.64260	.64216				
.640	.64171	.64127	.64082	.64038	.63994	.63949	.63905	.63861	.63816	.63772				
.650	.63728	.63684	.63640	.63596	.63552	.63508	.63464	.63420	.63376	.63332				
.660	.63288	.63244	.63200	.63156	.63113	.63069	.63025	.62981	.62938	.62894				
.670	.62851	.62807	.62764	.62720	.62677	.62633	.62590	.62546	.62503	.62460				
.680	.62417	.62373	.62330	.62287	.62244	.62201	.62157	.62114	.62071	.62028				
.690	.61985	.61942	.61900	.61857	.61814	.61771	.61728	.61685	.61643	.61600				
.700	.61557	.61515	.61472	.61429	.61387	.61344	.61302	.61259	.61217	.61174				
.710	.61132	.61090	.61047	.61005	.60963	.60921	.60878	.60836	.60794	.60752				
.720	.60710	.60668	.60626	.60584	.60542	.60500	.60458	.60416	.60374	.60332				
.730	.60290	.60249	.60207	.60165	.60123	.60082	.60040	.59999	.59957	.59915				
.740	.59874	.59832	.59791	.59750	.59708	.59667	.59625	.59584	.59543	.59502				
.750	.59460	.59419	.59378	.59337	.59296	.59255	.59214	.59173	.59132	.59091				
.760	.59050	.59009	.58968	.58927	.58886	.58845	.58805	.58764	.58723	.58682				
.770	.58642	.58601	.58561	.58520	.58479	.58439	.58398	.58358	.58317	.58277				
.780	.58237	.58196	.58156	.58116	.58075	.58035	.57995	.57955	.57915	.57875				
.790	.57834	.57794	.57754	.57714	.57674	.57634	.57594	.57554	.57515	.57475				
.800	.57435	.57395	.57355	.57316	.57276	.57236	.57197	.57157	.57117	.57078				
.810	.57038	.56999	.56959	.56920	.56880	.56841	.56801	.56762	.56723	.56683				
.820	.56644	.56605	.56566	.56527	.56487	.56448	.56409	.56370	.56331	.56292				
.830	.56253	.56214	.56175	.56136	.56097	.56058	.56019	.55981	.55942	.55903				
.840	.55864	.55826	.55787	.55748	.55710	.55671	.55633	.55594	.55555	.55517				
.850	.55478	.55440	.55402	.55363	.55325	.55287	.55248	.55210	.55172	.55133				
.860	.55095	.55057	.55019	.54981	.54943	.54905	.54867	.54829	.54791	.54753				
.870	.54715	.54677	.54639	.54601	.54563	.54525	.54488	.54450	.54412	.54374				
.880	.54337	.54299	.54261	.54224	.54186	.54149	.54111	.54074	.54036	.53999				
.890	.53961	.53924	.53887	.53849	.53812	.53775	.53737	.53700	.53663	.53626				
.900	.53589	.53552	.53514	.53477	.53440	.53403	.53366	.53329	.53292	.53255				
.910	.53219	.53182	.53145	.53108	.53071	.53034	.52998	.52961	.52924	.52888				
.920	.52851	.52814	.52778	.52741	.52705	.52668	.52632	.52595	.52559	.52522				
.930	.52486	.52449	.52413	.52377	.52341	.52304	.52268	.52232	.52196	.52159				
.940	.52123	.52087	.52051	.52015	.51979	.51943	.51907	.51871	.51835	.51799				
.950	.51763	.51727	.51692	.51656	.51620	.51584	.51548	.51513	.51477	.51441				
.960	.51406	.51370	.51334	.51299	.51263	.51228	.51192	.51157	.51121	.51086				
.970	.51051	.51015	.50980	.50945	.50909	.50874	.50839	.50804	.50768	.50733				
.980	.50698	.50663	.50628	.50593	.50558	.50523	.50488	.50453	.50418	.50383				
.990	.50348	.50313	.50278	.50243	.50208	.50174	.50139	.50104	.50069	.50035				
1.000	.50000	.49965	.49931	.49896	.49862	.49827	.49792	.49758	. 49724	.49689				

Thorium Series (4n)*

Nuclide	Historical	Half-life	Major radiation energies (MeV) and intensities†									
	name		α	В	Y							
asa goTh	Thorium	1.41×10 ¹⁰ y	3.95 (24%) 4.01 (76%)									
228 88 8	Mesothorium I	6.7y		0.055 (100%)								
aaa Ac	Mesothorium II	6.13h		1.18 (35%) 1.75 (12%) 2.09 (12%)	0.34c‡ (15%) 0.908 (25%) 0.96c (20%)							
aas Th	Radiothorium	1.910y	5.34 (28%) 5.43 (71%)		0.084 (1.6%) 0.214 (0.3%)							
234 Ra	Thorium X	3.64d	5.45 (6%) 5.68 (94%)		0.241 (3.7%)							
aao Rn ee Rn	Emanation Thoron (Tn)	55 s	6.29 (100%)		0.55 (0.07%)							
216Po	Thorium A	0.15s	6.78 (100%)									
83 313 P	Thorium B	10.64h		0.346 (81%) 0.586 (14%)	0.239 (47%) 0.300 (3.2%)							
213B1 64.0% 36.0%	Thorium C	60.6m	6.05 (25%) 6.09 (10%)	1.55 (5%) 2.26 (55%)	0.040 (2%) 0.727 (7%) 1.620 (1.8%)							
ala _{Po}	Thorium C'	304ns	8.78 (100%)									
208T1	Thorium C"	3.10m		1.28 (25%) 1.52 (21%) 1.80 (50%)	0.511 (23%) 0.583 (86%) 0.860 (12%)							
ace Pp	Thorium D	Stable			2.614 (100%)							

^{*}This expression describes the mass number of any member in this series, where m is an integer.

Example: 90Th (4n).....4(58) = 232
†Intensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series.

‡Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillators.

Data taken from: Lederer, C. M., Hollander, J. M., and Perlman, I., <u>Table of Isotopes</u> (6th ed.; New York: John Wiley & Sons, Inc., 1967) and Hogan, O. H., Zigman, P. E., and Mackin, J. L., <u>Beta Spectra</u> (USNRDL-TR-802 [Washington, D.C.: U.S. Atomic Energy Commission, 1964]).

Neptunium Series (4n + 1)*

Nuclide	Element	Half-life	Major radiation energies (MeV) and intensities†									
	name		α	β	Y							
~100% 0.0023%	Plutonium	13.2y	4.85 (0.0003%) 4.90 (0.0019%)	0.021 (~100%)	0.145 (.00016%)							
341 95 Am	Americium	458y	5.44 (13%) 5.49 (85%)		0.060 (36%) 0.101c‡ (0.04%)							
337 92 U	Uranium	6.75d		0.248 (96%)	0.060 (36%) 0.208 (23%)							
237 93Np	Neptunium	2.14×10 ⁸ y	4.65c (12%) 4.78c (75%)		0.030 (14%) 0.086 (14%) 0.145 (1%)							
asš 91 	Protactinium	27.0d		0.145 (37%) 0.257 (58%) 0.568 (5%)	0.31c (44%)							
a33 _U	. Uranium	1.62×10 ⁵ y	4.78 (15%) 4.82 (83%)		0.042 (?) 0.097 (?)							
aas Th	Thorium	7340y	4.84 (58%) 4.90 (11%) 5.05 (7%)		0.137c (~3%) 0.20c (~10%)							
aat ee Ra	Radium	14.8d		0.32 (100%)	0.040 (33%)							
225Ac	Actinium	10.0d	5.73c (10%) 5.79 (28%) 5.83 (54%)		0.099 (?) 0.150 (?) 0.187 (?)							
aal e7Fr	Francium	4.8m.	6.12 (15%) 6.34 (82%)		0.218 (14%)							
al7At	Astatine	0.032s	7.07 (~100%)									
97.8% 2.2%	Bismuth	47m	5.87 (~2.2%)	1.39 (~97.8%)	0.437 (?)							
**************************************	Polonium	4.2μв	8.38 (~100%)									
209T1	Thallium	2.2m		1.99 (100%)	0.12 (50%) 0.45 (100%) 1.56 (100%)							
ace Pb	Lead	3.30h		0.637 (100%)								
aog ag Bi	Bismuth	Stable (>2×10 ¹⁸ y)										

^{*}This expression describes the mass number of any member in this series, where m is an integer.

Example: 338 Th (4n + 1).....4(57) + 1 = 229

The (4n + 1) series is included here for completion. It is not found as a naturally-occurring series.
†Intensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series.
‡Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillators.

Data taken from: Table of Isotopes and USNRDL-TR-802.

	Historical		Major radiation energies (MeV) and intensities†									
Nuclide	name	Half-life	α	β ·	Υ							
238 U	Uranium I	4.51×10 ⁹ y	4.15 (25%) 4.20 (75%)									
∛ 234Th	Uranium X ₁	24.1d		0.103 (21%) 0.193 (79%)	0.063c‡ (3.5%) 0.093c (4%)							
99.87% 0.13%	Uranium X ₂	1.17m		2.29 (98%)	0.765 (0.30%) 1.001 (0.60%)							
234 91 91	Uranium Z	6.75h		0.53 (66%) 1.13 (13%)	0.100 (50%) 0.70 (24%) 0.90 (70%)							
33\$U	Uranium II	2.47x10 ⁵ y	4.72 (28%) 4.77 (72%)		0.053 (0.2%)							
ago Th	Ionium	8.0 ×10 ⁴ y	4.62 (24%) 4.68 (76%)		0.068 (0.6%) 0.142 (0.07%)							
226 88 Ra	Radium	1602y	4.60 (6%) 4.78 (95%)		0.186 (4%)							
aaa ee Rn	Emanation Radon (Rn)	3.823d	5.49 (100%)		0.510 (0.07%)							
99.98% 0.02%	Radium A	3.05m	6.00 (~100%)	0.33 (~0.019%)								
al4Pb	Radium B	26.8m		0.65 (50%) 0.71 (40%) 0.98 (6%)	0.295 (19%) 0.352 (36%)							
ale At	Astatine	~2s	6.65 (6%) 6.70 (94%)	? (~0.1%)								
99.98% 0.02%	Radium C	19.7m	5.45 (0.012%) 5.51 (0.008%)	1.0 (23%) 1.51 (40%) 3.26 (19%)	0.609 (47%) 1.120 (17%) 1.764 (17%)							
214Po	Radium C'	164µs	7.69 (100%)		0.799 (0.014%)							
alo _{T1}	Radium C"	1.3m		1.3 (25%) 1.9 (56%) 2.3 (19%)	0.296 (80%) 0.795 (100%) 1.31 (21%)							
85 bP	Radium D	21y	3.72 (.000002%)	0.016 (85%) 0.061 (15%)	0.047 (4%)							
**************************************	Radium E	5.01d	4.65 (.00007%) 4.69 (.00005%)	1.161 (~100%)	,							
210 84Po	Radium F	138.4d	5.305 (100%)		0.803 (0.0011%)							
Most 1	Radium E"	4.19m		1.571 (100%)	-~-							
90 PP	Radium G	Stable										

^{*}This expression describes the mass number of any member in this series, where m is an integer.

Example: **aos**Pb (4n + 2).....4(51) + 2 = 206

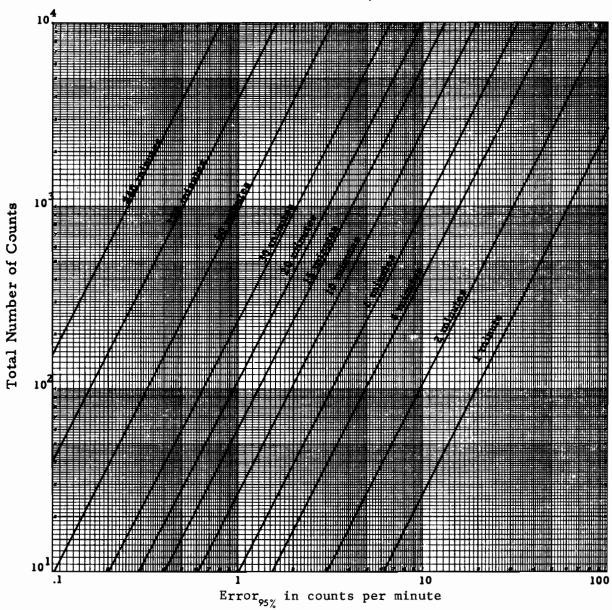
*Intensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series.

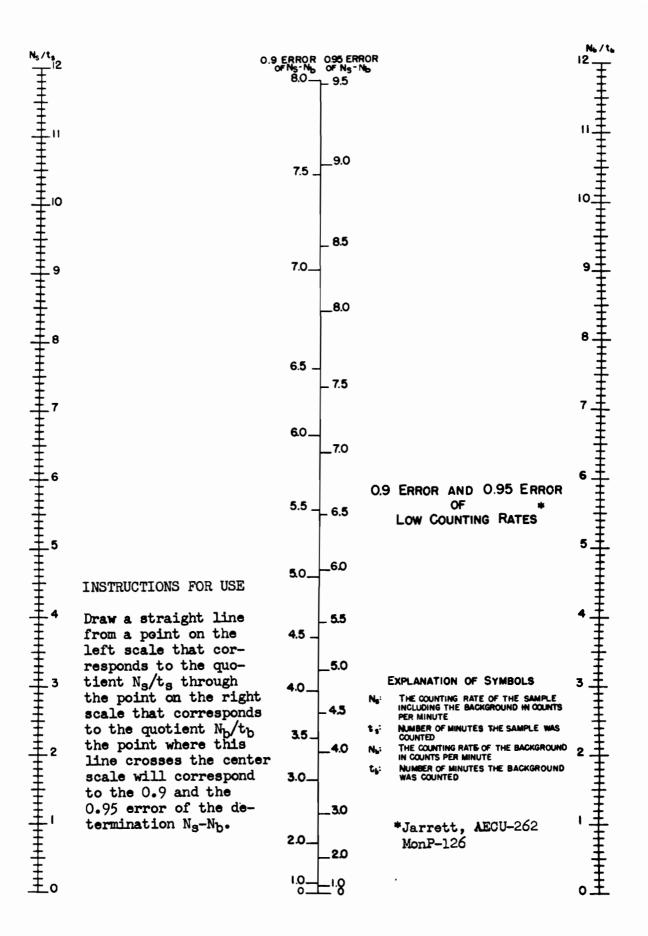
#Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillators.

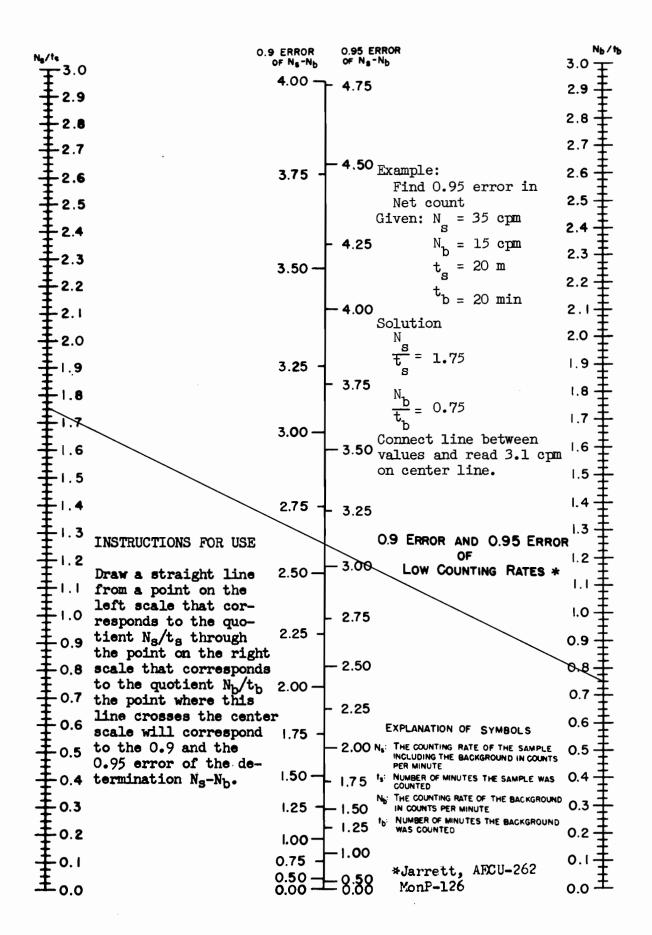
Actinium Series (4n + 3)*

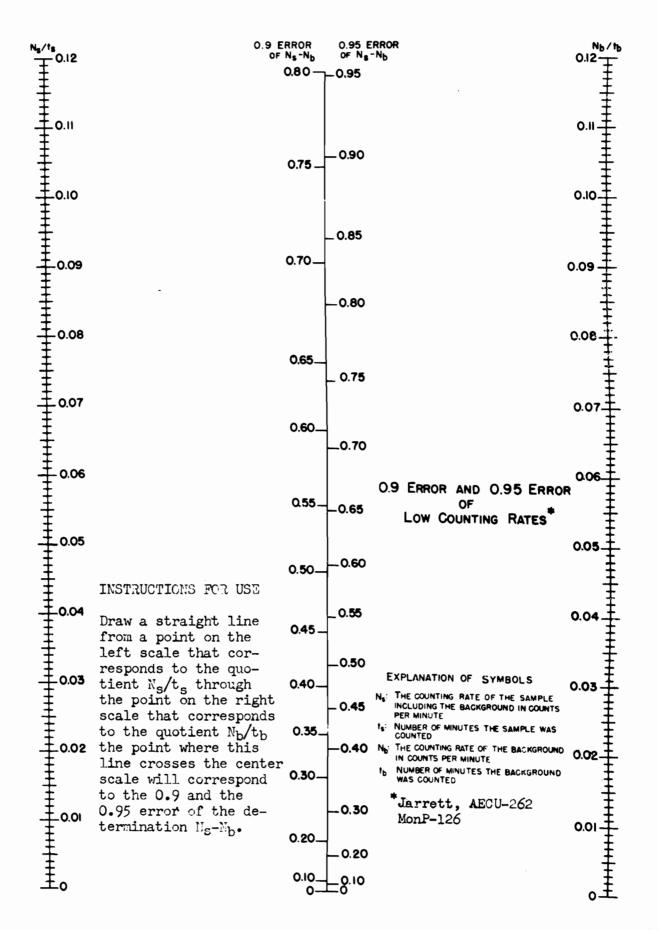
Nuclide	Historical	Helf-life	Major radiation energies (MeV) and intensities†									
	name		α	β	Υ							
235 U 92 U	Actinouranium	7.1 ×10 ⁸ y	4.37 (18%) 4.40 (57%) 4.58c‡ (8%)		0.143 (11%) 0.185 (54%) 0.204 (5%)							
aal 	Uranium Y	25.5h		0.140 (45%) 0.220 (15%) 0.305 (40%)	0.026 (2%) 0.084c (10%)							
sal Pa	Protoactinium	3.25x10⁴y	4.95 (22%) 5.01 (24%) 5.02 (23%)		0.027 (6%) 0.29c (6%)							
98.6% 1.4%	Actinium	21.6y	4.86c (0.18%) 4.95c (1.2%)	0.043 (~99%)	0.070 (0.08%)							
asiTh	Radioactinium	18.2d	5.76 (21%) 5.98 (24%) 6.04 (23%)		0.050 (8%) 0.237c (15%) 0.31c (8%)							
3839r	Actinium K	22m	5.44 (~0.005%)	1.15 (~100%)	0.050 (40%) 0.080 (13%) 0.234 (4%)							
223Ra	Actinium X	11.43d	5.61 (26%) 5.71 (54%) 5.75 (9%)		0.149c (10%) 0.270 (10%) 0.33c (6%)							
219 Rn	Emanation Actinon (An)	4.0s	6.42 (8%) 6.55 (11%) 6.82 (81%)		0.272 (9%) 0.401 (5%)							
215Po -100% .00023%	Actinium A	1.78me	7.38 (~100%)	0.74 (~.00023%)								
all Pb	Actinium B	36.1m		0.29 (1.4%) 0.56 (9.4%) 1.39 (87.5%)	0.405 (3.4%) 0.427 (1.8%) 0.832 (3.4%)							
*15At	Astatine	~0.1ms	8.01 (~100%)									
211 Bi Bi Bi 0.28% 99.7%	Actinium C	2.15m	6.28 (16%) 6.62 (84%)	0.60 (0.28%)	0.351 (14%)							
ali Po	Actinium C'	0.52s	7.45 (99%)		0.570 (0.5%) 0.90 (0.5%)							
*07T1	Actinium C"	4.79m.		1.44 (99.8%)	0.897 (0.16%)							
207 Pb	Actinium D	Stable										

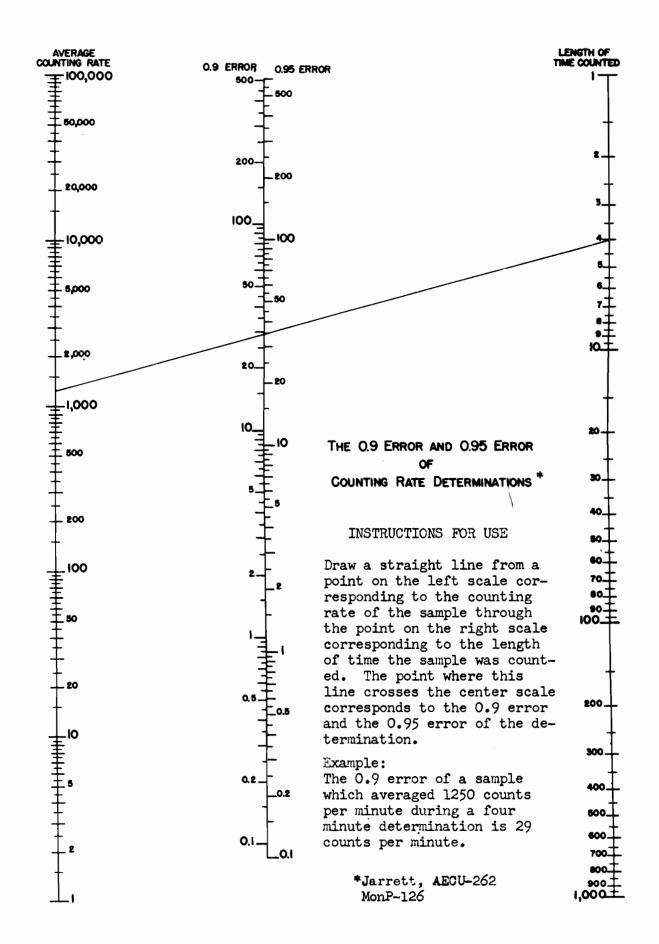
^{*}This expression describes the mass number of any member in this series, where m is an integer.

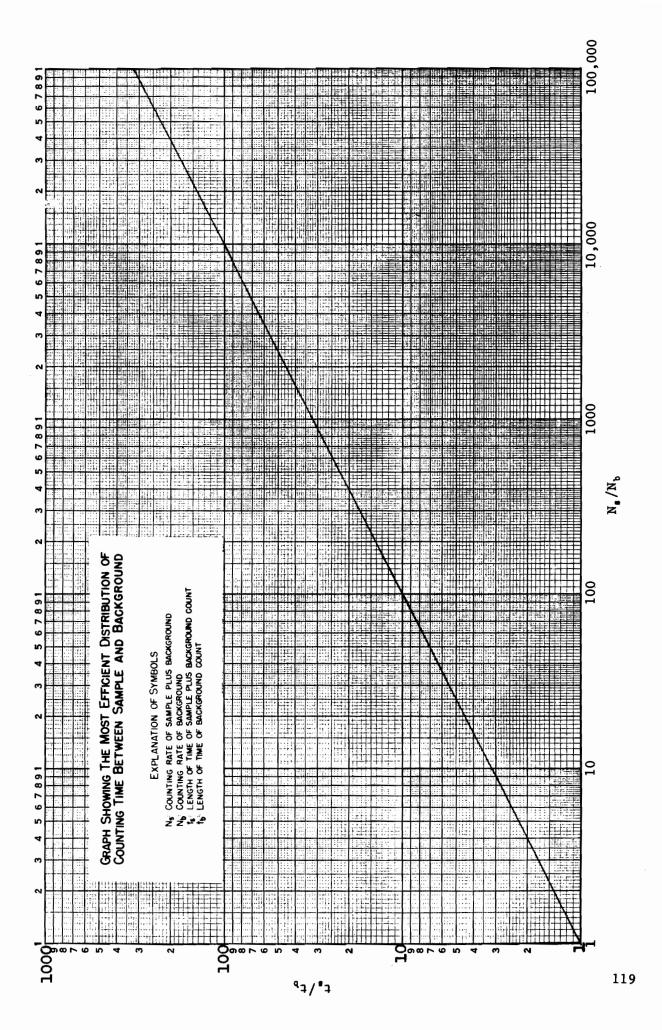

Example: **B07*Pb (4n + 3).....4(51) + 3 = 207

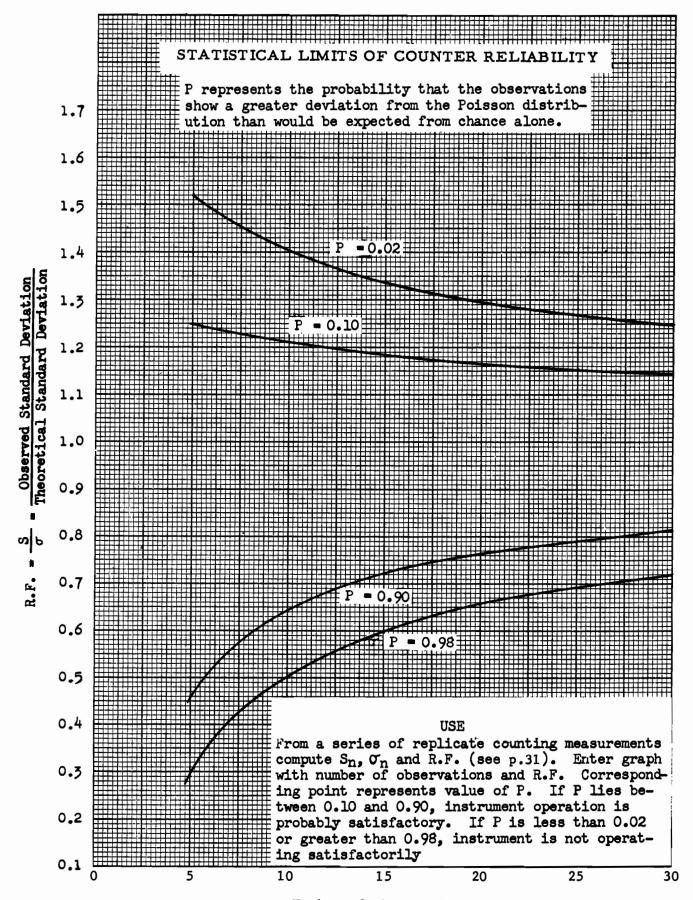

†Intensities refer to percentege of disintegrations of the nuclide itself, not to original parent of series.

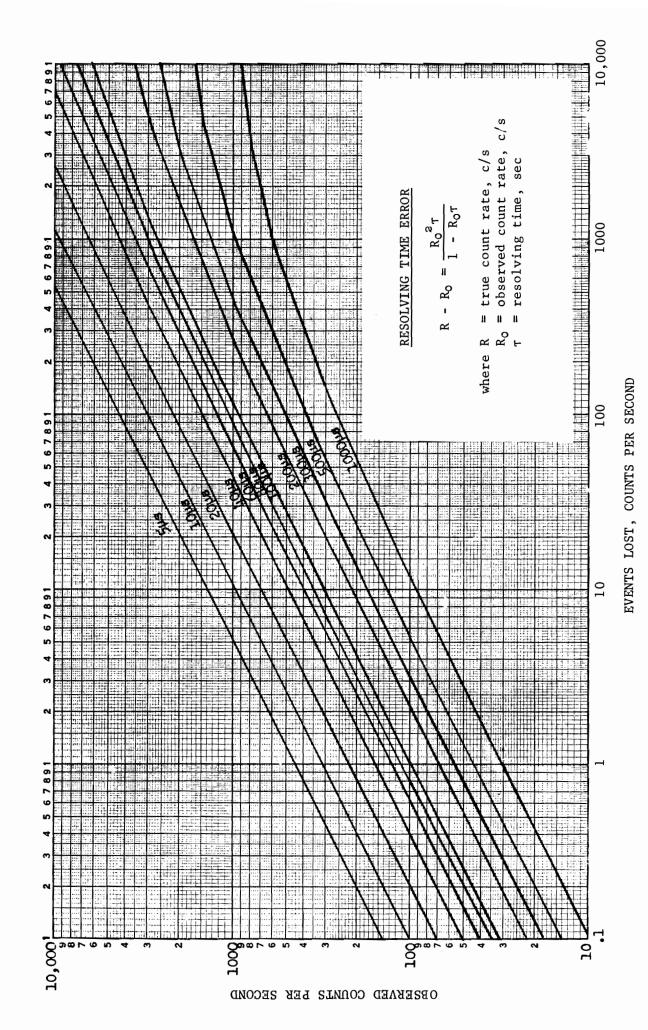

*Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillators.

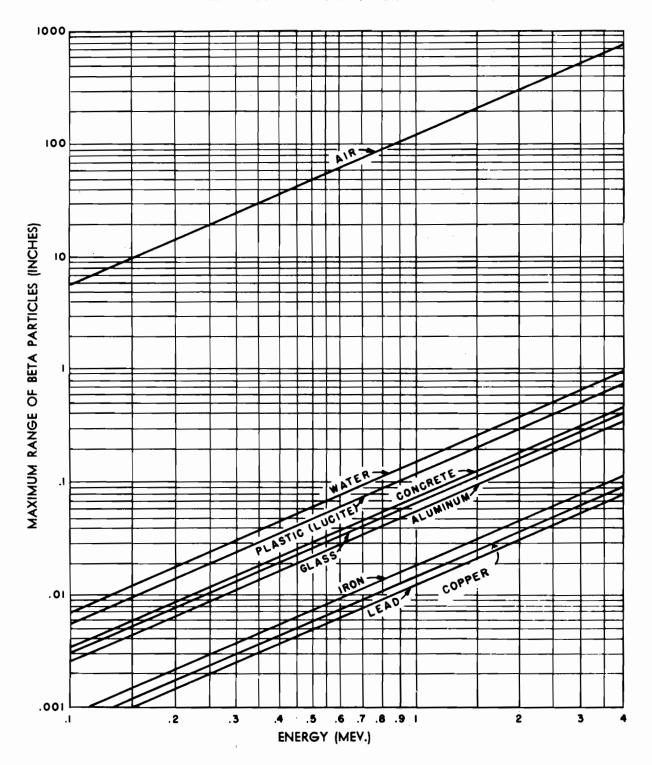

Deta taken from: Table of Isotopes and USNRDL-TR-802.


ERROR IN COUNTS PER MINUTE AS A FUNCTION OF TOTAL COUNT AND LENGTH OF COUNT. (95% CONFIDENCE LEVEL)



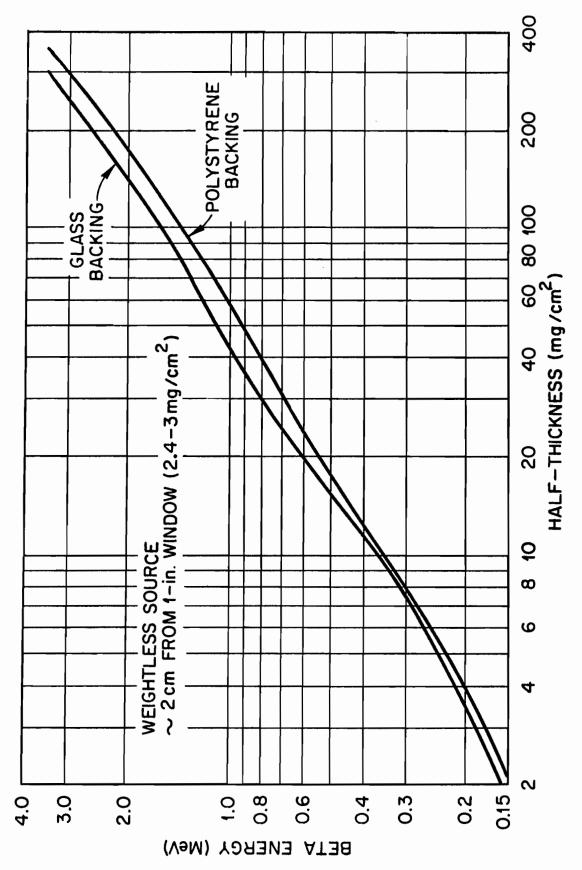




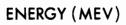


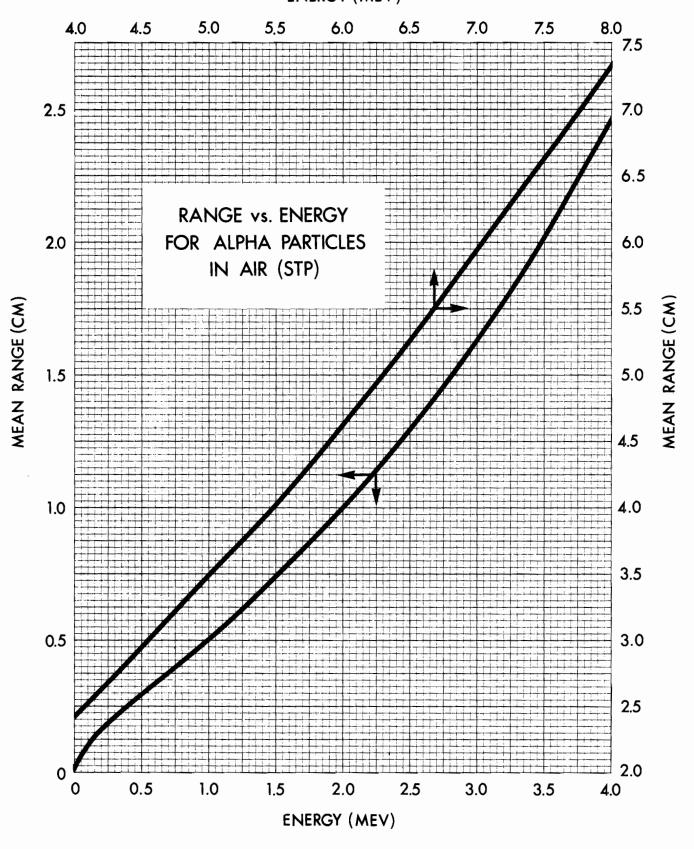
Number of observations

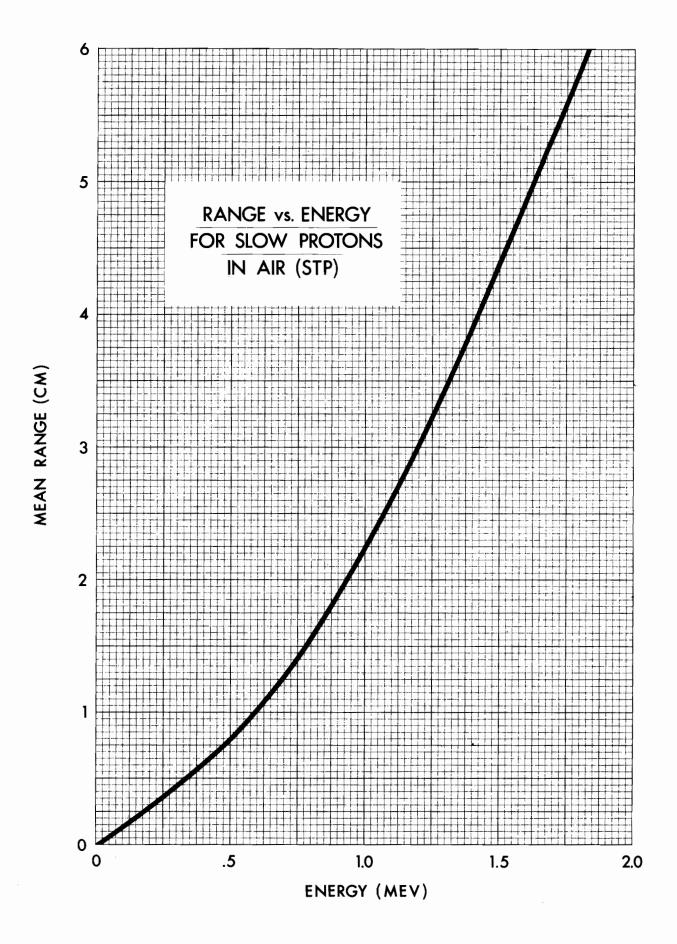
PENETRATION ABILITY OF BETA RADIATION



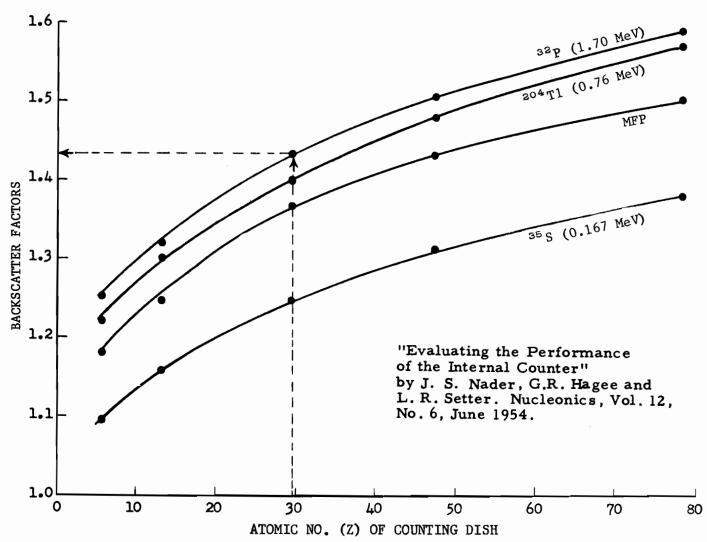
The maximum range of beta particles as a function of energy in the various materials indicated. (From SRI Report No. 361, "The Industrial Uses of Radioactive Fission Products". With permission of the Stanford Research Institute and the U. S. Atomic Energy Commission.)


10,000 5 ន Energy, MeV


BETA PARTICLE RANGE ENERGY CURVE


Range mg/cm²

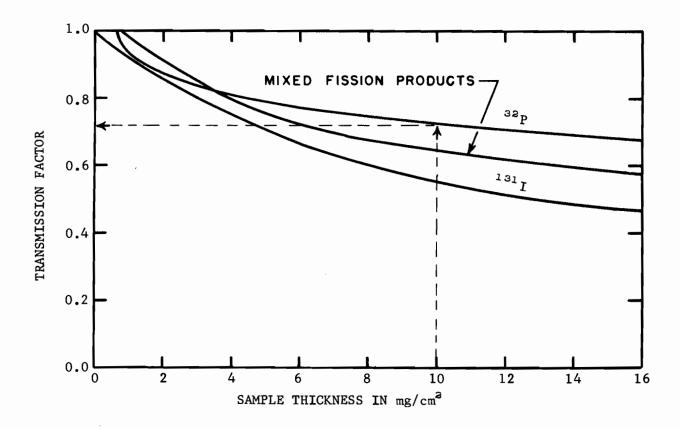
Beta Radiation Initial Half-Thickness in Aluminum vs. Maxımum Energy



Since internal proportional counters do not detect all beta rays emitted by a sample, it is necessary to divide the net counting rate by an appropriate efficiency correction decimal to determine the total beta emission. This efficiency (E), is the product of three factors--geometry (G), backscatter (B), and self-absorption, generally expressed in terms of a transmission factor (T): $E = G \times B \times T$.

GEOMETRY FACTOR (G)—Not all radiation from a sample is emitted in the direction of the detector. The geometry factor accounts for the fraction emitted in the proper direction. For internal proportional counters with hemispherical chambers, this factor is 0.50.

BACKSCATTER FACTOR (B)—The backscattering of beta rays is a function of their energy and the atomic number (Z) of the counting dish. The following curves may be conveniently used for estimating this factor. To illustrate their use, consider a ^{32}P sample in a copper counting dish (Z = 29). From the appropriate value on the abscissa, draw a vertical line until it intersects the curve for ^{32}P . A horizontal line projected from the point of intersection to the ordinate reveals the resultant factor to be about 1.43.



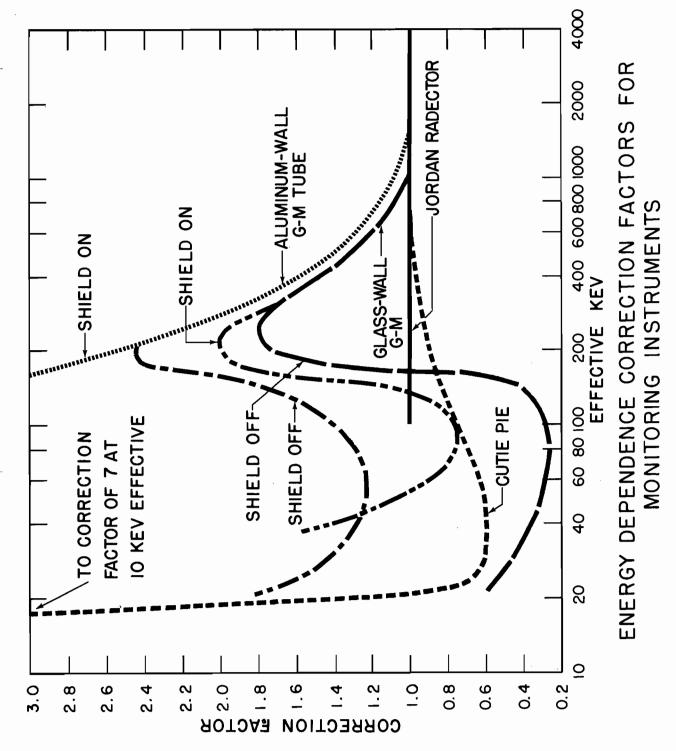
SELF-ABSORPTION OR TRANSMISSION FACTOR (T)—A fraction of the beta particles emitted by a sample may be absorbed within the sample itself. This loss, which increases with sample thickness, is known as self-absorption. For counting purposes, it may be conveniently expressed in terms of a transmission factor, the fraction of the emitted beta particles not absorbed within a sample.

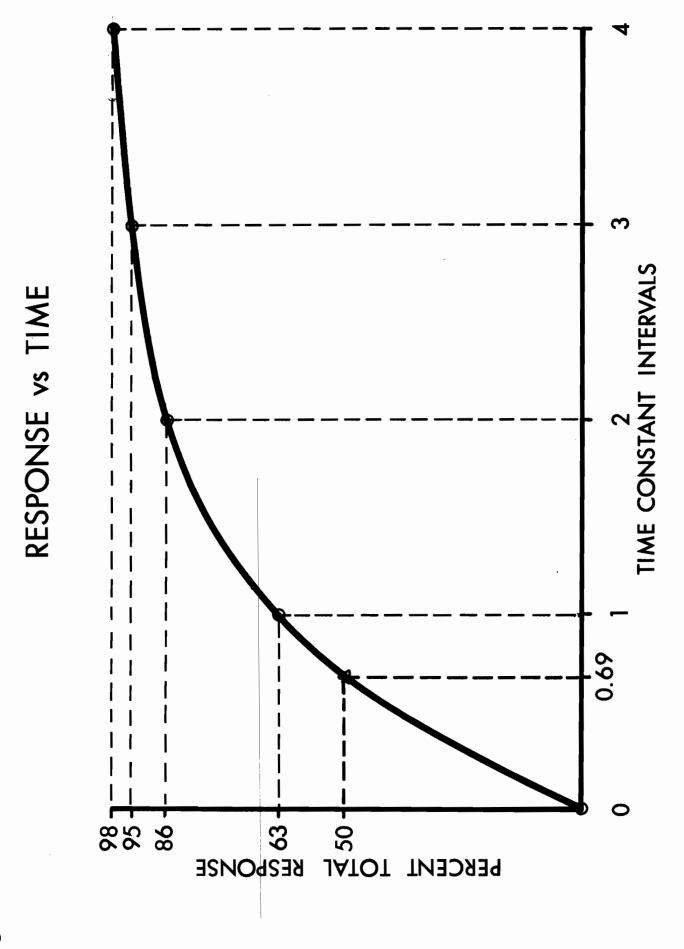
The transmission factor (T) may be estimated using the curves given below. If, for example, a sample containing ³²P weighs 200 milligrams and is evenly distributed on a 2-inch diameter dish, then the average sample thickness can be calculated to be 10 mg/cm². To estimate the factor, draw a vertical line from the appropriate value on the abscissa until it intersects the curve for ³²P. A horizontal line projected from the point of intersection to the ordinate reveals the resultant factor to be about 0.73.

OVERALL COUNTING EFFICIENCY (E) — The efficiency correction decimal fraction for the previous example, in which a sample containing ^{32}P was counted, would be: $E = 0.50 \times 1.43 \times 0.73 = 0.52$.

If the net sample counting rate was 1,000 counts per minute, the disintegration rate could be calculated to be: $dpm = net cpm \div E = 1,000 cpm \div 0.52 = 1,920 dpm$.

Data on this page obtained from: "Radioactivity Assay of Water and Industrial Wastes with Internal Proportional Counter," by L. R. Setter, A. S. Goldin, and J. S. Nader, Analytical Chemistry, Vol. 26, p. 1305, Aug. 1954.

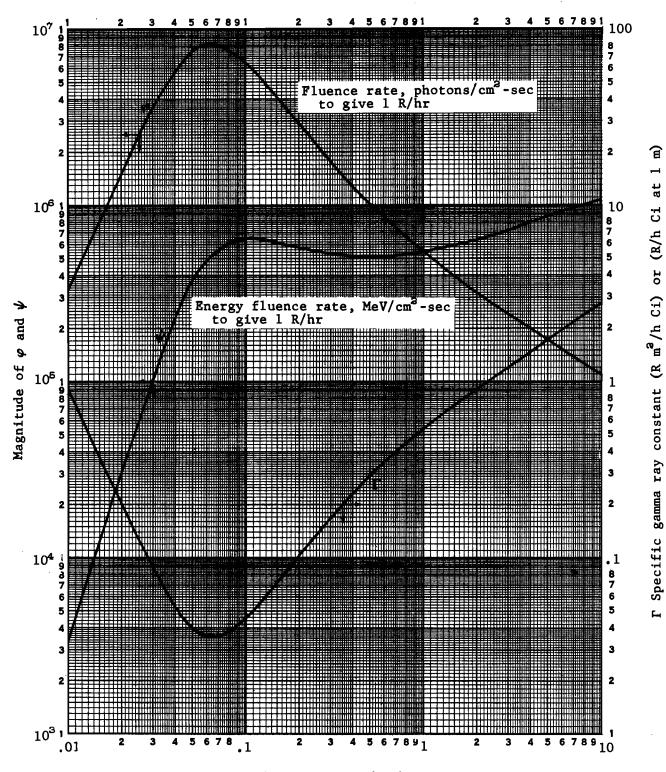

SECTION III RADIATION PROTECTION DATA


Pag
ENERGY DEPENDENCE OF MONITORING INSTRUMENTS
RESPONSE TIME CURVE
GAMMA RADIATION LEVELS FOR ONE CURIE OF SOME RADIONUCLIDES
FLUX DENSITY vs. PHOTON ENERGY
ATTENUATION AND COEFFICIENTS FOR GAMMA RADIATION In Water
LINEAR ENERGY ABSORPTION COEFFICIENTS IN AIR
MASS ATTENUATION COEFFICIENTS
VALUES OF THE MASS ENERGY-ABSORPTION COEFFICIENTS
NEUTRON CROSS SECTIONS For Indium and Cadmium
FAST NEUTRON ATTENUATION IN PARAFFIN AND WATER 144
DOSE BUILDUP FACTORS Point Isotropic Sources
TRANSMISSION OF GAMMA RAYS THROUGH LEAD, CONCRETE, AND IRON 148
X-RAY SHIELDING DESIGN Formula and Discussion
X-RAY OUTPUT (mR/mAs)
X-RAY CRITICAL-ABSORPTION AND EMISSION ENERGY
HALF-VALUE LAYER vs. PHOTON ENERGY
MEDICAL X-RAY FILM AND SCREEN SPEEDS
BACKSCATTER TABLES
DEPTH DOSE TABLES

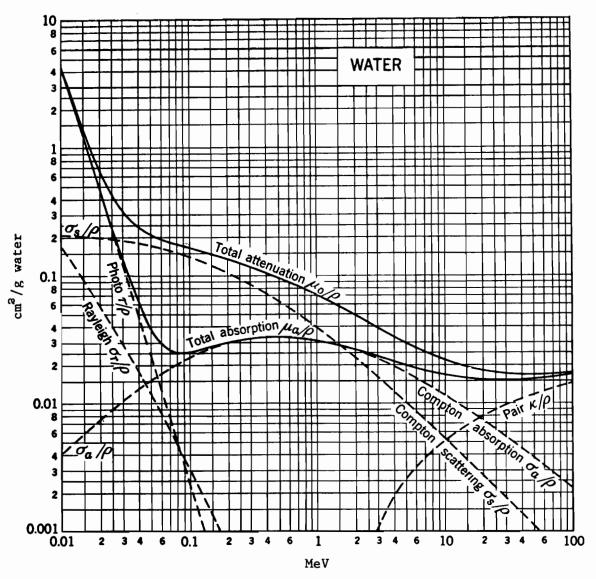
SECTION III

RADIATION PROTECTION DATA -- Continued

																												Page
NEUT	RON SOURCE	CHAR	ACT	ERI	ST	ICS	S.	•	•	•		•	•		•	•		•	•	•	•	•	•	•	•	•	•	170
DECO	NTAMINATIO	N MET	HOD	S																								
;	Personne1		•																									194
	Area and M																											
RULE	S OF THUME		•		•		•	•	•	•	•	•	•				•	•	•	•	•	•	•		•		•	204
RADI	ATION PROT	ECTIO	N G	UID	ES																							
(Concentrat	ions	in A	Air	aı	nd	Wa	ate	er																			206
	Accumulate	d Dos	e E	qui	va	lei	nts	s .	•	•						•					•						•	210
(Quality Fa	ctors	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	210
STAN	DARD MAN.																		•									211
	Mass of Or																											212
	Chemical C																											214
	Specificat	ions.	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•			•	215

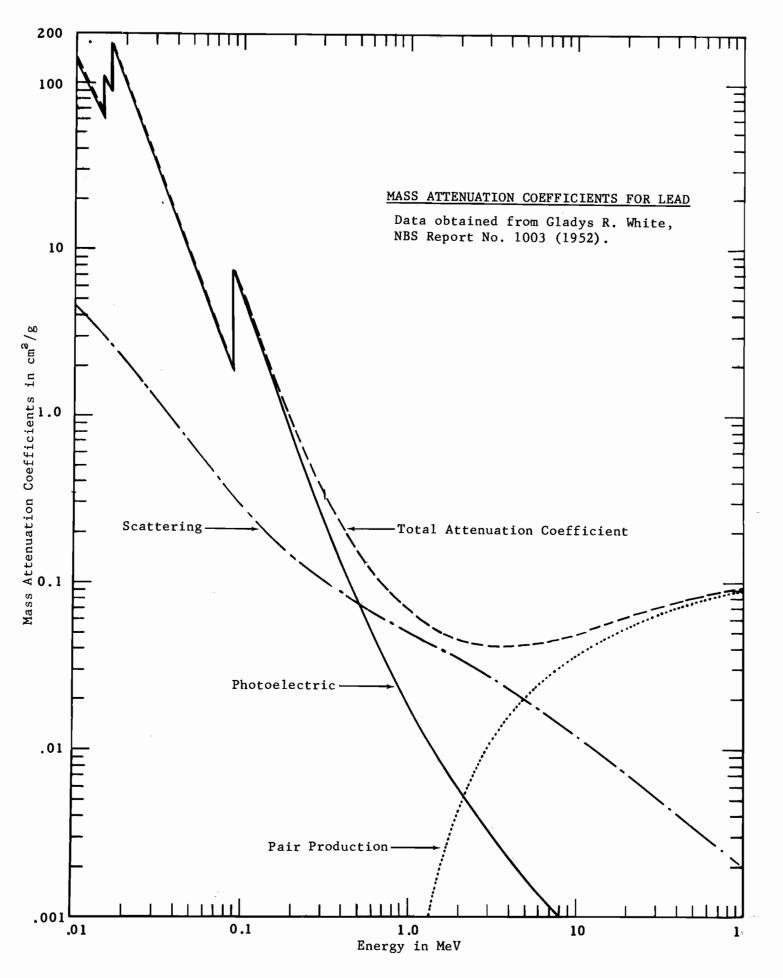


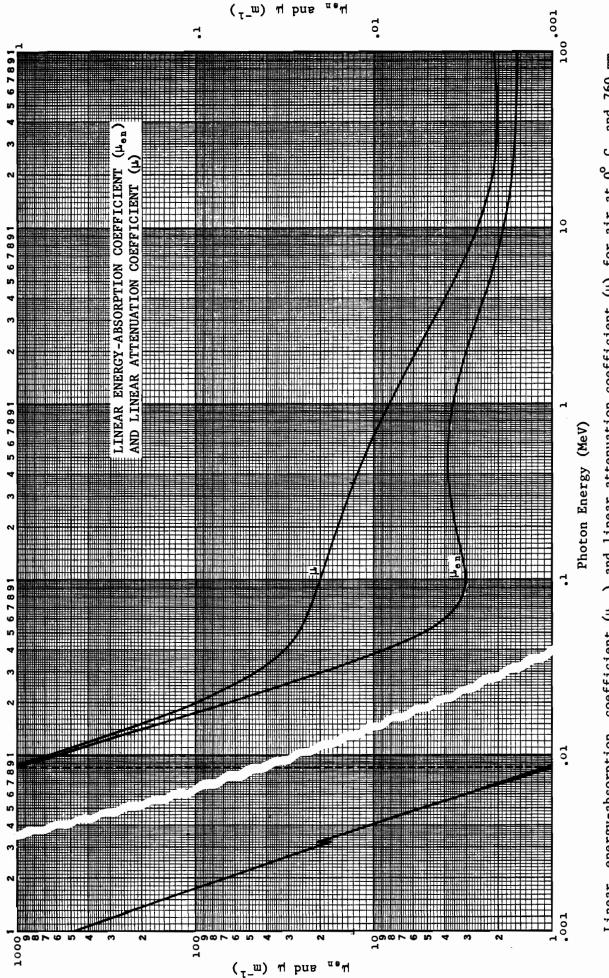
Nuclide	гt	Nuclide	r †	Nuclide	r†
Actinium-227	~2.2	Go1d-198	2.3	Potassium-43	5.6
Antimony-122	2.4	Gold-199	~0.9	Radium-226	8.25
Antimony-124	9.8	Hafnium-175	~2.1	Radium-228	~5.1
Antimony-125	~2.7	Hafnium-181	~3.1	Rhenium-186	~0.2
Arsenic-72	10.1	Indium-114m	~0.2	Rubidium-86	0.5
Arsenic-74	4.4	Iodine-124	7.2	Ruthenium-106	1.7
Arsenic-76	2.4	Iodine-125	~0.7	Scandium-46	10.9
Barium-131	~3.0	Iodine-126	2.5	Scandium-47	0.56
Barium-133	~2.4	Iodine-130	12.2	Selenium-75	2.0
Barium-140	12.4	Iodine-131	2.2	Silver-110m	14.3
Beryllium-7	~0.3	Iodine-132	11.8	Silver-111	~0.2
Bromine-82	14.6	Iridium-192	4.8	Sodium-22	12.0
Cadmium-115m	~0.2	Iridium-194	1.5	Sodium-24	18.4
Calcium-47	5.7	Iron-59	6.4	Strontium-85	3.0
Carbon-11‡	5.9	Krypton-85	~0.04	Tantalum-182	6.8
Cerium-141	0.35	Lanthanum-140	11.3	Tellurium-121‡	3.3
Cerium-144	~0.4	Lutecium-177	0.09	Tellurium-132	2.2
Cesium-134	8.7	Magnesium-28	15.7	Thulium-170	0.025
Cesium-137	3.3	Manganese-52	18.6	Tin-113	~1.7
Chlorine-38‡	8.8	Manganese-54	4.7	Tungsten-185	~0.5
Chromium-51	0.16	Manganese-56	8.3	Tungsten-187	3.0
Cobalt-56	17.6	Mercury-197	~0.4	Uranium-234	~0.1
Cobalt-57	0.9	Mercury-203	1.3	Vanadium-48	15.6
Cobalt-58	5.5	Molybdenum-99	~1.8	Xenon-133	0.1
Cobalt-60	13.2	Neodymium-147	0.8	Ytterbium-175	0.4
Copper-64	1.2	Nickel-65	~3.1	Yttrium-88	14.1
Europium-152	5.8	Niobium-95	4.2	Yttrium-91	0.01
Europium-154	~6.2	Osmium-191	~0.6	Zinc-65	2.7
Europium-155	~0.3	Palladium-109	0.03	Zirconium-95	4.1
Gallium-67	~1.1	Platinum-197	~0.5		
Gallium-72	11.6	Potassium-42	1.4		

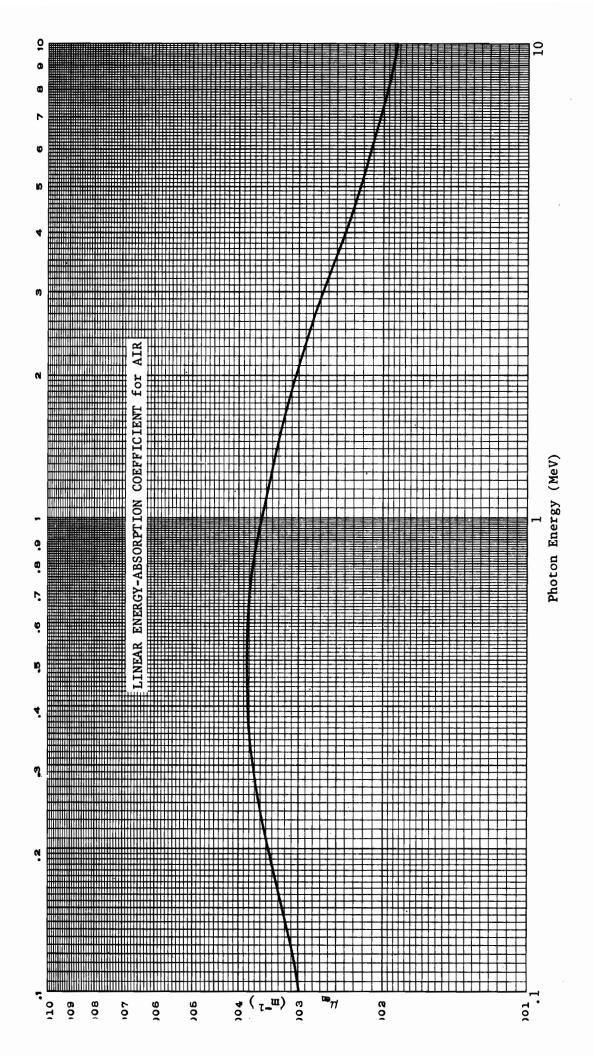

^{*} Jaeger, R. G., et al., Engineering Compendium on Radiation Shielding, Vol. 1, (New York: Springer-Verlag, 1968), pp. 21-30.

[†] $\Gamma = R - cm^2/hr - mCi$ or $\Gamma/10 = R/hr$ at 1 m/Ci

[‡] A Manual of Radioactivity Procedures (National Bureau of Standards Handbook No. 80 [Washington, D.C.: Supt. of Docs., U.S. Government Printing Office, Nov. 1961)], Appendix A, pp. 137-140.




Photon energy (MeV)


MASS ATTENUATION COEFFICIENTS FOR GAMMA RAYS IN WATER

From The Atomic Nucleus, by R. D. Evans, Copyright 1955, by permission of McGraw-Hill Book Co., Inc.

Engineering Compendium on Radiation Shielding, Vol. 1 (1968), pp. 183 and 184. The μ_{en} for the range .003 to .01 are based on the μ values adjusted for Compton and coherent scattering. The range below .003 is extrapo-Linear energy-absorption coefficient (μ_{e_n}) and linear attenuation coefficient (μ) for air at 0° C. and 760 mm in units of inverse meters as functions of photon energy in MeV. The attenuation coefficients from .003 to 100 Circular 583, 1957, and its supplement, 1959. The energy-absorption coefficients for .01 to 100 MeV were derived from data published in lated and involves an uncertainty of about \pm 250 at .001, \pm 50 at .0015, and \pm 15 at .002. MeV were derived from mass attenuation coefficients (with coherent) given in NBS

MASS ATTENUATION COEFFICIENTS*

Photon Energy	н	Ве	В	С	N	o	Na	Mg	A 1	Si	P	s
keV												
10	0.385	0.593	1.16	2.28	3.73	5.78	15.5	20.8	26.3	34.2	40.8	51.0
15	.376	.300	0.463	0.787	1.18	1.74	4.58	6.23	7.93	10.3	12.4	15.6
20	.369	.227	.295	.429	0.596	0.826	2.01	2.72	3.41	4.39	5.31	6.66
30	.357	.181	.206	.251	.304	.372	0.705	0.918	1.12	1.41	1.66	2.07
40	.346	.165	.180	.206	.229	.257	.395	.485	0.567	0.696	0.797	0.968
50	.335	.156	.167	.187	.198	.213	.281	.329	.369	.437	.489	.579
60	.326	.150	.159	.176	.182	.191	.228	.258	.280	.322	.350	.404
80	.309	.140	.147	.161	.164	.168	.181	.196	.203	.224	.234	.259
100	.294	.133	.139	.152	.153	.156	.159	.169	.171	.184	.187	.202
150	.265	.119	.124	.135	.135	.136	.134	.140	.138	.145	.144	.151
200	.243	.109	.114	.123								.130
300	.211	.0945	.0984	.107	.123 .107	.124 .107	.120 .103	.125 .106	.122 .104	.128 .108	.125 .106	.109
		.0743	.0704		.107	.107	.103	.100	.104	.100	.100	.107
400	. 189	.0847	.0883	.0957	.0954	.0957	.0918	.0949	.0927	.0962	.0936	.096
500	.173	.0773	.0806	.0872	.0871	.0873	.0836	.0864	.0844	.0875	.0850	.0878
600	.160	.0715	.0745	.0807	.0805	.0808	.0774	.0797	.0780	.0808	.0784	.081
800 MeV	.140	.0629	.0655	.0709	.0708	.0708	.0678	.0701	.0684	.0707	.0688	.070
1.0	.126	.0565	.0589	.0637	.0636	.0637	.0609	.0628	.0613	.0635	.0617	.063
1.5	.103	.0460	.0479	.0519	.0518	.0518	.0497	.0512	.0500	.0518	.0503	.051
2.0	.0875	.0394	.0479	.0319	.0445	.0446	.0497	.0312	.0300	.0318	.0303	.044
3.0	.0691	.0314	.0328	.0357	.0358	.0360	.0349	.0361	.0354		.0359	.037
3.0	.0091	•0314	÷0326	.0337	.0336	.0360	.0349	.0361	.0334	.0368	.0339	.037
4	.0581	.0266	.0280	.0305	.0307	.0310	.0304	.0316	.0311	.0324	.0317	.032
5	.0505	.0235	.0248	.0271	.0274	.0278	.0276	.0287	.0284	.0297	.0292	.030
6	.0450	.0212	.0225	.0247	.0251	.0255	.0256	.0268	.0266	.0279	.0275	.028
8	.0375	.0182	.0195	.0216	.0221	.0226	.0232	.0244	.0244	.0257	.0255	.026
10	.0325	.0163	.0175	.0196	.0202	.0209	.0218	.0231	.0231	.0246	.0245	.025
15	.0254	.0136	.0149	.0170	.0178	.0186	.0202	.0216	.0219	.0234	.0236	.025
20	.0215	.0122	.0137	.0158	.0167	.0177	.0196	.0212	.0216	.0233	.0235	.025
30	.0174	.0110	.0125	.0147	.0158	.0170	.0196	.0213	.0219	.0238	.0242	.026
40	.0154	.0104	.0121	.0144	.0156	.0169	.0199	.0217	.0224	.0245	.0250	.027
50	.0141	.0102	.0119	.0142	.0156	.0170	.0202	.0222	.0230	.0252	.0257	.027
60	.0133	.0100	.0118	.0143	.0157	.0172	.0206	.0227	.0235	.0257	.0264	.028
80	.0124	.00991	.0118	.0144	.0160	.0175	.0213	.0235	.0244	.0267	.0274	.029
100	.0119	.00992	.0119	.0146	.0163	0170	0210	02/1	0251	0275	0202	.030
150	.0113	.0100	.0122	.0150	.0168	.0179 .0186	.0218	.0241 .0253	.0251	.0275 .0289	.0283	.032
200	.0113	.0102	.0124	.0153	.0172	.0191	.0235	.0253	.0263	.0299	.0307	.032
300	.0111	.0104	.0128	.0159	.0178	.0198	.0244	.0270	.0271	.0310	.0319	.034
400		0106						227				001
400 500	.0112 .0113	.0106	.0130	.0162	.0182	.0202	.0249	.0276	.0288	.0317	.0327	.035
600		.0108	.0132	.0164	.0185	.0205	.0252	.0280	.0292	.0322	.0332	.036
800	.0113 .0115	.0109 .0111	.0134	.0166	.0187 .0190	.0207	.0255	.0283	.0295	.0325	.0335	.036
GeV	.0115	.0111	.0136	.0169	.0190	.0210	.0259	.0287	.0300	.0330	.0340	.03/
1	.0116	.0112	.0137	.0171	.0192	.0212	.0261	.0290	.0302	.0333	.0344	.037
1.5	.0117	.0114	.0140	.0173	.0195	.0216	.0265	.0293	.0307	.0338	.0348	.038
2	.0118	.0115	.0141	.0175	.0196	.0218	.0267	.0296	.0309	.0341	.0351	.038
3	.0120	.0116	.0143	.0177	.0199	.0220	.0269	.0298	.0312	.0344	.0354	.038
4	.0120	.0117	.0144	.0178	.0200	.0221	.0270	.0300	.0313	.0345	.0356	.038
5	.0121	.0118	.0144	.0179	.0200	.0222	.0271	.0301	.0314	.0346	.0357	.038
6	.0121	.0118	.0145	.0179	.0201	.0222	.0272	.0302	.0315	.0347	.0358	.039
8	.0122	.0119	.0145	.0180	.0202	.0223	.0272	.0302	.0316	.0348	.0359	.039
10	.0122	.0119	.0146	.0180	.0202	.0223	.0273	.0303	.0316	.0348	.0359	.039
15	.0122	.0119	.0146	.0181	.0203	.0224	.0274	.0303	.0317	.0349	.0360	.03
20	.0123	.0120	.0147	.0181	.0203	.0224	.0274	.0304	.0317	.0350	.0361	.039
30	.0123	.0120	.0147	.0182	.0203	.0225	.0274	.0304	.0318	.0350	.0361	.039
40	.0123	.0120	.0147	.0182	.0203	.0225	.0275	.0305	.0318	.0351	.0361	.03
50	.0123	.0120			.0203							
60	.0123	.0120	.0147	.0182 .0182	.0204	.0225 .0225	.0275	.0305	.0318	.0351	.0362	.039
80	.0123	.0120	.0147 .0147	.0182	.0204	.0225	.0275 .0275	.0305	.0318	.0351 .0351	.0362	.039
- 5									.0310	.0351	.0302	
100	.0123	.0120	.0147	.0182	.0204	.0225	.0275	.0305	.0319	.0351	.0362	.03

^{*} Coefficients are "Total with Coherent." Unit is \mbox{cm}^2/\mbox{g} .

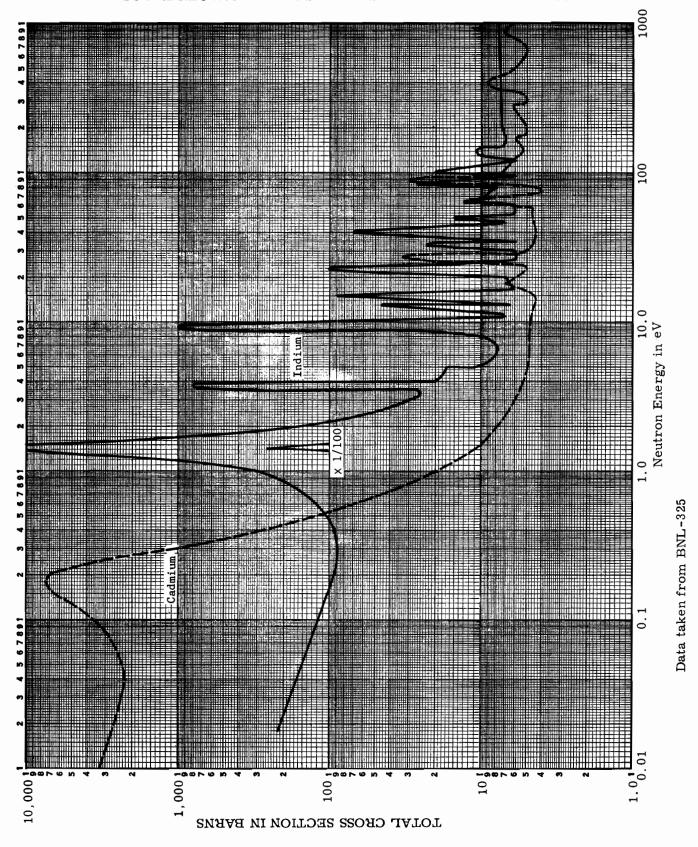
Source: Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV (NSRDS-NBS 29), 1969.

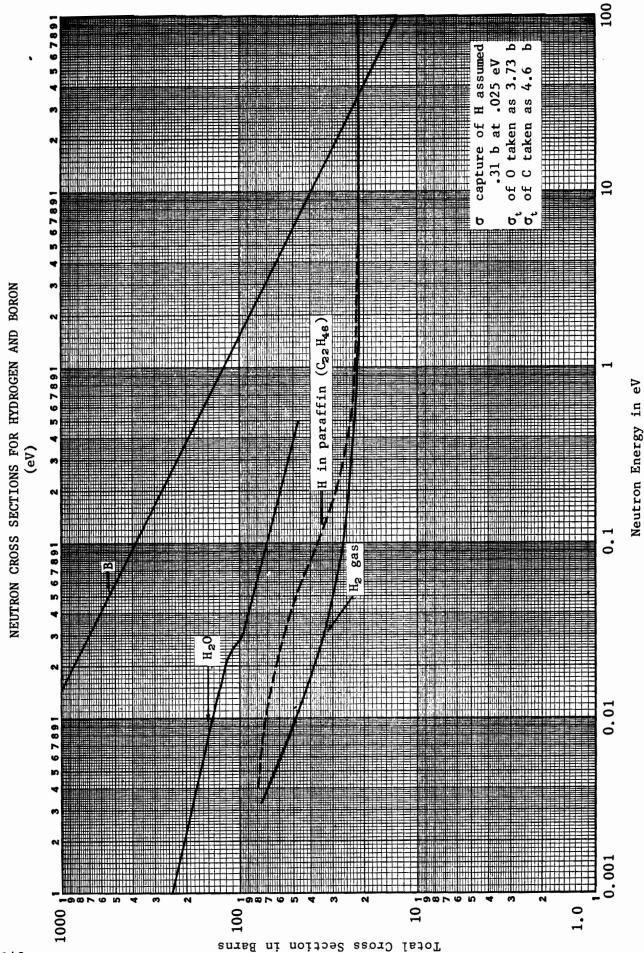
keV 10 64.5 80.9 96.5 15 19.9 25.0 30.1 20 8.53 10.8 13.0 30 2.62 3.30 3.99 40 1.20 1.49 1.78 50 0.687 0.843 0.998 60 .460 .560 .648 80 .275 .324 .365 100 .204 .233 .256 150 .143 .158 .168 200 .121 .132 .138 300 .0996 .108 .112 400 .0878 .0949 .097 500 .0795 .0859 .088 600 .0733 .0792 .081 800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 <t< th=""><th>Fe</th><th>oton ergy Ar</th><th>Cu</th><th>Мо</th><th>Sn</th><th>I</th><th>w</th><th>Pb</th><th>U</th><th>H^SO</th></t<>	Fe	oton ergy Ar	Cu	Мо	Sn	I	w	Pb	U	H ^S O
15										
20 8.53 10.8 13.0 30 2.62 3.30 3.99 40 1.20 1.49 1.78 50 0.687 0.843 0.998 60 .460 .560 .648 80 .275 .324 .365 100 .204 .233 .256 150 .143 .158 .168 200 .121 .132 .138 300 .0996 .108 .112 400 .0878 .0949 .097 500 .0795 .0859 .088 600 .0733 .0792 .081 800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .034 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 50 .0275 .0310 .033 60 .0284 .0319 .034 50 .0275 .0310 .033 60 .0284 .0319 .034 50 .0275 .0310 .033 60 .0284 .0319 .034 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 6eV 1 .0375 .0423 .045 1.5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 10 .0393 .0444 .047	173.	10 64.5	224.	86.2	141.	161.	95.5+	133. +	178.	5.18
30 2.62 3.30 3.99 40 1.20 1.49 1.78 50 0.687 0.843 0.998 60 .460 .560 .648 80 .275 .324 .365 100 .204 .233 .256 150 .143 .158 .168 200 .121 .132 .138 300 .0996 .108 .112 400 .0878 .0949 .097 500 .0795 .0859 .088 600 .0733 .0792 .081 800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .034 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .025	56.4	15 19.9	74.2	28.2	47.0	55.2	142.	115. + 85.7 ⁺	63.9 71.0	1.58
40 1.20 1.49 1.78 50 0.687 0.843 0.998 60 .460 .560 .648 80 .275 .324 .365 100 .204 .233 .256 150 .143 .158 .168 200 .121 .132 .138 300 .0996 .108 .112 400 .0878 .0949 .097 500 .0795 .0859 .088 600 .0733 .0792 .081 800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .0344 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0278 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0389 .0439 .047 5 .0389 .0439 .0447 8 .0391 .0441 .047	25.5	20 8.53	33.5	81.7*	21.3.	26.0	67.0		71.0	0.775
50	8.13	30 2.62	10.9	28.8	41.3	8.67 *	23.0	29.7	41.0	.370
60	3.62	40 1.20	4.89	13.3	19.4	22.7	10.7	14.0	19.7	.267
80 .275 .324 .365 100 .204 .233 .256 150 .143 .158 .168 200 .121 .132 .138 300 .0996 .108 .112 400 .0878 .0949 .097 500 .0795 .0859 .088 600 .0733 .0792 .081 800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .0344 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 80 .0250 .0368 .039 300 .0348 .0337 .040 40 .0366 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 3 .0387 .0438 .047 5 .0389 .0439 .0440 8 .0391 .0441 .047	1.94	50 0.687	2.62	7.20	10.7	12.6	5.91	7.81	11.1	.227
100	1.20	60 .460	1.62	4.41	6.53	7.78	3.65	4.87	6.96	.206
150	0.595	80 .275	0.772	2.02	3.02	3.65	7.89	2.33*	3.35	.184
200	.370	00 .204	.461	1.11	1.68	2.00	4.43	5.40	1.91*	.171
300 .0996 .108 .112 400 .0878 .0949 .097 500 .0795 .0859 .088 600 .0733 .0792 .081 800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .034 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20	.196		.223	0.428	0.614	0.714	1.57	1.97	2.56	.151
400	.146	00 .121	.157	.245	.328	.372	0.777	0.991	1.28	.137
500 .0795 .0859 .088 600 .0733 .0792 .081 800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .034 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 <td>.110</td> <td>00 .099</td> <td>.112</td> <td>.139</td> <td>.164</td> <td>.178</td> <td>.320</td> <td>. 404</td> <td>0.509</td> <td>.119</td>	.110	00 .099	.112	.139	.164	.178	.320	. 404	0.509	.119
600	.0940		.0941	.105	.116	.122	.190	.231	.286	.106
800 .0641 .0692 .071 MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .034 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 20 .0244 .0273 .038 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033	.0840	00 .079	.0836	.0883	.0946	.0976	.136	.161	.193	.0968
MeV 1.0 .0576 .0621 .063 1.5 .0470 .0506 .052 2.0 .0407 .0439 .045 3.0 .0338 .0366 .037 4 .0302 .0328 .034 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 300 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 4 .0387 .0423 .045 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .0446 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 10 .0391 .0442 .047 11 .0393 .0443 .047 20 .0393 .0444 .047	.0769	00 .073	.0762	.0788	.0816	.0835	.108	.125	.146	.0896
1.0			.0660	.0661	.0669	.0676	.0799	.0885	.0997	.0786
1.5	.0599		.0589	.0583	.0578	.0581	.0654	.0708	.0776	.0707
2.0			.0480	.0470	.0463	.0464	.0497	.0517	.0548	.0575
3.0 .0338 .0366 .0378 4 .0302 .0328 .0344 5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .0377 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 300 .0348 .0393 .042 400 .0356 .0402 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 3 .0387 .0438 .047 5 .0389 .0430 .046 4 .0387 .0438 .047 5 .0389 .0430 .046 4 .0387 .0438 .047 5 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0444 .047			.0420	.0415	.0410	.0411	.0437	.0455	.0475	.0494
5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 <t< td=""><td></td><td></td><td>.0360</td><td>.0366</td><td>.0367</td><td>.0370</td><td>.0402</td><td>.0418</td><td>.0438</td><td>.0397</td></t<>			.0360	.0366	.0367	.0370	.0402	.0418	.0438	.0397
5 .0280 .0306 .031 6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 <t< td=""><td>.0331</td><td>4 030</td><td>.0332</td><td>.0349</td><td>.0355</td><td>.0359</td><td>.0400</td><td>.0416</td><td>.0435</td><td>.0340</td></t<>	.0331	4 030	.0332	.0349	.0355	.0359	.0400	.0416	.0435	.0340
6 .0267 .0291 .030 8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 330 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0449 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047			.0318	.0344	.0354	.0359	.0407	.0424	.0445	.0303
8 .0251 .0276 .028 10 .0244 .0270 .028 15 .0244 .0268 .028 20 .0244 .0273 .028 30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 3 .0387 .0438 .047 5 .0389 .0432 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 10 .0391 .0442 .047 10 .0391 .0442 .047 10 .0391 .0442 .047 10 .0393 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047			.0310	.0343	.0357	.0364	.0416	.0435	.0455	.0277
15			.0306	.0350	.0369	.0378	.0439	.0459	.0480	.0243
15	.0298	10 02/	.0308	.0362	.0385	.0395	.0464	.0484	.0506	.0222
20			.0323	.0393	.0425	.0438	.0524	.0548	.0573	.0194
30 .0255 .0286 .030 40 .0266 .0299 .031 50 .0275 .0310 .033 60 .0284 .0319 .034 80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0444 .047			.0323	.0470	.0461	.0476	.0577	.0606		.0181
50			.0368	.0470	.0517	.0536	.0659	.0696		.0171
50	.0365	/n n26	.0391	.0505	.0557	.0578	.0716	.0757	.0799	.0167
60			.0410	.0532	.0588	.0611	.0760	.0804		.0167
80 .0296 .0334 .035 100 .0306 .0345 .037 150 .0325 .0368 .039 200 .0334 .0377 .040 300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047			.0425	.0553	.0613	.0637	.0794	.0841		.0167
150			.0448	.0586	.0651	.0676	.0845	.0896		.0170
150	.0432	00 030	.0465	.0609	0677	.0704	.0881	.0934	.0984	.0172
200			.0494	.0648	.0677 .0721	.0750	.0939	.0996		.0178
300 .0348 .0393 .042 400 .0356 .0402 .043 500 .0361 .0408 .043 600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047							.0976		.110	.0182
500			.0511	.0672 .0700	.0748 .0780	.0778 .0811	.102	.103	.115	.0188
500	0506	00 035	0544	0716	0700	0030	104	111	117	.0192
600 .0365 .0412 .044 800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047			.0544 .0552	.0716 .0727	.0798	.0830	.104 .106	.111	.117 .119	.0192
800 .0371 .0419 .045 GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047			.0558	.0735	.0819	.0851	.107	.113	.121	.0197
GeV 1 .0375 .0423 .045 1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047			.0566	.0745	.0831	.0864	.108	.115	.122	.0200
1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047	.0327		.0500	.0745	.0031	.0004	.100	.113	••••	.0200
1.5 .0380 .0429 .046 2 .0382 .0432 .046 3 .0386 .0436 .0436 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047	.0532	1 .037	.0572	.0753	.0838	.0871	.109	.116	.123	.0202
2 .0382 .0432 .046 3 .0386 .0436 .046 4 .0387 .0438 .047 5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047		1.5 .038	.0579	.0762	.0849	.0884		.118	.125	.0205
3 .0386 .0436 .0466 4 .0387 .0438 .0477 5 .0389 .0439 .0477 6 .0389 .0440 .0477 8 .0391 .0441 .0477 10 .0391 .0442 .0477 15 .0392 .0443 .0477 20 .0393 .0443 .0477 30 .0393 .0444 .047			.0583	.0767	.0856	.0890	.111	.118	.126	.0206
5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047	.0548		.0588	.0773	.0862	.0896		.119	.127	.0208
5 .0389 .0439 .047 6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047	.0550	4 .038	.0590	.0777	.0865	.0900	.113	.120	.127	.0210
6 .0389 .0440 .047 8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047		5 .038	.0591	.0779	.0867	.0902	.113	.120	.128	.021
8 .0391 .0441 .047 10 .0391 .0442 .047 15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047		6 .038	.0593	.0780	.0868	.0904		.120	.128	.0211
15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047			.0594	.0781	.0870	.0905	.113	.120	.128	.0211
15 .0392 .0443 .047 20 .0393 .0443 .047 30 .0393 .0444 .047	.0555	10 .039	.0595	.0783	.0871	.0906	.114	.121	.128	.0212
20 .0393 .0443 .047 30 .0393 .0444 .047			.0596	.0785	.0873	.0908		.121	.129	.0213
30 .0393 .0444 .047			.0596	.0785	.0874	.0910		.121	.129	.0213
40 .0393 .0445 .047			.0598	.0786	.0875	.0911	.114	.121	.129	.0213
UJJJ .U44J .U4/	.0557	40 039	.0598	.0786	.0876	.0911	.114	.121	.129	.0213
50 .0393 .0445 .047			.0598	.0786	.0877	.0911		.121	.129	.0213
60 .0394 .0445 .047			.0598	.0787	.0877	.0912		.121	.129	.0214
80 .0394 .0445 .047			.0598	.0788	.0877			.121	.129	.0214
100 .0394 .0445 .047	.0555	00 .039	.0598	.0788	.0877	.0912	.114	.121	.129	.0214

^{*} K edge, + L edge-- Mo 20keV 12.6, 81.7; Sn 29.2keV 7.54, 44.3; I 33.2keV 6.62, 36.4; W 10.2keV 90.7, 235.; 11.5keV 170., 235.; 12.1keV 206., 248.; 69.5keV 2.49; 11.3; Pb 13.0keV 67.8, 166.; 15.2keV 112., 146.; 15.9keV 130., 157.; 88.0keV 1.83, 7.45; U 17.2keV 45.8, 106.; 20.9keV 62.7, 88.0; 21.8keV 79.8, 91.8; 116keV 1.34, 4.86.

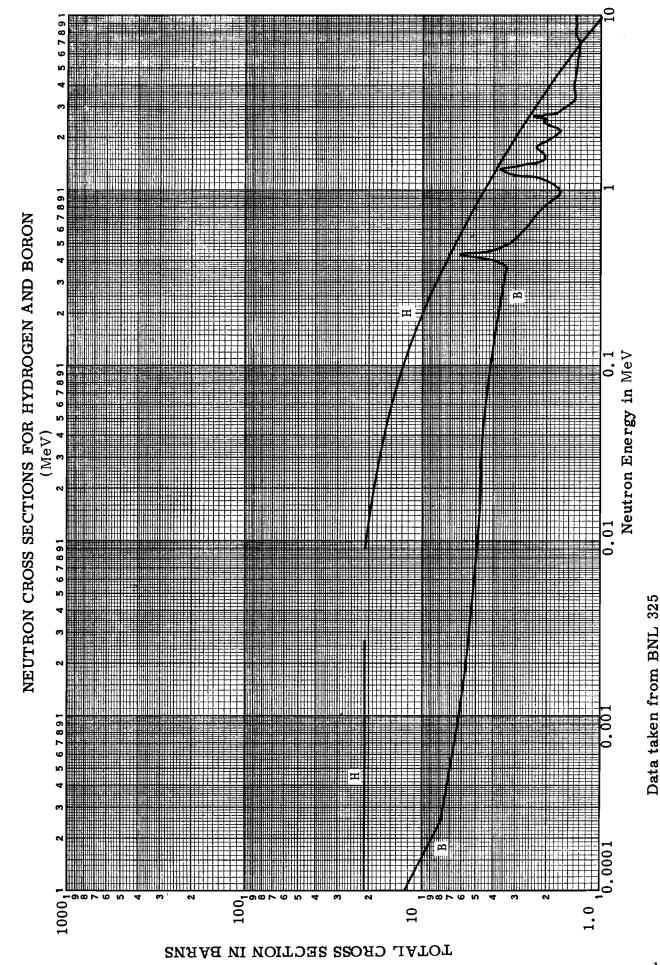
MASS ATTENUATION COEFFICIENTS -- Continued

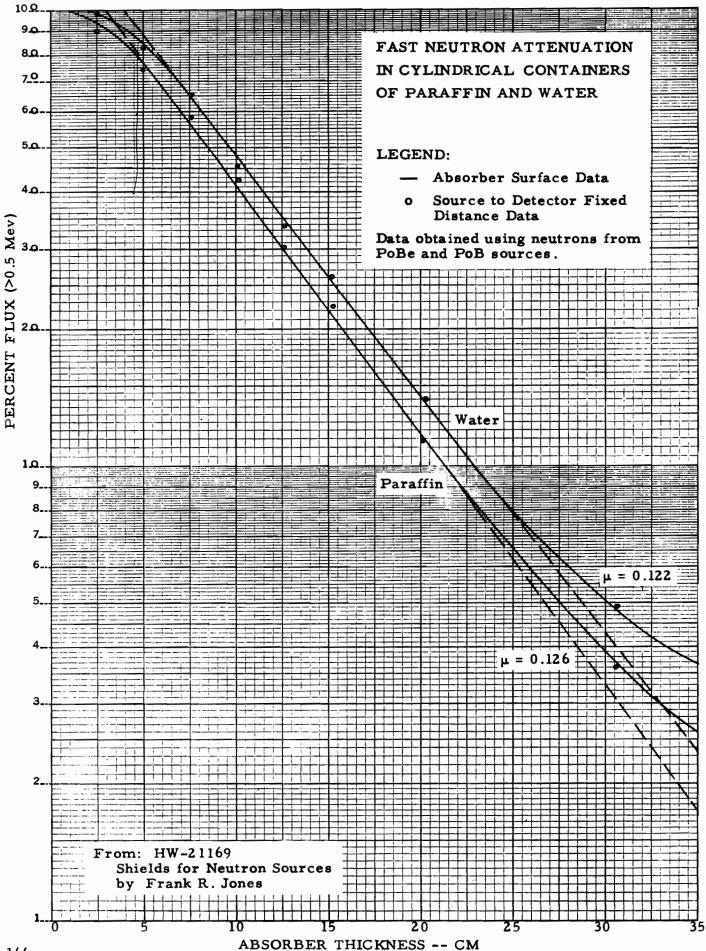
Photon Energy	\$10 ^{\$}	NaI	Air	Con- crete	0.8N H ₂ SO ₄	Bone	Muscle	Poly- styrene	Lucite	Poly- ethyl- ene	Bake- lite	Pyrex Glass
keV												
10	19.0	139.	4.99	26.9	5.76	20.3	5.27	2.13	3.25	2.01	2.76	17.1
15	5.73	47.4	1.55	8.24	1.76	6.32	1.63	0.755	1.06	0.728	0.923	5.14
20	2.49	22.3	0.752	3.59	0.849	2.79	0.793	.424	0.551	.420	.492	2.25
30	0.859	7.45 _*	.349	1.19	.391	0.962	.373	.259	. 298	.266	.277	0.786
40	.463	19.3	.248	0.605	.276	.512	.268	.217	.234	.226	.223	.431
50	.318	10.7	. 208	.392	.231	.349	.227	.199	.208	.209	.200	.302
60	.252	6.62	.188	.295	.208	.274	.205	.188	.193	.198	.187	.242
80	.194	3.12	.167	.213	.185	.209	.183	.173	.176	.183	.171	.190
100	.169	1.72	.154	.179	.171	.180	.170	.163	.164	.172	.161	.166
150	.140	0.625	.136	.144	.150	.149	.149	.145	.146	.154	.143	.139
200	.126	.334	.123	.127	.137	.133	.136	.132	.133	.140	.130	.125
300	.108	.167	.107	.108	.118	.114	.118	.115	.115	.122	.113	.107
400	.0959	.117	.0954	.0963	.106	.102	.105	.103	.103	.109	.101	.0954
500	.0874	.0955	.0870	.0877	.0965	.0927	.0960	.0938	.0941	.0995	.0921	.0870
600	.0808	.0826	.0805	.0810	.0893	.0857	.0888	.0868	.0871	.0921	.0852	.0804
800	.0707	.0676	.0707	.0709	.0783	.0752	.0779	.0763	.0765	.0809	.0749	.0704
MeV 1.0	.0636	0596	0636	0627	070/	0676	0700	0605	0/07	0707	0672	0622
1.5	.0518	.0586	.0636	.0637	.0704 .0573	.0676	.0700	.0685	.0687	.0727	.0673	.0633
2.0	.0447	.0413		.0519		.0550	.0570	.0558	.0559	.0592	.0548	.0516
3.0	.0363	.0366	.0445	.0448	.0492	.0473	.0489	.0478	.0480	.0507	.0470	.0444
3.0	.0363	.0366	.0358	.0365	.0396	.0383	.0393	.0383	.0385	.0405	.0377	.0361
4	.0317	.0351	.0308	.0319	.0340	.0331	.0337	.0327	.0329	.0345	.0322	.0314
5	.0287	.0346	.0275	.0290	.0303	.0297	.0300	.0290	.0292	.0305	.0286	.0282
6 8	.0266	.0347	.0252	.0270	.0277	.0274	.0274	.0263	.0266	.0277	.0260	.0263
	.0241	.0355	.0223	.0245	.0243	.0244	.0240	.0228	.0232	.0239	.0227	.0237
10	.0226	.0368	.0204	.0231	.0222	.0226	.0219	.0206	.0211	.0215	.0206	.0222
15	.0209	.0402	.0181	.0215	.0194	.0204	.0192	.0176	.0182	.0182	.0178	.0204
20	.0203	.0433	.0170	.0210	.0182	.0194	.0179	.0162	.0168	.0166	.0164	.0198
30	.0202	.0484	.0162	.0210	.0172	.0189	.0168	.0149	.0157	.0151	.0153	.0195
40	.0204	.0520	.0161	.0213	.0169	.0189	.0165	.0144	.0153	.0145	.0148	.0198
50	.0208	.0548	.0161	.0218	.0168	.0190	.0164	.0142	.0151	.0142	.0147	.0201
60	.0212	.0571	.0162	.0222	.0169	.0193	.0165	.0142	.0151	.0141	.0147	.0204
80	.0218	.0605	.0165	.0229	.0171	.0197	.0167	.0142	.0152	.0141	.0148	.0210
100	.0224	.0629	.0168	.0235	.0174	.0201	.0170	.0144	.0154	.0142	.0150	.0215
150	.0234	.0670	.0174	.0247	.0180	.0210	.0175	.0147	.0159	.0145	.0154	.0225
200	.0241	.0695	.0179	.0254	.0184	.0215	.0179	.0150	.0162	.0147	.0157	.0232
300	.0250	.0724	.0185	.0264	.0190	.0223	.0185	.0155	.0167	.0152	.0162	.0240
400	.0256	.0741	.0189	.0269	.0194	.0228	.0189	.0158	.0171	.0155	.0166	.0245
500	.0260	.0752	.0192	.0273	.0197	.0231	.0192	.0160	.0173	.0157	.0168	.0249
600	.0262	.0760	.0194	.0276	.0199	.0233	.0194	.0162	.0175	.0159	.0170	.0252
800	.0266	.0771	.0197	.0281	.0202	.0237	.0197	.0165	.0178	.0161	.0173	.0256
GeV 1	.0269	.0778	.0199	.0283	.0204	0220	0100	0166	0190	0162	017/	.0258
1.5	.0273	.0789	.0202	.0287	.0204	.0239	.0199	.0166	.0180	.0163	.0174	.0262
2	.0275	.0794	.0204	.0290	.0207			.0169	.0182	.0165	.0177	
3	.0278	.0800	.0204	.0292	.0209	.0245 .0247	.0203	.0171 .0173	.0184 .0186	.0167 .0169	.0179 .0181	.0264 .0267
4	0270											
5	.0279	.0803	.0207	.0294	.0212	.0249	.0206	.0174	.0187	.0170	.0182	.0268
6	.0280 .0281	.0805	.0208	.0295	.0213	.0249	.0207	.0174	.0188	.0170	.0183	.0269
8	.0281	.0807	.0208	.0295	.0213	.0250	.0208	.0175	.0188	.0171	.0183	.0269
v	.0201	.0808	.0209	.0296	.0214	.0251	.0208	.0175	.0189	.0172	.0184	.0270
10	.0282	.0809	.0209	.0297	.0214	.0251	.0209	.0176	.0189	.0172	.0184	.0271
15	.0283	.0811	.0210	.0298	.0215	.0252	.0209	.0176	.0190	.0173	.0185	.0271
20 30	.0283 .0283	.0812	.0210 .0211	.0298 .0298	.0215 .0216	.0252	.0210 .0210	.0177 .0177	.0190 .0191	.0173 .0173	.0185 .0185	.0272 .0272
		. 5015	.0211	.0290	.0210	.0233	.0210	.01//	.0191	.01/3	.0103	.02/2
40	.0284	.0813	.0211	.0299	.0216	.0253	.0210	.0177	.0191	.0173	.0186	.0272
50	.0284	.0814	.0211	.0299	.0216	.0253	.0210	.0177	.0191	.0173	.0186	.0272
60	.0284	.0814	.0211	.0299	.0216	.0253	.0210	.0177	.0191	.0174	.0186	.0273
80	.0284	.0815	.0211	.0299	.0216	.0253	.0210	.0178	.0191	.0174	.0186	.0273


^{*} K edge of Iodine--33.2keV 5.69, 30.9.


VALUES OF THE MASS ENERGY-ABSORPTION COEFFICIENTS

Photon	Mass Energy	-Absorption Co	pefficient, (μ	, _n /ρ), cm ³ /g
Energy (MeV)	Water	Air	Compact Bone	Muscle
0.010	4.89	4.66	19.0	4.96
.015	1.32	1.29	5.89	1.36
.020	0.523	0.516	2.51	0.544
.030	.147	.147	0.743	.154
.040	.0647	.0640	.305	.0677
.050	.0394	.0384	.158	.0409
.060	.0304	.0292	.0979	.0312
.080	.0253	.0236	.0520	.0255
.10	.0252	.0231	.0386	.0252
.15	.0278	.0251	.0304	.0276
.20	.0300	.0268	.0302	.0297
.30	.0320	.0288	.0311	.0317
.40	.0329	.0296	.0316	.0325
.50	.0330	.0297	.0316	.0327
.60	.0329	.0296	.0315	.0326
.80	.0321	.0289	.0306	.0318
1.0	.0311	.0280	.0297	.0308
1.5	.0283	.0255	.0270	.0281
2.0	.0260	.0234	.0248	.0257
3.0	.0227	.0205	.0219	.0225
4.0	.0205	.0186	.0199	.0203
5.0	.0190	.0173	.0186	.0188
6.0	.0180	.0163	.0178	.0178
8.0	.0165	.0150	.0165	.0163
10.0	.0155	.0144	.0159	.0154


Source: Physical Aspects of Irradiation (NBS Handbook No. 85 [Washington, D.C.: Supt. of Docs., U.S. Government Printing Office, Mar. 1964]), p. 3.


TOTAL NEUTRON CROSS SECTIONS FOR INDIUM AND CADMIUM

Cross sections for boron, H_2 , and H_2 0 taken from BNL-325; for H in paraffin from Havens and Rainwater, Phys. Rev., 73, 7, 733-741 (1948).

DOSE BUILDUP FACTORS

$$\dot{\mathbf{X}} = \mathbf{B}\dot{\mathbf{X}}_{\mathbf{Q}} \,\mathbf{e}^{-\mu\mathbf{X}}$$

where \dot{X} = exposure rate, shielding present

B = buildup factor

 \dot{X}_{O} = exposure rate, same location as \dot{X} , no shielding

μ = linear absorption coefficient

x = shield thickness

Dose Buildup Factor (B) for a Point Isotropic Source

Material	MeV				μ x *		_	_
material	rie v	1	2	4	7	10	15	20
Water	0.255	3.09	7.14	23.0	72.9	166	456	982
	0.5	2.52	5.14	14.3	38.8	77.6	178	334
	1.0	2.13	3.71	7.68	16.2	27.1	50.4	82.2
	2.0	1.83	2.77	4.88	8.46	12.4	19.5	27.7
	3.0	1.69	2.42	3.91	6.23	8.63	12.8	17.0
	4.0	1.58	2.17	3.34	5.13	6.94	9.97	12.9
	6.0	1.46	1.91	2.76	3.99	5.18	7.09	8.85
	8.0	1.38	1.74	2.40	3.34	4.25	5.66	6.95
	10.0	1.33	1.63	2.19	2.97	3.72	4.90	5.98
Aluminum	0.5	2.37	4.24	9.47	21.5	38.9	80.8	141
	1.0	2.02	3.31	6.57	13.1	21.2	37.9	58.5
	2.0	1.75	2.61	4.62	8.05	11.9	18.7	26.3
	3.0	1.64	2.32	3.78	6.14	8.65	13.0	17.7
	4.0	1.53	2.08	3.22	5.01	6.88	10.1	13.4
	6.0	1.42	1.85	2.70	4.06	5.49	7.97	10.4
	8.0	1.34	1.68	2.37	3.45	4.58	6.56	8.52
	10.0	1.28	1.55	2.12	3.01	3.96	5.63	7.32
Iron	0.5	1.98	3.09	5.98	11.7	19.2	35.4	55.6
	1.0	1.87	2.89	5.39	10.2	16.2	28.3	42.7
	2.0	1.76	2.43	4.13	7.25	10.9	17.6	25.1
	3.0	1.55	2.15	3.51	5.85	8.51	13.5	19.1
	4.0	1.45	1.94	3.03	4.91	7.11	11.2	16.0
	6.0	1.34	1.72	2.58	4.14	6.02	9.89	14.7
	8.0	1.27	1.56	2.23	3.49	5.07	8.50	13.0
	10.0	1.20	1.42	1.95	2.99	4.35	7.54	12.4

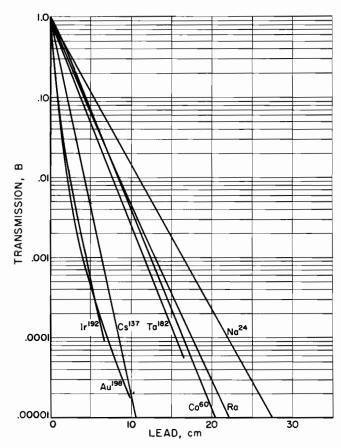
^{*} μx = mass absorption coefficient (μ/ρ) X shield thickness (cm) X shield density (g/cm^2).

NOTE: For concrete use an average of aluminum and iron; e.g., $B(cone) = [B(iron) + B(A1)] \div 2$.

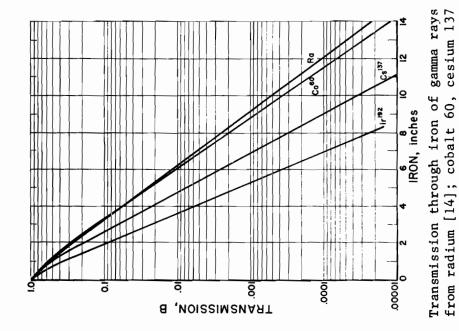
DOSE BUILDUP FACTORS -- Continued

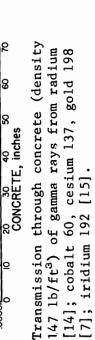
Point Isotropic Source--Continued

					μ x *			
Material	MeV	1	2	4	7	10	15	20
Tin	0.5	1.56	2.08	3.09	4.57	6.04	8.64	
	1.0	1.64	2.30	3.74	6.17	8.85	13.7	18.8
	2.0	1.57	2.17	3.53	5.87	8.53	13.6	19.3
	3.0	1.46	1.96	3.13	5.28	7.91	13.3	20.1
	4.0	1.38	1.81	2.82	4.82	7.41	13.2	21.2
	6.0	1.26	1.57	2.37	4.17	6.94	14.8	29.1
	8.0	1.19	1.42	2.05	3.57	6.19	15.1	34.0
	10.0	1.14	1.31	1.79	2.99	5.21	12.5	33.4
Tungsten	0.5	1.28	1.50	1.84	2.24	2.61	3.12	
	1.0	1.44	1.83	2.57	3.62	4.64	6.25	(7.35)
	2.0	1.42	1.85	2.72	4.09	5.27	8.07	(10.6)
	3.0	1.36	1.74	2.59	4.00	5.92	9.66	14.1
	4.0	1.29	1.62	2.41	4.03	6.27	12.0	20.9
	6.0	1.20	1.43	2.07	3.60	6.29	15.7	36.3
	8.0	1.14	1.32	1.81	3.05	5.40	15.2	41.9
	10.0	1.11	1.25	1.64	2.62	4.65	14.0	39.3
Lead	0.5	1.24	1.42	1.69	2.00	2.27	2.65	(2.73)
	1.0	1.37	1.69	2.26	3.02	3.74	4.81	5.86
	2.0	1.39	1.76	2.51	3.66	4.84	6.87	9.00
	3.0	1.34	1.68	2.43	2.75	5.30	8.44	12.3
	4.0	1.27	1.56	2.25	3.61	5.44	9.80	16.3
	5.1097	1.21	1.46	2.08	3.44	5.55	11.7	23.6
	6.0	1.18	1.40	1.97	3.34	5.69	13.8	32.7
	8.0	1.14	1.30	1.74	2.89	5.07	14.1	44.6
	10.0	1.11	1.23	1.58	2.52	4.34	12.5	39.2
Uranium	0.5	1.17	1.30	1.48	1.67	1.85	2.08	
	1.0	1.31	1.56	1.98	2.50	2.97	3.67	
	2.0	1.33	1.64	2.23	3.09	3.95	5.36	(6.48)
	3.0	1.29	1.58	2.21	3.27	4.51	6.97	9.88
	4.0	1.24	1.50	2.09	3.21	4.66	8.01	12.7
	6.0	1.16	1.36	1.85	2.96	4.80	10.8	23.0
	8.0	1.12	1.27	1.66	2.61	4.36	11.2	28.0
	10.0	1.09	1.20	1.51	2.26	3.78	10.5	28.5


^{*} μx = mass absorption coefficient (μ/ρ) X shield thickness (cm) X shield density (g/cm²).

DOSE BUILDUP FACTORS--Continued


Dose Buildup Factor (B) for a Plane Monodirectional Source


1				μ,	x*		
Material	MeV	1	2	4	7	10	15
Water	0.5	2.63	4.29	9.05	20.0	35.9	74.9
	1.0	2.26	3.39	6.27	11.5	18.0	30.8
	2.0	1.84	2.63	4.28	6.96	9.87	14.4
	3.0	1.69	2.31	3.57	5.51	7.48	10.8
	4.0	1.58	2.10	3.12	4.63	6.19	8.54
	6.0	1.45	1.86	2.63	3.76	4.86	6.78
	8.0	1.36	1.69	2.30	3.16	4.00	5.47
Iron	0.5	2.07	2.94	4.87	8.31	12.4	20.6
	1.0	1.92	2.74	4.57	7.81	11.6	18.9
	2.0	1.69	2.35	3.76	6.11	8.78	13.7
	3.0	1.58	2.13	3.32	5.26	7.41	11.4
	4.0	1.48	1.90	2.95	4.61	6.46	9.92
	6.0	1.35	1.71	2.48	3.81	5.35	8.39
	8.0	1.27	1.55	2.17	3.27	4.58	7.33
	10.0	1.22	1.44	1.95	2.89	4.07	6.70
Tin	1.0	1.65	2.24	3.40	5.18	7.19	10.5
'	2.0	1.58	2.13	3.27	5.12	7.13	11.0
	4.0	1.39	1.80	2.69	4.31	6.30	
	6.0	1.27	1.57	2.27	3.72	5.77	11.0
	10.0	1.16	1.33	1.77	2.81	4.53	9.68
Lead	0.5	1.24	1.39	1.63	1.87	2.08	
	1.0	1.38	1.68	2.18	2.80	3.40	4.20
	2.0	1.40	1.76	2.41	3.36	4.35	5.94
	3.0	1.36	1.71	2.42	3.55	4.82	7.18
	4.0	1.28	1.56	2.18	3.29	4.69	7.70
	6.0	1.19	1.40	1.87	2.97	4.69	9.53
	8.0	1.14	1.30	1.69	2.61	4.18	9.08
	10.0	1.11	1.24	1.54	2.27	3.54	7.70
Uranium	0.5	1.17	1.28	1.45	1.60	1.73	
	1.0	1.30	1.53	1.90	2.32	2.70	3.60
	2.0	1.33	1.62	2.15	2.87	3.56	4.89
	3.0	1.29	1.57	2.13	3.02	3.99	5.94
	4.0	1.25	1.49	2.02	2.94	4.06	6.47
	6.0	1.18	1.37	1.82	2.74	4.12	7.79
	8.0 10.0	1.13 1.10	1.27 1.21	1.61 1.48	2.39	3.65 3.21	7.36 6.58
	10.0	1.10	1.21	1.40	2.12	3.21	0.36

^{*} μx = mass absorption coefficient (μ/ρ) X shield thickness (cm) X shield density (g/cm³).

Transmission through lead of gamma rays from radium [14]; cobalt 60, cesium 137, gold 198 [7]; iridium 192 [15]; tantalum 182 and sodium 24 [29].

[7]; iridium 192 [15].

_0000

8

8

A , NOISSIMENART

EQUATIONS

Primary Barrier:

$$K = \frac{Pd^2}{WUT} , \qquad (1)$$

where

P = maximum permissible dose equivalent
 0.1 R/week for controlled areas
 0.01 R/week for environs

D = distance in meters (If distance in feet is used, this becomes
 d/3.28.)

W = workload in ma-min week (This should, insofar as possible, be averaged over a period of at least several months and preferably a year.)

U = use factor

T = occupancy factor.

Secondary Barrier:

Equation (1) may be used for the computation of secondary barriers subject to the following modifications:

(a) For scattered radiation from useful beams generated at 500 kVcp or less,

$$K = \frac{1,000 \times P \times d^2}{WT}$$
 (Use curve for kV of useful beam.) (2)*

(b) For scattered radiation from useful beams generated at 1,000 kVcp,

$$K = \frac{1,000 \times P \times d^2}{20 \text{ WT}} \quad \text{(Use 500 kVcp curve.)}$$

(c) For scattered radiation from useful beams generated at 2,000 kVcp,

$$K = \frac{1,000 \times P \times d^2}{120 \text{ WT}}$$
 (Use 500 kVcp curve.) (4)†

(d) For scattered radiation from useful beams generated at 3,000 kVcp,

$$K = \frac{1,000 \times P \times d^2}{300 \text{ WT}} \quad \text{(Use 500 kVcp curve.)}$$

^{*}If a 50-cm FSD is used divide K by 4.

[†]If a 70-cm FSD is used divide K by 2.

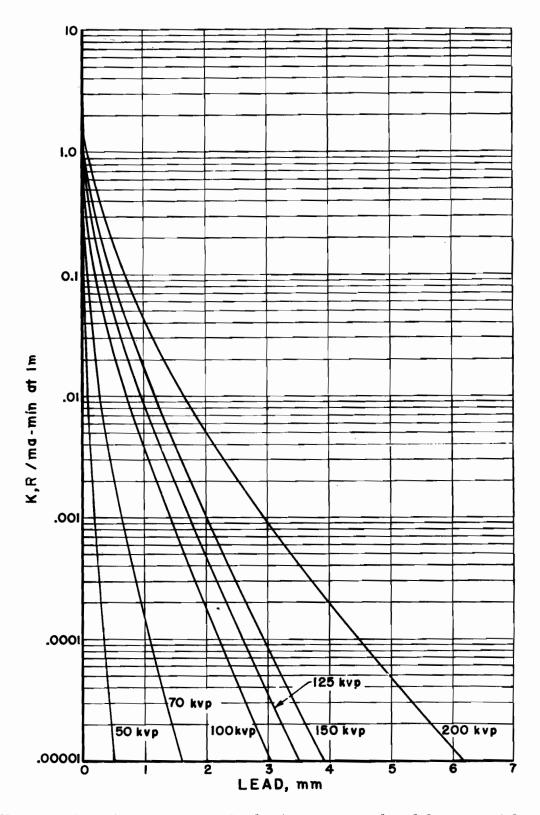


FIGURE 17. Attenuation in lead of x rays produced by potentials of 50- to 200-kv peak.

The measurements were made with a 90° angle between the electron beam and the axis o the x-ray beam and with a pulsed waveform. The curves at 50 and 70 kvp were obtained by interpolation and extrapolation of available data (Braestrup, 1944) [2]. The filtrations were 0.5 mm of aluminum for 50, 70, 100, and 125 kvp, and 3 mm of aluminum for 150 and 200 kvp [26].

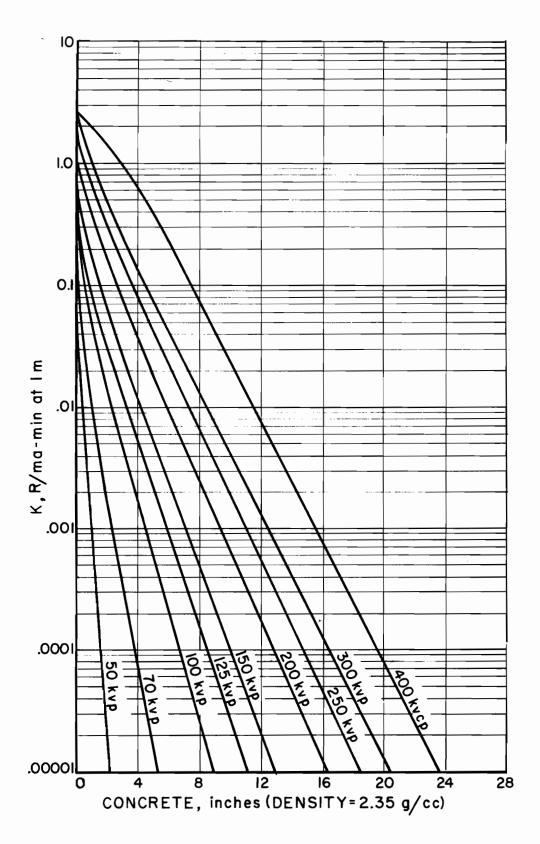


FIGURE 18. Attenuation in concrete of x rays produced by potentials of 50 to 400 kv.

The measurements were made with a 90° angle between the electron beam and the axis of the x-ray beam. The curves for 50 to 300 kvp are for a pulsed waveform. The filtrations were 1 mm of aluminum for 70 kvp, 2 mm of aluminum for 100 kvp, and 3 mm of aluminum for 125 to 300 kvp (Trout et al., 1955 and 1959) [11]. The 400-kvcp curve was interpolated from data obtained with a constant potential generator and inherent filtration of approximately 3 mm of copper (Miller and Kennedy, 1955) [8] [26].

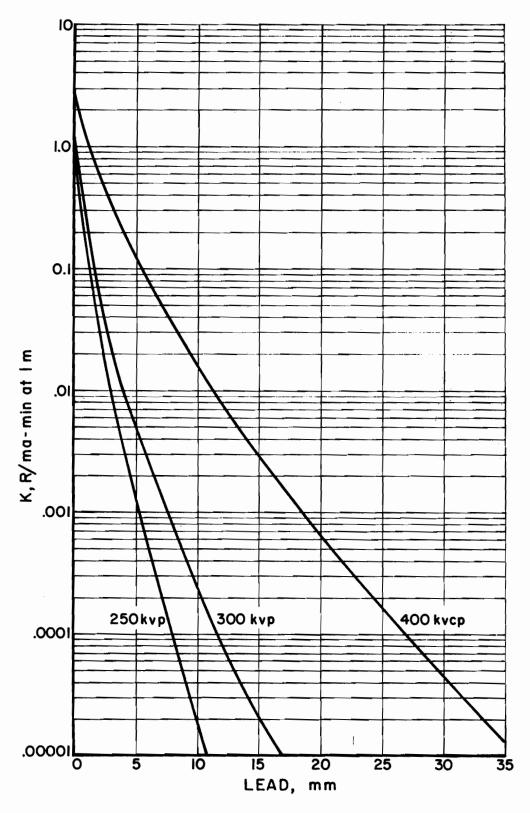


FIGURE 19. Attenuation in lead of x rays produced by potentials of 250 to 400 kv.

The measurements were made with a 90° angle between the electron beam and the axis of the x-ray beam. The 250-kvp curve is for a pulsed waveform and a filtration of 3 mm of aluminum (Braestrup, 1944) [2]. The 400-kvcp curve was obtained with a constant potential generator and inherent filtration of approximately 3 mm of copper (Miller and Kennedy, 1955) [8]. The 300-kvp curve is for pulsed waveform and 3 mm of aluminum (Trout et al., 1959) [11] [26].

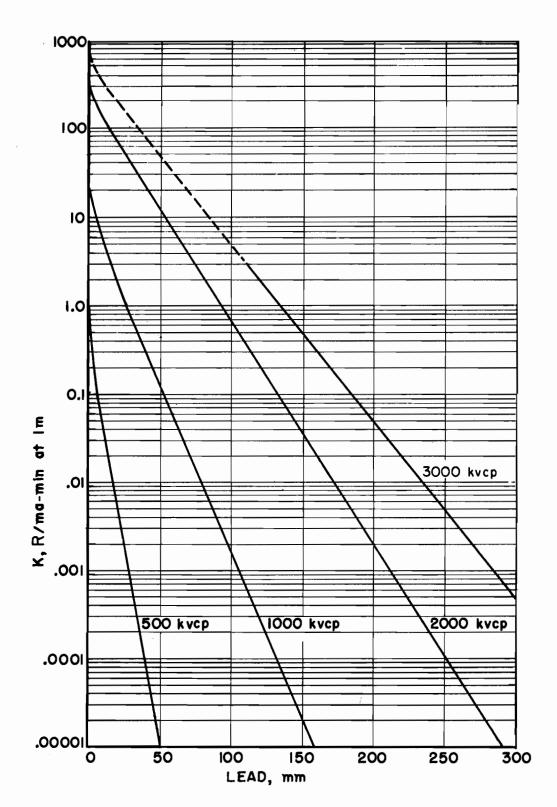


FIGURE 20. Attenuation in lead of x rays produced by potentials of 500- to 3,000-kv constant potential.

The measurements were made with a 0° angle between the electron beam and the axis of the x-ray beam and with a constant potential generator. The 500- and 1,000-kvcp curve were obtained with filtration of 2.88 mm of tungsten, 2.8 mm of copper, 2.1 mm of brass, and 18.7 mm of water (Wyckoff et al., 1948) [13]. The 2,000-kvcp curve was obtained by extrapolating to broad-beam conditions (E.E. Smith) the data of Evans et al., 1952 [3]. The inherent filtration was equivalent to 6.8 mm of lead. The 3,000-kvcp curve has been obtained by interpolation of the 2,000-kvcp curve given herein, and the data of Miller and Kennedy, 1956 [9].

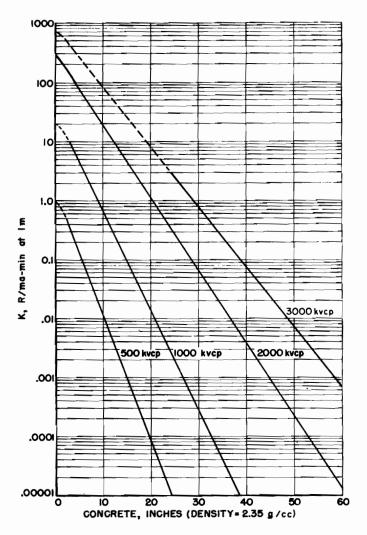


Figure 21. Attenuation in concrete of x rays produced by potentials of 500- to 3,000-kv constant potential.

The measurements were made with a 0° angle between the electron beam and the axis of the x-ray beam and with a constant potential generator. The 500- and 1,000-kvcp curves were obtained with filtration of 2.8 mm of copper, 2.1 mm of brass, and 18.7 mm of water (Wyckoff et al., 1948) [13]. The 2,000-kvcp curve was obtained by extrapolating to broad-beam conditions (E.E. Smith) the data of Evans et al., 1952 [3]. The inherent filtration was equivalent to 6.8 mm of lead. The 3,000-kvcp curve has been obtained by interpolation of the 2,000-kvcp curve given herein, and the data of Kirn and Kennedy, 1954 [5].

Table 12. Half-value layer

[Approximate half-value layers obtained at high filtration for the indicated tube potentials under broad-beam conditions]

Attenuating material						hvl	for variou	s tube pote	entials		-		
	50 kvp	70 kvp	100 kvp	125 kvp	150 kvp	200 kvp	250 kvp	300 kvp	400 kvep	500 kvep	1,000 kvcp	2,000 kvcp	3,000 kvep
Lead (mm) Concrete (in.) Concrete (cm)	0. 05 . 2 . 51	0. 18 . 5 1, 27	0. 24 . 7 1. 8	0. 27 . 8 2. 0	0.3 .9 2.3	0. 5 1. 0 2. 5	0. 8 1. 1 2. 8	1. 3 1. 2 3. 0	2. 2 1. 3 3. 3	3. 6 1. 4 3. 6	8. 0 1. 8 4. 6	12. 0 2. 45 6. 2	15. 0 2. 95 7. 5

Note.—One tenth-value layer is equivalent to 3.33 half-value layers.

Commercial Lead Sheets

Thick	kness	Approximate Weight
mm	in.	lb/ft2
0.79 1.00 1.19 1.58 1.98 2.38 3.17 4.76 6.35 8.50 10.1 12.7 16.9 25.4	1/3/6/3/5/3/5/3/5/3/5/3/1/8/3/5/3/5/3/1/8/3/1/4/3/5/3/3	2 2 ¹ / ₂ 3 4 5 6 8 12 16 20 24 30 40 60

Source: Medical X-Ray Protection up to Three Million Volts (NBS Handbook No. 76 [Washington, D.C.: Supt. of Docs., U.S. Government Printing Office, Feb. 1961]), p. 30.

Thickness of Lead Required to Reduce
Useful Beam to 5 Percent*

Beam	Quality	Required
Potential	Half Value Layer (mm)	Lead Thickness (mm)
60 kVp 100 kVp 100 kVp 100 kVp 140 kVp 200 kVp 250 kVp 400 kVp 1000 kVp 2000 kVp	1.2 A1 1.0 A1 2.0 A1 3.0 A1 0.5 Cu 1.0 Cu 3.0 Cu 4.0 Cu 3.2 Pb 6.0 Pb 14.5 Pb	0.10 0.16 0.25 0.35 0.7 1.0 1.7 2.3 20.5 43.0 63.0
3000 kVcp 6000 kV 8000 kV Cobalt 60	16.2 Pb 17.0 Pb 15.5 Pb 10.4 Pb	70.0 74.0 67.0 47.0

Approximate values for broad beams. Transmission data for brass, steel and other material for potentials up to 2000 kVp may be found in reference [15]. Measurements on 1000 kVp and 2000 kVp made with resonant-type therapy units. Data for 6000 kV taken from reference [16], for a linear accelerator. Data for 2000 kVcp, 3000 kVcp, and 8000 kV derived by interpolation from graph presented in reference [17]. The third column refers to lead or to the required equivalent lead thickness of lead-containing materials (e.g. lead rubber, lead glass, etc.).

Source: Medical X-Ray and Gamma-Ray Protection for Energies up to 10 MeV (NCRP Report No. 33

[Washington, D.C.: National Council on Radiation Protection and Measurements, Feb. 1968]), p. 45.

CONCRETE* EQUIVALENTS (mm) OF LEAD AT DIFFERENT X-RAY TUBE POTENTIALS

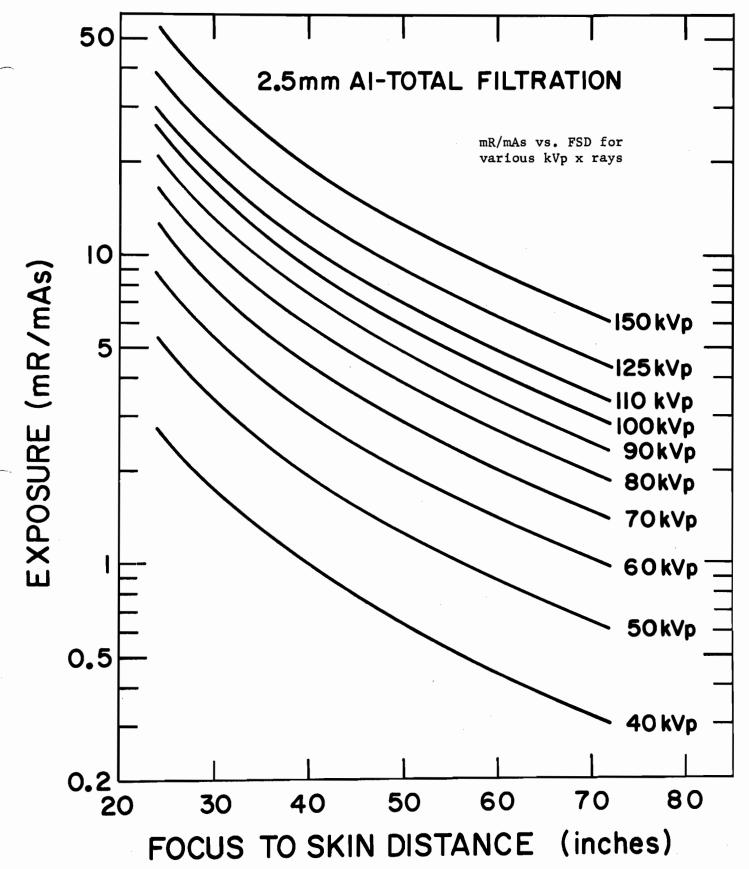
Lead	Tube Potential								
Thickness (mm)	150 kVp	200 kVp	300 kVp	400 kVp					
1	80	75	56	47					
2	150	140	89	70					
3	220	200	117	94					
4	280	260	140	112					
6			200	140					
8			240	173					
10			280	210					
15				280					

^{*}Density 2.35 g/cm^3 .

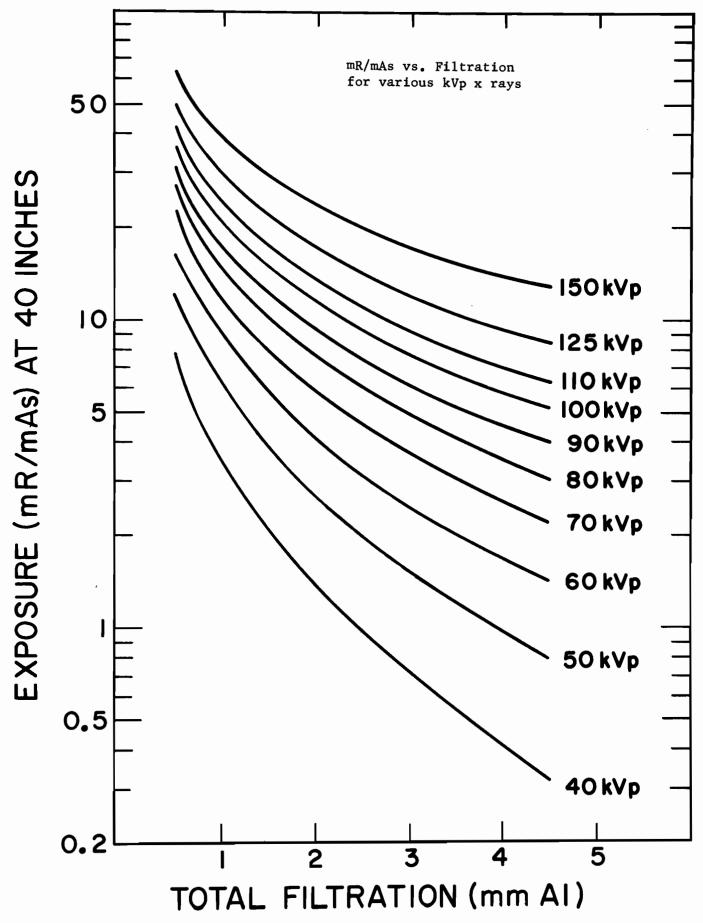
IRON EQUIVALENTS (mm) OF LEAD AT DIFFERENT X-RAY TUBE POTENTIALS

Lead	Tube Potential										
Thickness (mm)	150 kVp	200 kVp	300 kVp	400 kVp	600 kVp	800 kVp	1000 kVp				
1	11	12	12	11	10	9	8				
2	25	27	20	18	16	14	13				
3	37	40	28	23	19	17	16				
4	50	55	35	28	23	20	18				
6			48	38	30	26	23				
8			60	45	36	31	28				
10			75	55	42	36	32				
15				75	55	48	43				
20					70	60	55				
50						125	110				

Data for tables from NBS Handbook No. 50.


Table 1.—Mean milliroentgens per milliampere-second at 12 inches by kilovolt peak and filtration categories for dental X-ray units

Total fil- tration	Kilovolt peak													
(milli- meters of Al equiv- alent)	50	55	60	65	70	75	80	85	90					
0.5	91. 11	96. 03	101.44	107. 59	114. 73	123. 10	132. 94	144. 49	158.00					
1.0	58. 38	63. 32	68. 54	74. 27	80.75	88. 24	96. 98	107. 20	119. 15					
1.5	36. 61	41.64	46.72	52. 09	57.99	64. 66	72. 35	81. 30	91. 75					
2.0	23. 26	28. 45	33. 45	38. 52	43.89	49.81	56.52	64. 25	73. 27					
2.5	15.79	21. 19	26. 19	31.01	35. 92	41.14	46. 93	53. 52	61. 16					
3.0	11.65	17. 33	22. 37	27.02	31.52	36. 12	41.04	46. 55	52. 88					
3.5	8.30	14. 32	19. 47	24. 01	28. 17	32. 19	36. 32	40.80	45. 88					
4 0	3. 19	9.61	14. 94	19.43	23.30	26. 82	30. 21	33.73	37. 62					
4.5		. 67	6. 24	10. 73	14. 39	17.46	20. 18	22.80	25. 56					


Table 2.—Mean milliroentgens per milliampere-second at 12 inches by kilovolt peak and filtration categories for nondental X-ray units

Total filtration (millimeters			Kilovo	lt peak		
of Al equivalent)	45	50	55	60	65	70
0.5	67. 02	78. 58	89. 90	101. 16	112.51	124. 1
1.0	43. 25	52. 83	62. 16	71.41	80.74	90.3
1.5	27.62	35.49	43.10	50.62	58. 21	66.0
2.0	18.35	24. 80	30. 97	37.04	43. 17	49.5
2.5	13.69	18. 99	24.00	28. 90	33. 84	38. 9
3.0	11.87	16. 29	20.42	24. 43	28.46	32.7
3.5	11.12	14.96	18.48	21.87	25. 28	28. 8
4.0	9.69	13. 21	16.41	19. 4 6	22. 52	25.7
4.5	5.81	9. 29	12. 44	15. 4 3	18.42	21. 5
			<u> </u>			
Total filtration (millimeters of Al equivalent)			ovolt peak			
	75	Kilo 80	ovolt peak	Contin	ued 95	100
	75 136. 14					100
of Al equivalent)		80	85	90	95	
of Al equivalent)	136. 14	80 148. 76	85	90	95 191. 76	208. 3
of Al equivalent) 0.5 1.0	136. 14 100. 30	80 148. 76 110. 86	85 162. 12 122. 16	90 176. 40 134. 36	95 191. 76 147. 63	208. 3 162. 1
0.5	136. 14 100. 30 74. 26	80 148. 76 110. 86 83. 04	85 162. 12 122. 16 92. 56	90 176. 40 134. 36 102. 96	95 191. 76 147. 63 114. 42	208. 3 162. 1 127. 1 101. 4
0.5	136. 14 100. 30 74. 26 56. 25	80 148. 76 110. 86 83. 04 63. 54	85 162. 12 122. 16 92. 56 71. 55	90 176. 40 134. 36 102. 96 80. 43	95 191.76 147.63 114.42 90.36	208. 3 162. 1 127. 1
0.5	136. 14 100. 30 74. 26 56. 25 44. 52	80 148. 76 110. 86 83. 04 63. 54 50. 59	85 162. 12 122. 16 92. 56 71. 55 57. 37	90 176. 40 134. 36 102. 96 80. 43 65. 01	95 191. 76 147. 63 114. 42 90. 36 73. 68	208. 3 162. 1 127. 1 101. 4 83. 5 71. 5
of Al equivalent)	136. 14 100. 30 74. 26 56. 25 44. 52 37. 30	80 148. 76 110. 86 83. 04 63. 54 50. 59 42. 43	85 162. 12 122. 16 92. 56 71. 55 57. 37 48. 25	90 176. 40 134. 36 102. 96 80. 43 65. 01 54. 93	95 191. 76 147. 63 114. 42 90. 36 73. 68 62. 63	208. 3 162. 1 127. 1 101. 4 83. 5

Tables from Population Exposure to X-Rays U.S. 1964, PHS No. 1519.

Courtesy of Dr. J. R. Cameron, University Hospitals, University of Wisconsin

Courtesy of Dr. J. R. Cameron, University Hospitals, University of Wisconsin

X-Ray Critical-Absorption and Emission Energies in kev

By S. FINE and C. F. HENDEE Philips Laboratories Irvington on Hudson, New York

Increased use of energy-proportional detectors for X-rays has created a need for a table of energy values of K and L absorption and emission series.

The table presented here includes all elements. Most values were obtained by a conversion to kev of tabulated experimental wavelength values (1-3); some are from previous energy-value compilations $(4, \delta)$. Where a choice existed, the value chosen was the one derived from later work. Certain values were determined by interpolation, using Moseley's law. (All this is annotated in footnotes.)

The conversion equations relating energy and wavelength used are (6)

 $E \text{ (kev)} = (12.39644 \pm 0.00017)/\lambda(\text{Å})$ = 12.39644/1.002020 \(\lambda\text{(kX unit)}\)

In computing values the number of places retained sufficed to maintain the uncertainty in the original source value. The values in the table have been listed uniformly to 1 ev. However, chemical form may shift absorption edges as much as 10-20 ev (4, 5).

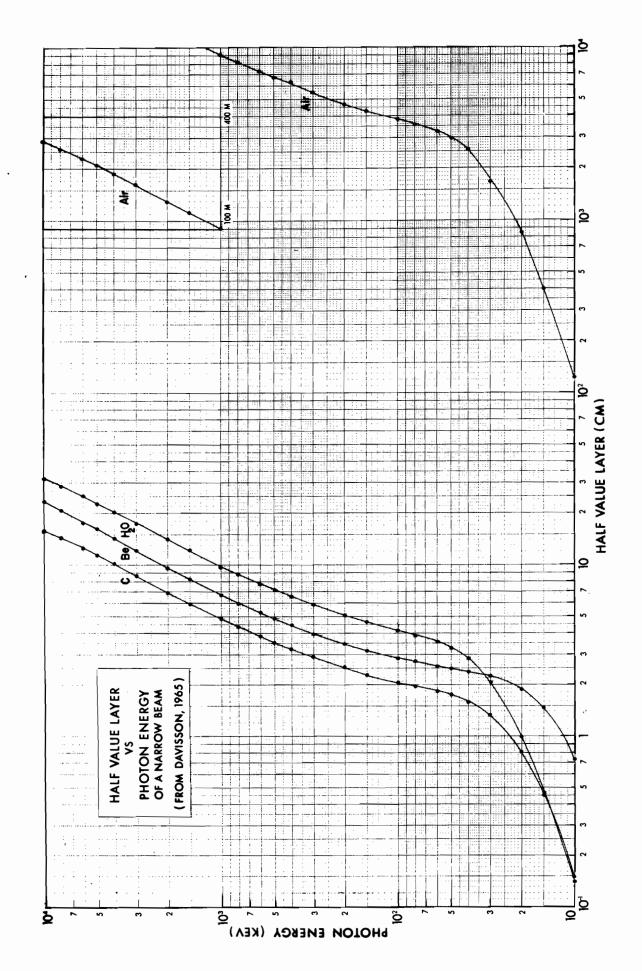
To discover computational errors a fit was made to Moseley's law. In general the values were consistent, however there were a few irregularities due to the deviation of some input values (1). These were retained in the body of the table but a set of values calculated to fit better are footnoted.

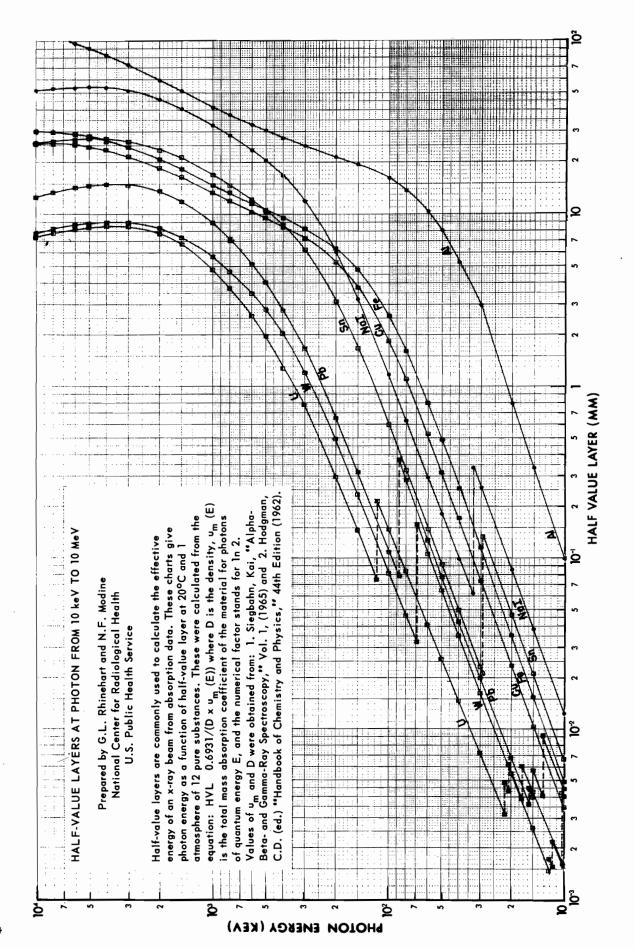
The authors wish to express their appreciation to W. Parrish for helpful suggestions and to H. Kasper for performing the computation in connection with this work.

BIBLIOGRAPHY

- Y. Cauchois, H. Hulubei, "Tables de Constantes et Donnees Numeriques, I, Longueurs D'Onde des Emissions X et des Discontinuites D'Absorption X" (Hermann et Cie, Paris France, 1947)
- A. H. Compton and S. K. Allison, "X-rays in Theory and Experiment" (D. Van Nostrand Co., Inc., New York, 1951)
- Co., Inc., New York, 1951)

 5. C. E. Moore, "Atomic Energy Levels," NBS
 467 (National Bureau of Standards, U. S.
 Department of Commerce, Washington, D. C.,
 1949)
- 4. Y. Cauchois, J. phys. radium 13, 113 (1952)


 5. R. D. Hill, E. L. Church, and J. W. Mihelich,
- Rev. Sci. Instr. 23, 523 (1952)
 6. J. W. M. DuMond, E. R. Cohen, Phys. Rev. 82, 555 (1951)


Atomi				K series						L se	rie s			
Num- ber	Element	Kab	Kβı	<i>Κ</i> β ₁	Kαı	Kαı	Liab	LIIab	Lillab	L_{γ_1}	Lβı	$L\beta_1$	$L\alpha_1$	Las
1	Hydrogen	0.01361	:									-		
2	Helium	0.02461												
3	Lithium	0.055			0.0	052								
4	Beryllium	0.116			0.1	110								
5	Boron	0.192†			0.3	185								
6	Carbon	0.283			0.5	28 2								
7	Nitrogen	0.399			0.3	392								
8	Oxygen	0.531			0.	523								
9	Fluorine	0.687†			0.0	377								
10	Neon	0.874*			0.8	8515	0.048†	0.022	0.022†					
11	Sodium	1.08*		1.067		041		0.0345	0.0345					
12	Magnesium	1.303		1.297		254	0.063	0.050	0.049					
13	Aluminum	1.559		1.553	1.487	1.486	0.087	0.073**		•				
14	Silicon	1.838		1.832	1.740	1.739		0.099**						
15	Phosphorus	2.142		2.136	2.015			0.1295	0.128					
16	Sulphur	2.470		2.464	2.308	2.306		0.164**	•	.				
17	Chlorine	2.819¶		2.815	2.622	2.621		0.203	0.2026					
18	Argon	3.203		3.1925	2.957	2.955		0.247**						
19	Potassium	3.607		3.589	3.313	3.310		0.297**				,		
20	Calcium	4.038		4.012	3.691	3.688	0.399*		0.349			0.344	0.5	341
								0.411**						395
21	Scandium	4.496		4.460	4.090	4.085		0.411**				0.399		
22	Titanium	4.964		-4.931	4.510	4.504						0.458		452
23	Vanadium	5.463		-5.427	4.952	4.944		0.519**				0.519		510 571
24	Chromium	5.988		-5.946	5.414	5.405		0.583**				0.581		
25	Manganese	6.537		6.490	5.898	5.887		0.650**				0.647		836
26	Iron	7.111		7.057	6.403	6.390		0.721**				0.717		704
27	Cobalt	7.709		7.649	6.930	6.915		0.794**				0.790		775
28	Nickel	8.331	8.328	8.264	7.477	7.460		0.871**		•		0.866		849
29	Copper	8.980	8.976	8.904	8.047	8.027	1.100*		0.933			0.948		928
.30	Zinc	9.660	9.657	9.571	8.638	8.615	1.200*	1.045	1.022			1.032	1.0	009

Copyrighted by McGraw-Hill (NUCLEONICS). Reproduced by U.S. Department of Health, Education, and Welfare by permission of copyright holder. Further reproduction without permission of copyright holder is forbidden.

Atom	ic			K series						L s	eries			
Num ber	- Element	Kab	Kβı	Κβι	Kαı	Kαı	Liab	LIIab	LIIIab	L_{γ_1}	Lβz	Lβı	Lαι	Laz
31 32 33 34 35	Gallium Germanium Arsenic Selenium Bromine	10.368 11.103 11.863 12.652 13.475	10.365 11.100 11.863 12.651 13.465	10.263 10.981 11.725 12.495 13.290	9.251 9.885 10.543 11.221 11.923	9.234 9.854 10.507 11.181 11.877	1.30* 1.42* 1.529 1.652 1.794§		1.117** 1.217** 1.323 1.434 1.552**	•		1.122 1.216 1.317 1.419 1.526	1.096 1.186 1.285 1.379	6 2 9
36 37 38 39 40	Krypton Rubidium Strontium Yttrium Zirconium	14.323 15.201 16.106 17.037 17.998	14.313 15.184 16.083 17.011 17.969	14.112 14.960 15.834 16.736 17.666	12.648 13.394 14.164 14.957 15.774	12.597 13.335 14.097 14.882 15.690	1.931§ 2.067 2.221 2.369 2.547	1.727** 1.866 2.008 2.154 2.305	1.806 1.941 2.079 2.220	2.302	2.219	1.638§ 1.752 1.872 1.996 2.124	1.806 1 1.922 1 2.042 2	1.692 1.805 1.920 2.040
41 42 43 44 45	Niobium Molybdenum Technetium Ruthenium Rhodium	22.118 23.224	18.951 19.964 21.012§ - 22.072 23.169	21.655 22.721	19.278 20.214	19.149 20.072	3.236§ 3.419	2.966 3.145	2.523 2.677§ 2.837 3.002	2.964 3.144	2.836 3.001	2.683 2.834	2.293 2 2.424§ 2 2.558 2 2.696 2	. 554 . 692
46 47 48 49 50	Palladium Silver Cadmium Indium Tin	24.347 25.517 26.712 27.928 29.190 30.486	24.297 25.454 26.641 27.859 29.106	23.816 24.942 26.093 27.274 28.483 29.723	21.175 22.162 23.172 24.207 25.270 26.357	21.018 21.988 22.982 24.000 25.042 26.109	3.617 3.810 4.019 4.237 4.464 4.697	3.329 3.528 3.727 3.939 4.157 4.381	3.352 3.538 3.729 3.928	3.328 3.519 3.716 3.920 4.131 4.347	3.172 3.348 3.528 3.713 3.904 4.100	2.990 3.151 3.316 3.487 3.662 3.843	2.984 2 3.133 3 3.287 3 3.444 3	2.833 2.978 3.127 3.279 3.435
51 52 53 54 55 56	Antimony Tellurium Iodine Xenon Cesium Barium	30.486 31.809 33.164 34.579 35.959 37.410	30.387 31.698 33.016 34.446¶ 35.819 37.255	29.723 30.993 32.292 33.644 34.984 36.376	27.471 28.610	26.109 27.200 28.315 29.485 30.623 31.815	4.938 5.190	4.613 4.856 5.104 5.358 5.623	4.341 4.559 4.782 5.011	4.570 4.800	4.301 4.507	4.029 4.220	3.769 3 3.937 3 4.111§ 4 4.286 4	3.758 3.926
57 58 59 60	Lanthanum Cerium Praseodymium Neodymium Promethium	38.931 40.449 41.998 43.571	38.728 40.231 41.772 43.298¶ 44.955§	37.799 39.255 40.746 42.269	33.440 34.717 36.023 37.359	33.033 34.276 35.548 36.845	6.283 6.561 6.846 7.144	5.894 6.165† 6.443 6.727	5.489 5.729 5.968	5.789 6.052 6.322 6.602	5.384 5.613 5.850 6.090	5.043 5.262 5.489 5.722	4.651 4 4.840 4 5.034 5 5.230 5	.635 .823 5.014 5.208
62 63 64 65	Samarium Europium Gadolinium Terbium	46.846 48.515 50.229 51.998	46.553¶ 48.241 49.961 51.737	45.400 47.027 48.718 50.391	40.124 41.529 42.983 44.470	39.523 40.877 42.280 43.737	7.754 8.069 8.393 8.724	7.281¶ 7.624 7.940 8.258	6.721 6.983 7.252 7.519	7.180 7.478 7.788 8.104	6.587 6.842 7.102 7.368	6.206 6.456 6.714 6.979	5.636 5 5.846 5 6.059 6 6.275 6	6.609 6.816 6.027 6.241
66 67 68 69 70	Dysprosium Holmium Erbium Thulium Ytterbium	61.303	53.491 55.292** 57.088 58.969** 60.959	55.690 57.576¶ 59.352	49.099 50.730 52.360	49.762 51.326	9.776 10.144 10.486	8.621¶ 8.920 9.263 9.628 9.977	8.364 8.652 8.943	8.748 9.089 9.424 9.779	7.638 7.912 8.188 8.472 8.758	7.249 7.528 7.810 8.103 8.401	6.720 6 6.948 6 7.181 7 7.414 7	. 680 . 904 . 135 . 367
71 72 73 74 75	Lutecium Hafnium Tantalum Tungsten Rhenium	63.304 65.313 67.400 69.508 71.662	62.946 64.936 66.999 69.090 71.220	61.282 63.209 65.210 67.233 69.298	54.063 55.757 57.524 59.310 61.131	54.579 56.270 57.973 59.707	10.867 1 11.264 1 11.676 1 12.090 1 12.522 1	0.734 1.130 1.535 1.955	9.241 1 9.556 1 9.876 1 10.198 1 10.531 1	0.514 0.892 1.283 1.684			7.898 7 8.145 8 8.396 8 8.651 8	.604 .843 .087 .333 .584
76 77 78 79 80	Osmium Iridium Platinum Gold Mercury	73.860 76.097 78.379 80.713 83.106	80.165	75.736 77.968 80.258	62.991 64.886 66.820 68.794 70.821	63.278 65.111 66.980	12.965 1 13.413 1 13.873 1 14.353 1 14.841 1	2.819 1 3.268 1 3.733 1 4.212 1	11.919 1 12.285 1	2.509 2.939 3.379 3.828	10.918 11.249 11.582 11.923	10.706 11.069 11.439 11.823	9.173 9 9.441 9 9.711 9 9.987 9	. 625 . 896
81 82 83 84 85	Thallium Lead Bismuth Polonium Astatine	85.517 88.001 90.521 93.112 95.740	89.833 92.386	84.922 87.335 89.809	72.860 74.957 77.097 79.296 81.525	72.794 74.805 76.868	15.346 1 15.870 1 16.393 1 16.935 1 17.490 1	5.207 1 5.716 1 6.244 1	13.044 1 13.424 1 13.817 1	4.762 5.244 5.740	12.620 12.977 13.338	12.611 1 13.021 1 13.441 1	0.266 10 0.549 10 0.836 10 1.128 11 1.424 11	.448 .729 .014
89 9 0	Radon Francium Radium Actinium Thorium	98.418 101.147 103.927 106.759 109.630	100.305 103.048 105.838 108.671	97.483 100.136 102.846 105.592	88.485 90.894 93.334	83.243 85.446 87.681 89.942	19.233 1 19.842 1 20.460 1	7.904 1 8.481 1 9.078 1 9.688 1	5.028 17 5.442 17 5.865 18 6.296 18	7.301 7.845 8.405 8.977	14.459 14.839 15.227 15.620	14.770 1 15.233 1 15.712 1 16.200 1	1.724 11 2.029 11 2.338 12 2.650 12 2.966 12	.894 .194 .499 .808
91 92 93 94 95	Protactinium Uranium Neptunium Plutonium Americium	112.581 1 115.591 1 118.619 1 121.720 1 124.876 1	114.549 117.533 120.592 123.706	108.408 111.289 114.181 1 117.146 1 120.163 1	98.428 01.005 03.653 06.351	94.648 : 97.023 : 99.457 : 101.932 :	21.753 2 22.417 2 23.097 2 23.793 2	0.943 1 1.596 1 2.262 1 2.944 1	7.163 20 7.614 20 8.066 23 8.525 22	0.163 0.774 1.401 2.042	16.425 16.837 17.254 17.677	17.218 1 17.740 1 18.278 1 18.829 1	3.291 13 3.613 13 3.945 13 4.279 14 4.618 14	.438 .758 .082 .411
96 97 98 99 100	Curium Berkelium Californium	128.088 1 131.357 1 134.683 1 138.067 1 141.510 1	130.101 1 133.383 1 136.724 1	123.235 1 126.362 1 129.544 1 132.781 1 136.075 1	11.896 1 14.745 1 17.646 1	107.023 2 109.603 2 112.244 2	25.230 2 25.971 2 26.729 2	4.352 1 5.080 1 5.824 2	9.461 23 9.938 24 0.422 24	3.370 1.056 1.758	18.540 18.980 19.426	19.971 1 20.562 1 21.166 1	4.961 14. 5.309 15. 5.661 15. 6.018 15. 6.379 16.	.079 .420 .764

<sup>For Z ≤ 69, values without symbols are derived from (1). Values prefixed with a — sign are Kβ₁₊₂.
For Z ≥ 70, absorption-edge values are from (4) in the case of Z = 70-83, 88, 90, and 92; remaining absorption edges to Z = 100 are obtained from these by least-squares quadratic fitting. All emission values for Z ≥ 70 are derived from the preceding absorption edges, and others based on (4), using the transition relations Ka₁ = K_{ab} - L_{III}, Ka₂ = K_{ab} - L_{III}, Kβ₁ = K_{ab} - M_{III}, etc.
Obtained from R. D. Hill, E. L. Church, J. W. Mihelich (5).
↑ Derived from Compton and Allison (5).
↑ Derived from C. E. Moore (3).
↑ Values derived from Cauchois and Hulubei (1) which deviate from the Moseley law. Better-fitting values are: Z = 17, K_{ab} = 2.826; Z = 43, Ka₁ = 18.370, Ka₂ = 18.250, Kβ₁ = 20.612; Z = 54, Ka₁ = 29.779, Ka₂ = 29.463, Kβ₁ = 34.398; Z = 60, Kβ₂ = 43.349; Z = 61, Kα₁ = 38.726, Ka₂ = 38.180, Kβ₁ = 43.811; Z = 62, Kβ₂ = 46.581, L_{II} = 7.312; Z = 66, L_{III} = 8.591, L_{III} = 7.790; Z = 69, K_{ab} = 59.382, Kβ₁ = 57.487.
162
↑ Calculated by method of least squares.</sup>

MEDICAL X RAY FILM SPEEDS*

Film (Screen Films)	Slow Screen (Radelin UD)	Medium Screen (Patterson Par-Speed)	Fast Screen (Ilford Fast)	Contrast Factor†
Ansco Fine-X	350	890	1570	2.6
Ansco Hi-Speed	400	1000	1780	2.4
Dupont Cronex I	280	700	1230	3.0
Dupont Cronex II	360	910	1600	3.4
Dupont Cronex III	560	1430	2520	2.9
Ferrania Radio N	350	880	1560	2.7
Gevaert Curix	260	670	1190	2.6
Gevaert Curix Rapid	470	1190	2110	2.8
Gevaert Curix Spec.	180	460	820	2.6
Ilford Red Seal	350	880	1550	2.7
Ilford Standard	220	560	1000	2.8
Kodak Blue Brand	320	820	1460	2.8
Kodak Royal Blue	610	1550	2740	3.0

(Non-Screen Films)	Without Screen	Contrast Factor
Ansco No Screen	47	 2.2
Ferrania Simplex	25	 2.0
Gevaert Osray	46	 2.2
Ilford Ilfex	39	 2.5
Kodak No Screen	51	 2.5

^{*}Speed = 1/R, where R is the exposure in roentgens required to obtain a film density of 1.0 under specified development conditions. Film exposed with x-ray beam of 4 mm Al HVL and developed 3 minutes in Kodak Liquid Developer at 20° C.

The information on pages 165 through 167 is taken from "Some Physical Factors Affecting Radiographic Image Quality: Their Theoretical Basis and Measurement," by Lloyd M. Bates (PHS Publication No. 999-RH-38) August 1969.

[†]The slope of the H & D curve (plot of film density vs. log exposure) at a film density of 1.0. The contrast factor is generally independent of screen type and HVL of exposing beam except when film is used without screens.

MEDICAL X RAY SCREEN SPEEDS*

Screen	Slow Film (Gevaert Curix Spec.)	Medium Film (Kodak Blue Brand)	Fast Film (Kodak Royal Blue)
Ansco High Speed	610	1080	2040
Ansco Medium Speed	490	880	1660
Auer Flash-speed	730	1300	2440
Buck A	440	780	1480
Buck AA	550	990	1860
Buck AAA	610	1090	2050
Ilford Fast	820	1460	2740
Ilford Standard	420	760	1430
Patterson Detail	280	500	930
Patterson Hi-speed	680	1220	2300
Patterson Par-speed	460	820	1550
Radelin HR	230	410	780
Radelin T	440	790	1480
Radelin TF	720	1290	2440
Radelin UD	180	320	610
Wolf Rapid	490	870	1640
Wolf Ultra	560	1000	1880
Without screent	6	13	22

^{*}Speed = 1/R, where R is the exposure in roentgens required to obtain a film density of 1.0 under specified development conditions. Films exposed with x-ray beam of 4 mm Al HVL and developed 3 minutes in Kodak Liquid Developer at 20° C. †Screen-type film used.

VARIATION OF MEDICAL X RAY FILM SPEED WITH HVL*

Screen	Film		HVL	
·		2 mm A1	4 mm A1	6 mm A1
Slow (Radelin UD)	Medium (Kodak Blue Brand)	260	320	370
Medium (Patterson Par-speed)	Medium (Kodak Blue Brand)	630	820	940
Fast (Ilford Fast)	Medium (Kodak Blue Brand)	980	1460	1770
None	Medium (Kodak Blue Brand)	11	13	13
None	Fast (Kodak No Screen)	42	51	58

^{*}Speed = 1/R, where R is the exposure in roentgens required to obtain a film density of 1.0 under specified development conditions. Films developed 3 minutes in Kodak Liquid Developer at 20° C.

PERCENTAGE BACKSCATTER TABLES

X-ray exposure is measured in air at a given distance from the x-ray tube. When a beam of x rays is incident on a patient or other object, the exposure rate at the surface will be increased by x rays scattered back to the detector by the patient or the tabletop. The percentage backscatter is a measure of the increase in exposure rate and is defined as the increase in exposure rate at the surface of the patient compared to the exposure rate at the same point in air:

Percentage Backscatter =
$$\frac{X_s - X_a}{X_a} \times 100$$

where: X_s = exposure rate at the surface X_a = exposure rate at the same distance in air.

The following tables give percentage backscatter for circular and rectangular fields of various sizes and at various HVL's with open-ended treatment cones.

					(a)	CIRCUI	LAR FI	FLD	s					
Half Value Layer	Area cm²	10	16	20	25	35	50	6	s4 80	100	150	200	300	100
mm Al	radius cm	1.78	2.26	2.52	2.32	334	3.99	1.	51 5.0	5 5.61	6.77	7.98	9.75	113
1.0		10.8	12.8	13.8	14.8	16.4	17.9	18	3.9 19.	7 20.5	21.8	22.9)	
2.0		11.8	14.3	15.4	16.8	19.0	21.1	22	2.5 23.	8 25.0	26.6	27.9)	
3.0		13.4	16.4	17.9	19.4	21.7	24.0	25	.6 27.	0 28.3	30.2	31.8	1	
4.0		14.1	17.4	19.0	20.8	23.6	26 .5	28	3.3 29.	9 31.4	33.4	3 5.0)	
mm Cu														
0.25		17.4	20.5	22.0	23.7	26.3	29.2	31	.2 33.	34.8	37.4	3 9.5	42.4	45.0
0.5		18.6	22.0	23.5	25.4	28.2	31.4	33	.6 35.	7 37.6	40.6	43.0		49.2
1.0		15.0	18,4	20.0	22.1	25.2	28.8	31	.4 33.	8 36.0	39.3	42.0	45.8	49.0
1.5		13.8	16.9	18.4	20.1	23.0	26.2	28	.4 30.	6 32.7	36.I	3 9.1	42.8	
2.0		11.9	14.5	16.0	17.6	20.1	23.0	25	.0 26.	9 28.8	32.0	34.8	38.5	41.8
3.0		9.8	12.0	13.0	14.4	16.4	18.8	20	.5 22.5	2 23.8	26.6	28.9	31.6	34.0
4.0		7.6	9.4	10.4	11.4	13.2	15.2	16	.8 18.	2 19.7	22.0	24.0	26.4	28.0
				(b) 1	RECTA	NGULAR	FIELE)\$ C!	и X см					
Half Value														
Layer mm Cu	1×4	4×6	4×	8 4	×10	Field 4×15		•	× cm) 6×6	6×8	6×.	10 (5×15	6×20
0.5	21.4	24.4	26.	1 2	27.2	28.5	29.	2	28.3	30.6	3 2.	ι	3 4.0	35.0
1.0	18.0	21.1	23.	0 2	24.3	25.8	26.	6	25.2	27 .9	29.	7	31.8	33.0
1.5	16.6	19.3	21.	0 2	22.2	23.7	24.	5	23.0	25.3	26.	9	29.1	30.3
2.0	14.4	16.9	18.	4 1	9.4	20.8	21.	6	20.1	22.2	23.	7	25.7	26 .9
3.0	11.6	13.7	14.	9 1	5.8	17.0	17.	6	16.4	18.2	19.	1	21.1	22.1
	8×8	8×10	<i>8</i> ×	15 8	×20	10×10) 10×	:15	10×20	15×15	15×	20 2	0×20	
0.5	33.4	35.2	37.	6 5	9.0	37.3	40.	1	41.8	43.9	46.	2	48.9	
1.0	31.1	33.3	36.	0 5	37.5	35.7	38.	9	40.7	43.0	45.	6	48.7	
1.5	28.2	30.2	33.	0 3	34.5	32.4	3 5.	7	3 7.6	40.0	42.	6	45.7	
2.0	24.8	26.5	29.	2 5	0.7	2 8. 6	31.	7	33.5	3 5.8	38.	4	41.5	
3.0	20.4	21.9	24.	1 2	5.3	23.7	26.	2	27.7	29.6	31.5	5	33.7	

"Percentage depth dose" is the ratio of radiation dose at some depth (d) below the surface of the patient or phantom (D_d) to the dose at the surface (D_g) :

Percentage Depth Dose = $\frac{D_d}{D_s} \times 100$.

At high energies (e.g., 60 Co), the maximum dose occurs at some point below the surface. In this case the percentage depth dose is defined as the ratio of absorbed dose at some depth d (D_d) to the maximum dose (D_m):

Percentage Depth Dose = $\frac{D_d}{D_m} \times 100$.

The following tables give percentage depth doses for various field sizes and exposure parameters.

	Area (cm2)	<i>o</i>	3.1	7.0	12.5	28.3	50	100
	Diam. (cm)	0	2	3	1	б	8	11.
	Depth (cm)							
	0	100	100	100	100	100	100	100
	0.5	61	74	79	81	84	86	87
	1	42	56	61	63	66	67	69
FSD	2	23	32	36	39	41	42	44
15 cm	3	13	19	22	24	26	27	29
	4	8	12	13	15	17	19	20
	8	2	2	3	3	4	4	5
	0	100	100	100	100	100	100	100
	0.5	62	75	80	82	84	86	88
	1	44	58	63	65	67	68	70
FSD	2	24	34	38	41	43	44	45
20 cm	3	14	20	23	25	28	29	31
	4	9	13	15	16	18	20	21
	<u> </u>	2	3	3	4	4	5	
	0	100	100	100	100	100	100	100
	0.5	63	76	81	83	85	88	89
	1	45	60	64	66	68	70	71
FSD	2	25	36	40	42	44	46	48
30 cm	3	16	22	25	27	30	31	33
	4	10	14	16	18	20	22	25
	8	2		4	4	5	6	7
	HVL 2.0 M	м Ац. (/	APPROXIMAT	ELY 120 KV	WITH INH	ERENT FILTI	LATION)	
	0	100	100	100	100	100	100	100
	0.5	71	82	85	87	88	89	90
	1	52	65	69	72	74	76	77
FSD	2	31	4 2	47	49	53	55	56
15 cm	3	20	28	32	34	38	40	42
	4	14	19	22	24	27	30	32
							• • •	11
	8	3	5	6	7	9	10	
	8 0	100	100	100	100	100	100	100
	0 0.5	3 100 72	100 83	100 86	100 88	100	100 90	100
	8 0 0.5 1	3 100 72 54	100 83 66	100 86 71	100 88 73	100 89 76	100 90 77	100 91 78
FSD	8 0 0.5 1 2	3 100 72 54 33	100 83 66 44	100 86 71 49	100 88 73 51	100 89 76 55	100 90 77 57	100 91 78 58
FSD 20 cm	8 0 0.5 1 2 3	3 100 72 54 33 22	100 83 66 44 30	100 86 71 49 34	100 88 73 51 36	100 89 76 55 40	100 90 77 57 42	100 91 78 58
	8 0 0.5 1 2 3	3 100 72 54 33 22 15	100 83 66 44 30 21	100 86 71 49 34 24	100 88 73 51 36 26	100 89 76 55 40	100 90 77 57 42 32	100 91 78 58 44
	8 0 0.5 1 2 3 4	3 100 72 54 33 22 15 4	100 83 66 44 30 21 6	100 86 71 49 34 24	100 88 73 51 36 26 8	100 89 76 55 40	100 90 77 57 42 32	100 91 78 58
	8 0 0.5 1 2 3 4 8	3 100 72 54 33 22 15 4	100 83 66 44 30 21 6	100 86 71 49 34 24 7	100 88 73 51 36 26 8	100 89 76 55 40 30 10	100 90 77 57 42 32 11	100 91 78 58 44 34 11
	8 0 0.5 1 2 3 4 8	3 100 72 54 33 22 15 4 100 73	100 83 66 44 30 21 6	100 86 71 49 34 24 7	100 88 73 51 36 26 8	100 89 76 55 40 30 10	100 90 77 57 42 32 11	100 91 78 58 44 34 13
20 cm	8 0 0.5 1 2 3 4 8	3 100 72 54 33 22 15 4 100 73 55	100 83 66 44 30 21 6	100 86 71 49 34 24 7	100 88 73 51 36 26 8 100 88 74	100 89 76 55 40 30 10	100 90 77 57 42 32 11 100 91 79	100 91 78 58 44 34 13 100 92
20 cm FSD	8 0 0.5 1 2 3 4 8 0 0.5 1 2	3 100 72 54 33 22 15 4 100 73 55 35	100 83 66 44 30 21 6 100 84 68 47	100 86 71 49 34 24 7 100 87 73 51	100 88 73 51 36 26 8 100 88 74 54	100 89 76 55 40 30 10 100 89 77 57	100 90 77 57 42 32 11 100 91 79 60	100 91 78 58 44 34 13 100 92 80 61
20 cm	8 0 0.5 1 2 3 4 8	3 100 72 54 33 22 15 4 100 73 55	100 83 66 44 30 21 6	100 86 71 49 34 24 7	100 88 73 51 36 26 8 100 88 74	100 89 76 55 40 30 10	100 90 77 57 42 32 11 100 91 79	100 91 78 58 44 34 13 100 92

Tables reprinted from: Johns, H. E., The Physics of Radiology, 2nd Ed., 1964. 169

11VL 3.0 MM AL. (APPROXIMATELY 120 KVP 1 MM AL. FILTER)

	Area (cm2)	0	3.1	7.0	12.5	28.3	50	100
	Diam. (cm)	0	2	3	1	6	8	11.3
	Depth (cm)							
	0	100	100	100	100	100	100	100
	0.5	75	85	87	88	89	90	90
	1	58	70	74	76	77	78	80
FSD	2	37	48	53	56	59	60	62
15 cm	3	24	33	37	41	45	46	48
	4	17	23	27	30	34	35	37
	8	4	6	8	9	11	13	14
	0	100	100	100	100	100	100	100
	0.5	76	86	88	89	90	91	91
	1	60	72	75	77	79	80	81
FSD	2	39	51	55	58	62	63	65
20 cm	3	27	35	40	43	47	49	51
	4	19	25	29	32	36	38	40
	8	5	7	9	10	12	14	16
	0	100	100	100	100	100	100	100
	0.5	77	86	88	90	91	92	92
	1	62	74	77	79	81	82	83
FSD	2	41	54	58	61	65	66	67
30 cm	3	29	39	43	46	51	53	55
	4	21	28	32	35	40	42	44
	8	6	9	10	12	14	17	19

HVL 4.0 mm Al. (Approximately 140 kvp 2.0 mm Al. Filter)

	0	100	100	100	100	100	100	100
	0.5	78	87	89	90	91	92	93
	1	62	74	77	79	80	81	84
FSD	2	40	52	56	59	62	63	67
15 cm	3	27	37	41	44	47	49	53
	4	19	26	30	32	36	38	42
	8	5	8	9	10	12	14	17
	0	100	100	100	100	100	100	100
	0.5	79	88	89	90	92	93	94
	1	63	76	78	80	82	83	86
FSD	2	43	55	59	62	64	66	70
20 cm	3	30	40	44	46	49	52	56
	4	21	29	32	35	38	41	45
	8	6	9	10	12	14	16	19
	0	100	100	100	100	100	100	100
	0.5	80	90	91	92	93	94	95
	1	65	78	81	82	83	84	87
FSD	2	45	58	62	65	68	69	73
30 cm	3	32	43	47	50	54	56	60
	4	24	32	36	38	42	45	49
	8	7	11	12	14	17	19	22

DEPTH DOSE--Continued

HVL 0.5 MM CU FSD 40 CM

Depth	Area of Field in Square Centimetres										
in cm	0	20	3.5	50	80	100	150	200	400		
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
1	74.6	91.7	9 3 .6	94.7	96.4	97.0	98.0	98.6	99.3		
2	56.5	78.1	81.5	83.4	86.0	86.9	88.8	89.9	91.9		
2 3	43.2	64.8	68.9	71.6	74.6	76.0	78. 4	80.0	83.4		
4 5	33.3	52.9	57.7	60.5	64.2	65.6	68.1	69.7	73.9		
5	25.8	43.3	47.8	50.9	54.6	56.2	59.0	61.0	65.1		
6	20.0	35.4	39.3	42.4	46.0	47.5	50.5	52.8	57.0		
7	15.5	28.9	32.6	35.6	38.8	40.1	43.2	45.4	49.8		
6 7 8 9	12.1	23.7	27.1	29.5	32.5	34.0	36.8	39.0	43.5		
9	9.4	19.4	22.3	24.7	27.3	28.7	31.4	33.4	37.5		
10	7.4	16.1	18.4	20.5	23.0	24.3	26.6	28.5	32.7		
11	5.8	13.2	15.3	17.0	19.3	20.5	22.5	24.3	28.2		
12	4.6	10.8	12.8	14.3	16.3	17.4	19.2	20.8	24.5		
13	3.7	8.8	10.7	12.0	13.7	14.7	16.3	17.6	21.1		
14	2.9	7.3	8.9	10.0	11.5	12.3	13.9	15.3	18.3		
15	2.4	6.0	7.4	8.3	9.7	10.4	11.8	13.0	15.7		
16	1.9	4.9	6.1	6.9	8.2	8.8	10.1	11.1	13.6		
17	1.5	4.1	5.1	5.8	6.9	7.4	8.6	9.6	11.7		
18	1.2	5.4	4.2	4.8	5.8	6.5	7.3	8.2	10.1		
19	1.0	2.8	3.5	4.0	4.9	5.3	6.2	7.0	8.7		
20	.8	2.5	2.9	3.4	4.1	4.5	5.3	5. 9	7.5		

HVL 0.5 MM CU FSD 50 CM

Depth		Area of Field in Square Centimetres									
in cm	0	20	35	50	80	100	150	200	400		
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
1	75.3	92.3	94.3	95.4	97.1	97.7	98.7	99.3	100.0		
2	55.7	79.0	82.5	84.4	87.0	88.0	89.9	91.0	93.0		
1 2 3 4 5	44.5	66.0	70.2	72.9	76.0	77.4	79.8	81.5	84.9		
4	34.5	54.3	59.2	62.1	65.9	67.3	69.9	71.6	75.9		
5	27.0	44.7	49.3	52.5	56.3	58.0	60.9	62.9	67.2		
6	21.1	36.7	40.8	44.0	47.7	49.3	52.4	54.8	59.1		
7	16.5	30.1	34.0	37.1	40.4	41.8	45.0	47.5	51.9		
7 8	13.0	24.8	28.3	30.8	34.0	35.5	38.5	40.8	45.2		
9	10.1	20.4	23.4	25.9	28.6	30.1	32.9	35.0	39.4		
10	8.0	16.9	19.4	21.6	24.2	25.6	28.0	30.0	34.4		
11	6.3	13.9	16.2	18.0	20.4	21.6	23.8	25.7	29.8		
12	5.1	11.4	13.5	15.1	17.2	18.4	20.3	22.0	25.9		
13	4.1	9.4	11.3	12.7	14.5	15.6	17.3	18.7	22.4		
14	3.3	7.7	9.4	10.6	12.2	13.1	14.8	16.2	19.4		
15	2.6	6.4	7.8	8.8	10.3	11.1	12.6	13.8	16.7		
16	2.1	5.3	6.5	7.4	8.7	9.4	10.8	11.8	14.5		
17	1.7	4.3	5.4	6.2	7.3	7.9	9.2	10.2	12.5		
18	1.4	3.6	4.5	5.2	6.2	6.7	7.8	8.7	10.8		
19	1.1	3.0	3.8	4.3	5.2	5.7	6.6	7.5	9.3		
20	.9	2.4	3.1	3.6	4.4	4.8	5.6	6.4	8.1		

DEPTH DOSE--Continued

HVL 1.0 mm Cu FSD 40 cm

Depth	Area of Field in Square Centimetres									
in cm	0	20	35	50	80	100	150	200	400	
0	100.0	100.0	100.0	100.0	100.0	100 0	100.0	100,0	100.0	
ı	78.3	93.5	96.2	97.5	99.2	100.1	101.3	101.9	102.3	
2	61.7	82.1	87.2	89.0	92.0	93.0	94.7	95.6	97.1	
2 3 4 5	49.0	71.1	75.9	79.0	83.1	84.7	87.1	88.9	91.4	
4	39.0	60.5	65.5	68.8	73.2	75.2	78.2	80.3	84.2	
5	31.1	50.9	55.8	59.3	63.9	65.6	69.1	71.3	75.5	
6 7	25.0	42.8	47.4	50.7	55.1	57.1	60.3	62.6	67.4	
7	20.0	35.8	40.1	43.2	47.4	49.3	52.7	55.1	59.9	
8 9	16.1	29.8	33.7	36.5	40.5	42.6	45.7	48.1	53.1	
9	13.0	24.9	28.5	31.0	34.7	36.7	39.9	41.9	46.9	
10	10.4	20.8	24.9	26.4	29.6	31.4	34.4	36.4	41.5	
11	8.4	17.4	20.3	22.4	25.3	27.0	29.6	31.6	36.4	
12	6.7	14.6	17.1	19.0	21.5	23.1	25.6	27.5	31.8	
13	5.4	12.2	14.4	16.0	18.4	19.7	22.0	23.9	27.8	
14	4.4	10.2	12.2	13.6	15.7	16.9	19.0	20.7	24.3	
15	3.5	8.5	10.2	11.5	13.5	14.5	16.3	17.8	21.3	
16	2.8	7.1	8.6	9.7	11.5	12.4	14.0	15.4	18.6	
17	2.3	6.0	7.2	8.3	9.8	10.6	12.1	13.3	16.3	
18	1.9	5.0	6.1	7.0	8.3	9.0	10.4	11.5	14.3	
19	1.5	4.2	5.2	5.9	7.1	7.8	8.9	9.9	12.5	
20	1.2	3.5	4.4	5.0	6.1	6.7	7.7	8.5	10.9	

HVL 1.0 MM CU FSD 50 CM

Depth	Area of Field in Square Centimetres									
in cm	0	20	35	50	80	100	150	200	400	
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
1	79.0	94.2	96.9	98.2	99.9	100.8	102.0	102.6	103.0	
1 2 3 4 5	63.0	83.2	88.3	90.2	93.2	94.2	95.9	96.9	98.4	
3	50.5	72.5	77. 4	80.5	84.7	86.3	88.8	90.6	93.5	
4	40.5	62.0	67.2	70.6	75.1	77.1	80.2	82.4	86.4	
5	32.5	52.5	57.5	61.1	65.9	67.6	71.2	73.5	77.8	
6 7	26.3	44.4	49.1	52.5	57.1	59.2	62.5	64.9	69.8	
7	21.3	37.3	41.8	45.0	49.4	51.4	54.8	57.3	62.3	
8	17.3	31.2	35.2	38.2	42.4	44.6	47.8	50.3	55.5	
9	14.0	26.1	29.9	32.5	36.4	38.5	41.8	43.9	49.3	
10	11.3	21.9	25.2	27.8	31.2	33.1	36.2	38.3	43.6	
11	9.1	18.3	21.4	23.7	26.7	28.5	31.3	33.4	38.5	
12	7.4	15.4	18.2	20.1	22.8	24.4	27.1	29.1	33.8	
13	5.9	12.9	15.3	17.0	19.5	20.9	23.4	25.3	29.5	
14	4.8	10.8	13.0	14.4	16.7	17.9	20.2	21.9	25.8	
15	3.9	9.1	10.8	12.2	14.3	15.4	17.4	18.9	22.7	
16	3.2	7.6	9.1	10.3	12.2	13.2	14.9	16.4	19.8	
17	2.6	6.4	7.7	8.8	10.4	11.3	12.9	14.2	17.3	
18	2.1	5.3	6.5	7.4	8.9	9.6	11.1	12.3	15.2	
19	1.7	4.5	5.5	6.3	7.6	8.3	9.5	10.6	13.3	
20	1.4	3.7	4.7	5.4	6.5	7.1	8.2	9.1	11.6	

HVL 1.0 MM CU FSD 60 CM

Depth			1	rea of Field	l in Square	Centimet	es		
in cm	0	20	35	50	80	100	150	200	100
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	79.6	94.8	97.5	98.8	100.5	101.4	102.6	103.2	103.6
2 3	63.8	84.2	89.4	91.3	94.3	95.3	97.1	98.1	99.6
3	51.5	73.8	78.8	81.9	86.2	87.9	90.4	92.2	95.2
4	41.5	63.4	68.7	72.2	76.8	78.9	82.0	84.3	88.4
4 5	33.5	54.0	59.0	62.7	67.6	69.4	73.0	75.3	79.7
6 7	27.4	45.6	50.5	54.0	58.7	60.9	64.3	66.7	71.8
7	22.2	38.5	43.0	46.4	50.9	53.0	56.5	59.1	64.2
8	18.1	32.2	36.4	39.5	43.8	46.1	49.5	52.0	57.3
8 9	14.6	27.0	30.9	33.6	37.7	39.8	43.2	45.4	51.0
10	11.8	22.7	26.2	28.8	32.4	34.3	37.5	39.7	45.2
11	9.7	19.0	22.2	24.6	27.7	29.6	32.5	34.7	40.0
12	7.8	16.0	18.8	20.8	23.7	25.4	28.2	30.3	35.2
13	6.4	13.4	15.9	17.7	20.3	21.8	24.4	26.4	30.8
14	5.2	11.3	13.5	15.0	17.4	18.7	21.0	22.9	27.0
15	4.2	9.5	11.3	12.7	15.0	16.1	18.1	19.8	23.7
16	3.4	8.0	9.6	10.7	12.8	13.8	15.6	17.2	20.8
17	2.8	6.7	8.1	9.2	10.9	11.9	13.5	14.9	18.2
18	2.3	5.6	6.9	7.8	9.3	10.1	11.7	12.8	15.9
19	1.9	4.7	5.8	6.6	8.0	8.7	10.0	11.2	14.0
20	1.6	3.9	4.9	5.6	6.8	7.5	8.6	9.6	12.2

HVL 1.0 MM CU FSD 80 CM

Depth			A	rea of Field	d in Square	Centimeti	es		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	80.4	95.3	98.1	99.4	101.1	102.0	103.2	103.8	104.2
2 3	64.9	85.4	90.6	92.5	95.5	96.6	98.3	99.3	100.9
3	52.6	75.3	80.3	83.4	87.7	89.4	91.9	93.8	96.8
4	42.7	65.0	70.4	73.8	78.6	80.6	83.8	86.1	90.3
4 5	34.8	55.4	60.7	64.4	69.5	71.3	75.0	77.4	81.9
6	28.6	47.2	52.2	55.8	60.7	62.9	66.4	68.9	74.1
6 7	23.4	40.0	44.7	48.2	52.9	54.9	58.6	61.3	66.6
8	19.2	33.6	38.1	41.1	45.6	47.9	51.4	54.0	59.6
9	15.7	28.3	32.4	35.2	39.5	41.6	45.1	47.5	53.2
10	12.9	23.9	27.5	30.3	34.0	36.0	39.4	41.6	47.3
11	10.5	20.1	23.4	25.9	29.2	31.1	34.2	36.5	42.0
12	8.6	17.0	19.8	22.1	25.1	26.8	29.7	31.9	37.0
13	7.0	14.3	16.8	18.8	21.5	23.0	25.7	27.8	32.4
14	5.7	12.0	14.3	16.0	18.4	19.8	22.3	24.2	28.5
15	4.7	10.1	12.1	13.6	15.8	17.1	19.3	21.0	25.2
16	3.9	8.5	10.2	11.5	13.6	14.7	16.6	18.3	22.1
17	3.2	7.2	8.7	9.8	11.7	12.6	14.4	15.9	19.4
18	2.6	6.0	7.4	8.4	10.0	10.8	12.5	13.8	17.0
19	2.2	5.1	6.2	7.1	8.6	9.3	10.7	11.9	14.9
20	1.8	4.2	5.3	6.1	7.4	8.0	9.3	10.4	13.1

HVL 1.5 MM Cu FSD 40 cm

Depth			A	rea of Field	l in Square	Gentimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100 0	100.0	190.0	100.0
1	80.1	94.3	96.3	98.0	98.9	99.7	100.7	101.5	102.0
1 2 3 4 5	63.9	83.8	87.4	89.3	92.0	93.0	94.8	95.9	98.0
3	51.2	72.4	76.9	79.8	83.3	85.1	87.6	89.2	92.3
4	41.5	61.7	66.5	69. 6	74.0	76.0	78.9	80.8	84.7
5	33.5	52.3	57.0	60.4	64.8	66.7	70.0	72.1	76.6
6	27.0	44.3	48.6	52.0	56.4	58.9	62.1	64.4	69.2
7 8	21.8	37.4	41.8	44.7	49.1	51.3	54.4	56.9	62.3
8	17.6	31.5	35.4	38.2	42.7	44.4	47.6	50.0	55.8
9	14.2	26.4	30.0	32.6	36.8	38.3	41.7	44.0	49.6
10	11.4	22.2	25.5	27.9	31.5	33.2	36.4	38.3	44.0
11	9.3	18.7	21.6	23.7	27.1	28.5	31.5	33.4	38.7
12	7.5	15.8	18.4	20.3	23.3	24.6	27.4	29.2	34.1
13	6.1	13.2	15.6	17.3	20.0	21.3	23.8	25.4	30.1
14	5.0	11.1	13.2	14.8	17.2	18.4	20.7	22.3	26.3
15	4.1	9.4	11.2	12:6	14.8	15.8	17.9	19.5	23.2
16	3.3	7.9	9.6	10.8	12.7	13.6	15.6	17.0	20.3
17	2.7	6.7	8.1	9.2	11.0	11.8	13.6	14.9	17.9
18	2.2	5.6	6.9	7.9	9.5	10.2	11.9	13.1	15.7
19	1.8	4.8	5.9	6.8	8.1	8.8	10.3	11.5	13.8
20	1.5	4.0	5.0	5.8	7.0	7.6	8.9	10.1	12.1

HVL 1.5 mm Cu FSD 50 cm

Depth			A	rea of Field	l in Square	Gentimet	res		
in cm	0	20	35	50	80	100	150	200	100
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	80.8	95.0	97.0	98.0	99.6	100.4	101.5	102.2	102.7
2	65.2	84.9	88.6	90.5	93.2	94.2	96.0	97.2	99.3
2	52.7	73.9	78.5	81.4	85.0	86.8	89.4	91.0	94.2
4	43.0	63.3	68.3	71.5	76.0	78.0	81.0	83.0	87.0
4 5	35.0	53.9	58.8	62.3	66.8	68.8	72.1	74.3	79.0
6	28.4	45.9	50.3	53.8	58.4	61.0	64.3	66.7	71.6
7	23.2	38.9	43.4	46.4	51.0	53.3	56.5	59.1	64.7
6 7 8 9	18.8	32.8	36.9	39.8	44.5	46.3	49.6	52.1	58.2
9	15.3	27.6	31.4	34.1	38.5	40.1	43.6	46.0	51.9
10	12.4	23.3	26.8	29.3	33.1	34.8	38.2	40.2	46.2
11	10.2	19.7	22.8	25.0	28.6	30.0	33.2	35.2	40.8
12	8.3	16.7	19.4	21.4	24.6	26.0	28.9	30.8	36.0
13	6.7	14.0	16.5	18.3	21.2	22.5	25.2	26.9	31.8
14	5.5	11.8	14.0	15.7	18.2	19.5	21.9	23.6	27.9
15	4.5	10.0	11.9	13.4	15.7	16.8	19.0	20.7	24.6
16	3.7	8.4	10.2	11.5	13.5	14.5	16.6	18.1	21.6
17	3.1	7.1	8.7	9.8	11.7	12.5	14.4	15.8	19.0
18	2.5	6.0	7.4	8.4	10.1	10.8	12.6	13.9	16.7
19	2.1	5.1	6.3	7.2	8.6	9.4	10.9	12.2	14.7
20	1.7	4.3	5.3	6.2	7.4	8.1	9.5	10.7	12.9

HVL 1.5 MM CU FSD 60 cM

Depth			A	rea of Field	in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	190.0	100.0	100 0	102.0	100.0
1	81.4	95.6	97.6	98.6	100.2	101.0	102.1	102.8	103.3
2 3	66.0	85.8	89.6	91.5	94.2	95.2	97.1	98.3	100.4
3	53.7	75.0	79.7	82.6	86.3	88.1	90.7	92.4	95.6
4	44.0	64.6	69.7	72.9	77.5	79.6	82.6	84.7	88.7
4 5	36.1	55.2	60.2	63.8	68.4	70.5	73.8	76.1	80.9
6 7	29.4	47.1	51.7	55.3	60.0	62.6	66.0	68.5	73.5
7	24.2	40.1	44.7	47.8	52.5	54.9	58.2	60.9	66.6
8 9	19.7	33.8	38.1	41.1	45.9	47.8	51.2	53.8	60.1
9	16.1	28.6	32.5	35.3	39.8	41.5	45.1	47.6	53.7
10	13.1	24.2	27.8	30.4	34.3	36.1	39.6	41.7	47.9
11	10.8	20.5	23.7	26.0	29.7	31.2	34.5	36.6	42.4
12	8.8	17.4	20.2	22.3	25.6	27.0	30.i	32.0	37.4
13	7.2	14.6	17.2	19.1	22.1	23.4	26.3	28.0	33.1
14	5.9	12.3	14.6	16.4	19.0	20.4	22.9	24.6	29.1
15	4.9	10.5	12.4	14.0	16.4	17.5	19.9	21.6	25.7
16	4.0	8.8	10.7	12.0	14.1	15.2	17.4	19.0	22.6
17	3.4	7.5	9.1	10.3	12.3	13.1	15.1	16.6	19.9
18	2.8	6.3	7.7	8.8	10.6	11.3	13.2	14.6	17.5
19	2.3	5.3	6.6	7.6	9.1	9.8	11.5	12.8	15.4
20	1.9	4.5	5.6	6.5	7.8	8.5	10.0	11.3	13.6

HVL 1.5 mm Cu FSD 80 cm

Depth			A	rea of Field	d in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	82.3	96.3	98.3	99.3	100.9	101.7	102.7	103.4	103.8
2	67.2	87.1	90.9	92.8	95.4	96.4	98.1	99.3	101.5
3	54.9	76.7	81.4	84.3	88.0	89.8	92.4	94.0	97.2
4	45.4	66.4	71.5	74.9	79.4	81.4	84.6	86.6	90.7
4 5	37.5	57.0	62.1	65.7	70.5	72.5	75.0	78.2	83.0
6	30.8	48.9	53.6	57.2	62.1	64.8	68.2	70.8	75.8
7	25.5	41.7	46.5	49.7	54.6	57.0	60.4	63.1	69.1
7 8	20.9	35.4	39.8	42.9	47.9	49.8	53.3	56.0	62.5
9	17.2	29.9	34.1	36.9	41.7	43.3	47.1	49.7	56.0
10	14.1	25.4	29.2	31.9	36.0	37.8	41.5	43.7	50.1
11	11.8	21.6	25.0	27.3	31.3	32.7	36.2	38.4	44.5
12	9.6	18.4	21.3	23.5	27.0	28.5	31.6	33.7	39.4
13	7.9	15.5	18.2	20.2	23.3	24.8	27.7	29.6	34.9
14	6.6	13.1	15.5	17.4	20.1	21.5	24.2	26.0	30.7
15	5.4	11.2	13.2	14.9	17.4	18.6	21.0	22.9	27.2
16	4.5	9.5	11.4	12.8	15.0	16.1	18.4	20.1	24.0
17	3.7	8.0	9.7	11.0	13.1	14.0	16.1	17.6	21.1
18	3.1	6.8	8.3	9.4	11.3	12.1	14.1	15.6	18.7
19	2.6	5.7	7.1	8.1	9.7	10.5	12.3	13.7	16.5
20	2.2	4.9	6.0	7.0	8.4	9.1	10.7	12.1	14.5

HVL 2.0 MM CU FSD 50 CM

Depth			A	rea of Field	l in Square	Centimetr	es		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
ì	81.4	95.0	96.9	97.9	99.4	99.9	101.0	101.6	102.4
2 3	66.5	85.5	88.5	90.3	92.7	93.8	95.4	96.6	99.0
3	54.0	74.3	78.6	81.3	84.8	86.3	88.8	90.5	93.7
4	44.2	63.9	68.7	71.8	75.8	77.6	80.7	82.8	87.0
4 5	36.2	54.9	59.5	62.8	67.0	68.8	71.9	74.2	79.2
6	29.6	46.5	51.2	54.5	58.8	61.0	64.2	66.5	71.8
7	24.3	39.6	44.0	47.2	51.5	53.4	57.0	59.2	64.8
6 7 8 9	19.9	33.5	37.7	40.8	44.8	46.8	50.3	52.7	58.5
9	16.4	28.4	32.4	35.2	39.2	40.9	44.4	46.5	52.4
10	13.4	24.0	27.7	30.3	33.9	35.7	38.9	41.3	46.7
11	11.1	20.4	23.7	26.0	29.4	31.0	34.0	36.3	41.6
12	9.1	17.2	20.2	22.3	25.4	27.0	29.7	31.8	36.9
13	7.5	14.7	17.3	19.2	21.9	23.4	26.0	28.0	32.7
14	6.2	12.5	14.8	16.5	19.0	20.3	22.8	24.7	28.9
15	5.1	10.6	12.6	14.1	16.4	17.7	19.9	21.7	25.5
16	4.2	8.9	10.8	12.1	14.2	15.3	17.4	19.1	22.6
17	3.5	7.6	9.2	10.4	12.3	13.3	15.2	16.8	20.0
18	2.9	6.5	7.8	8.9	10.7	11.6	13.3	14.8	17.7
19	2.4	5.5	6.7	7.7	9.2	10.0	11.6	13.0	15.6
20	2.0	4.7	5.7	6.6	7.9	8.7	10.2	11.4	13.8

HVL 2.0 MM CU FSD 60 CM

Depth			A	rea of Field	l in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	82.0	95.5	97.4	98.4	99.9	100.4	101.5	102.1	102.9
2	67.3	86.4	89.5	91.2	93.6	94.7	96.4	97.6	100.0
2 3 4 5	55.0	75.5	79.9	82.6	86.2	87.7	90.2	91.9	95.2
4	45.2	65.3	70.1	73.3	77.3	79.2	82.3	84.5	88.7
5	37.3	56.3	61.0	64.4	68.7	70.5	73.7	76.1	81.1
6	30.7	47.9	52.6	56.0	60.4	62.5	65.9	68.2	73.7
6 7	25.3	40.9	45.4	48.7	53.1	55.0	58.7	61.0	66.6
8	20.9	34.7	39.0	42.2	46.3	48.3	52.0	54.4	60.2
8 9	17.3	29.5	33.5	36.4	40.6	42.3	46.0	48.1	54.0
10	14.2	25.0	28.7	31.4	35.2	37.0	40.3	42.7	48.4
11	11.8	21.2	24.6	27.0	30.5	32.3	35.3	37.6	43.1
12	9.7	18.1	21.0	23.2	26.4	28.1	30.9	33.1	38.3
13	8.0	15.4	18.0	20.0	22.9	24.4	27.1	29.1	34.0
14	6.6	13.1	15.5	17.2	19.8	21.3	23.8	25.8	30.1
15	5.5	11.1	13.2	14.8	17.1	18.5	20.8	22.7	26.6
16	4.6	9.4	11.3	12.7	14.8	16.0	18.2	20.0	23.6
17	3.8	8.0	9.6	10.9	12.9	13.9	15.9	17.6	21.0
18	3.2	6.8	8.2	9.4	11.2	12.1	13.9	15.5	18.6
19	2.6	5.8	7.0	8.1	9.7	10.5	12.2	13.7	16.4
20	2.2	4.9	6.0	6.9	8.4	9.1	10.7	12.0	14.5

HVL 2.0 MM CU FSD 80 CM

Depth			A	rea of Field	d in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100,0
1	82.9	96.1	98.0	99.0	100.5	101.0	102.4	194.7	103.4
2 3 4 5	68.5	87.6	90.6	92.5	94.8	96.0	97.6	98.8	101.2
3	56.3	77.1	81.4	84.1	87.8	89.1	91.7	93.5	96.7
4	46.6	67.1	71.9	75.2	79.2	81.0	84.2	86.4	90.7
5	38.7	58.1	62.9	66.3	70.7	72.6	75.8	78.2	83.2
6	32.1	49.7	54.5	58.0	62.6	64.8	68.1	70.6	76.0
7	26.7	42.6	47.3	50.6	55.2	57.1	60.9	63.2	69.1
6 7 8 9	22.1	36.3	40.7	44.1	48.3	50.4	54.1	56.6	62.8
9	18.4	30.9	35.2	38.2	42.3	44.3	48.0	50.3	56.6
10	15.3	26.3	30.2	33.0	36.9	38.8	42.2	44.7	50.7
11	12.8	22.5	26.0	28.5	32.1	33.9	37.1	39.6	45.3
12	10.6	19.1	22.3	24.5	27.9	29.6	32.5	34.8	40.4
13	8.8	16.3	19.1	21.2	24.1	25.8	28.6	30.8	35.9
14	7.3	13.9	16.4	18.3	21.0	22.5	25.2	27.3	31.8
15	6.1	11.8	14.0	15.7	18.2	19.6	22.0	24.0	28.2
16	5.1	10.1	12.1	13.5	15.8	17.0	19.4	21.3	25.1
17	4.3	8.6	10.3	11.7	13.7	14.9	17.0	18.8	22.3
18	3.6	7.3	8.8	10.1	12.0	13.0	14.9	16.6	19.8
19	3.0	6.3	7.6	8.7	10.3	11.3	13.1	14.6	17.5
20	2.5	5.3	6.5	7.4	9.0	9.8	11.5	12.9	15.6

HVL 2.0 MM CU FSD 100 CM

Depth			A	rea of Field	d in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	83.1	96.6	98.5	99.5	101.0	101.4	102.5	103.1	103.8
2 3	69.2	88.4	91.4	93.2	95.6	96.6	98.3	99.5	101.9
3	57.2	78.2	82.4	85.1	88.7	90.2	92.8	94.5	97.7
4	47.7	68.2	73.1	76.3	80.3	82.2	85.4	87.5	91.9
4 5	39.7	59.3	64.1	67.5	72.0	73.8	77.1	79.5	84.6
6 7	33.0	50.9	55.9	59.3	63.9	66.2	69.5	72.0	77.5
7	27.6	43.8	48.4	51.9	56.5	58.5	62.4	64.7	70.7
8 9	23.0	37.4	41.9	45.3	49.6	51.8	55.6	58.0	64.4
9	19.2	32 .0	36.4	39.4	43.8	45.6	49.5	51.7	58.2
10	15.9	27.3	31.3	34.2	38.1	40.1	43.6	46.2	52.3
11	13.4	23.4	27.0	29.5	33.3	35.1	38.4	40.9	46.8
12	11.1	19.8	23.2	25.5	29.0	30.7	33.7	36.1	41.8
13	9.3	17.0	20.0	22.1	25.1	26.8	29.7	32.0	37.2
14	7.8	14.5	17.2	19.1	21.9	23.4	26.2	28.4	33.1
15	6.5	12.5	14.7	16.4	19.0	20.5	23.0	25.0	29.4
16	5.4	10.6	12.7	14.2	16.6	17.8	20.2	22.1	26.1
17	4.6	9.0	10.8	12.3	14.4	15.6	17.7	19.6	23.3
18	3.8	7.7	9.3	10.6	12.6	13.6	15.6	17.3	20.7
19	3.2	6.6	8.0	9.1	10.9	11.8	13.7	15.3	18.3
20	2.7	5.7	6.9	7.8	9.5	10.3	12.1	13.5	16.3

HVL 3.0 MM Cu FSD 50 cm

Depth			A	rea of Field	l in Square	Centimetr	es		
in cm	0	20	35	50	80	100	150	200	100
0	100.0	100.0	100.0	100,0	100.0	100.0	100.0	100.0	100 0
1	82.3	94.7	96.5	97.4	98.6	99,0	100.0	100.5	101.4
2	68.0	85.8	88.2	89.8	91.7	92.7	94.3	95.4	97.6
3	56.2	75.0	78.8	81.0	84.1	85.4	87.5	89.2	92.4
4	46.4	64.8	69.1	71.8	75.4	77.0	79.8	81.8	85.9
2 3 4 5	38.6	56.0	60.0	63.0	66.8	68.6	71.6	73.9	78.4
6	32.0	47.7	52.0	54.9	58.8	60.9	64.0	66.4	71.0
7	26.5	40.8	44.8	47.8	51.8	54.0	56.9	59.4	64.4
8 9	22.0	34.9	38.7	41.5	45.5	47.6	50.4	53.0	58.2
9	18.4	29.7	33.3	36.0	39.8	41.7	44.6	47.2	52.2
10	15.4	25.3	28.6	31.1	34.7	36.6	3 9.5	41.8	46.8
11	12.8	21.7	24.6	26.9	30.3	3 2.0	34.8	37.2	41.9
12	10.7	18.5	21.1	23.2	26.4	27.9	30.6	32.7	37.5
13	9.0	15.7	18.2	20.0	22.9	24.4	26.9	28.8	33.5
14	7.5	13.4	15.7	17.3	19.9	21.2	23.6	25. 4	29.5
15	6.3	11.5	13.4	15.0	17.3	18.5	20.7	22.4	26.3
16	5.3	9.8	11.5	12.9	15.0	16.1	18.2	19.7	23.4
17	4.5	8.4	9.9	11.2	13.1	14.0	15.9	17. 4	20.8
18	3.7	7.2	8.5	9.6	11.4	12.2	14.0	15.4	18.
19	3.1	6.1	7.3	8.3	9.9	10.7	12.3	13.6	16.
20	2.6	5.2	6.3	7.2	8.6	9.3	10.8	11.9	14.6

HVL 3.0 MM CU FSD 60 CM

Depth			A	rea of Field	l in Squar e	Centimetr	es		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	82 .9	95.3	97.1	98.0	99.2	99.5	100.6	101.1	102.0
2	68.8	86.7	89.2	90.8	92.7	93.7	95.3	96.4	98.7
3	57.3	76.2	80.1	82.3	85.4	86.8	88.9	90.6	93.9
2 3 4 5	47.5	66.1	70.5	73.2	76.8	78.5	81.3	83.3	87.4
5	39.8	57. 5	61.4	64.5	68.3	70.2	73.2	75.5	80.1
6 7	33.2	49.1	53.4	56.4	60.3	62.5	65.6	68.1	72.8
7	27.6	42.2	46.2	49.3	53.3	55.6	58.6	61.1	66.2
8	23.1	36.2	40.0	42.9	47.0	49.1	52.0	54.7	60.0
9	19.4	30 .9	34.6	37.3	41.2	43.2	46.2	48.9	54.0
10	16.3	26.4	29.8	32.3	36.1	38.0	41.0	43.3	48.5
11	13.6	22.7	25.7	28.0	31.5	33.3	36.2	38.6	43.4
12	11.4	19.4	22.1	24.2	27.5	29.1	31.9	34.1	38.8
13	9.6	16.5	19.1	20.9	24.0	25.5	28.1	30.1	34.8
14	8.1	14.2	16.5	18.1	20.9	22.2	24.7	26.6	30.9
15	6.8	12.2	14.2	15.7	18.2	19.5	21.8	23.6	27.6
16	5.8	10.4	12.2	13.6	15.8	17.0	19.2	20.8	24.6
17	4.9	8.9	10.5	11.8	13.9	14.8	16.8	18.4	21.9
18	4.1	7.6	9.1	10.2	12.1	12.9	14.8	16.3	19.6
19	3.5	6.5	7.9	8.9	10.5	11.4	13.1	14.4	17.5
20	2.9	5.6	6.8	7.7	9.2	9.9	11.5	12.7	15.6

HVL 3.0 MM CU FSD 80 CM

Depth			A	rea of Field	l in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	83.8	95.9	97.8	98.6	99.7	100.1	101.1	101.6	102.5
2 3	70.0	88.0	90.3	92.0	93.9	94.8	96.5	97.6	99.7
3	58.6	77. 9	81.7	83.8	86.9	88.2	90.4	92.1	95.4
4	49.0	68.1	72.3	75.2	78.7	80.4	83.3	85.3	89.5
4 5	41.3	59.5	63.4	66.5	70.4	72.3	75.3	77.7	82.3
6	34.7	51.1	55,5	58.6	62.6	64.8	68.0	70.5	7 5.1
6 7	29.2	44.1	48.3	51.4	55.5	57.8	60.9	63.6	68.9
8	24.5	38.1	42.0	44.9	49.1	51.4	54.4	57.1	62.6
9	20.7	32.7	36.5	39.2	43.3	45.3	48.4	51.2	56.4
10	17.5	28.1	31.5	34.1	38.0	40.0	43.1	45.7	50.9
11	14.7	24.2	27.3	29.7	33.4	35.2	38.2	40.7	45.8
12	12.5	20.8	23.6	25.8	29.2	30.9	33.8	36.1	41.0
13	10.5	17.8	20.4	22.2	25.5	27.1	29.9	31.9	36.8
14	8.9	15.3	17.7	19.4	22.3	23.7	26.3	28.2	32.8
15	7.6	13.2	15.2	16.9	19.4	20.8	23.2	25.0	29.4
16	6.4	11.3	13.2	14.7	17.0	18.2	20.5	22.1	26.3
17	5.4	9.7	11.4	12.8	14.9	15.9	18.1	19.7	23.5
18	4.6	8.3	9.9	11.1	13.0	13.9	15.9	17.5	21.0
19	3.9	7.2	8.5	9.6	11.4	12.3	14.1	15.5	18.8
20	3.3	6.2	7.4	8.4	9.9	10.7	12.4	13.7	16.7

HVL 3.0 mm Cu FSD 100 cm

Depth			A	rea of Field	l in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	84.0	96.4	98.1	99.0	100.1	100.5	101.5	101.9	102.8
2 3 4 5	70.7	88.8	91.1	92.7	94.5	95.5	97.0	98.2	100.3
3	59.6	79.0	82.7	84.8	87.9	89.2	91.4	93.0	96.3
4	50.1	69.3	73.5	76.3	79.8	81.5	84.4	86.4	90.6
5	42.4	60.8	64.7	67.8	71.7	73.6	76.7	79.1	83.7
6	3 5. 7	52.4	56.8	59.9	63.9	66.1	69.3	71.8	76.6
7	30.1	45.5	49.6	52.8	56.9	59.3	62.3	65.0	70.3
8	25.4	39.5	43.4	46.3	50.6	52.8	55.8	58.6	64.1
6 7 8 9	21.6	33.9	37.7	40.6	44.7	46.7	49.8	52.6	58.0
10	18.3	29.2	32.7	35.4	39.3	41.4	44.5	47.0	52.4
11	15.4	25.2	28.4	30.9	34.6	36.5	39.5	42.1	47.3
12	13.1	21.7		26.9	30.4	32.1	35.0	37.4	42.4
13	11.1	18.6	24.6 21.3	23.4	26.6	28.2	31.0	33.1	38.0
14	9.5	16.1	18.5	20.4	23.3	24.7	27.4	29.4	34.0
15	8.1	13.8	16.0	17.8	20.4	21.7	24.2	26.1	30.5
16	6.9	11.9	13.9	15.4	17.8	19.0	21.4	23.1	27.3
17	5.8	10.3	12.1	13.5	15.6	16.7	18.9	20.5	24.4
18	5.0	8.9	10.5	11.7	13.7	14.6	16.7	18.2	21.9
19	4.2	7.6	9.2	10.2	12.0	12.9	14.7	16.2	19.6
20	3.6	6.6	7.9	8.9	10.5	11.3	13.0	14.3	17.5

HVL 4.0 MM CU FSD 50 CM

Depth			A	rea of Field	l in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
ı	83.1	94.4	96.0	96.8	97.7	98.0	28.8	99.3	100.0
2	69.3	85.9	87.8	89.1	90.8	91.6	93.0	93.9	96.0
2 3 4	57.8	75.6	78.8	80.7	83.3	84.3	86.2	87.6	90.1
4	48.2	65.5	69.5	71.8	75.0	76.4	78.9	80.5	84.2
5	40.7	56.6	60.4	63.2	66.6	68.2	71.2	73.4	77.1
6	34.3	48.5	52.7	55.5	58.9	60.8	63.8	66.1	70.2
6 7	28.9	41.6	45.6	48.4	51.8	53.7	56.8	59.4	63.8
8	24.4	35.7	39.5	42.0	45.5	47.3	50.5	53.1	57.8
9	20.5	30.6	34.0	36.5	39 .8	41.6	44.8	47.3	51.8
10	17.3	26.3	29.4	31.6	35.0	36.7	39.7	42.0	46.6
11	14.6	22.6	25.4	27.4	30.6	32.3	35.1	37.4	41.8
12	12.4	19.4	21.9	23.7	26.8	28.4	30.9	33.1	37.5
13	10.5	16.7	19.0	20.6	23.4	24.9	27.3	29.2	33.6
14	8,9	14.3	16.4	17.9	20.4	21.8	24.1	25.8	3 0.0
15	7.5	12.3	14.1	15.5	17.8	19.0	21.2	2 2.8	26.7
16	6.4	10.6	12.2	13.5	15.6	16.7	18.7	20.1	23.8
17	5.4	9.1	10.6	11.7	13.6	14.6	16.4	17.7	21.2
18	4.6	7.8	9.1	10.2	11.8	12.8	14.4	15.7	18.9
19	4.0	6.7	7.9	8.8	10.3	11.2	12.6	13.8	16.9
20	3.4	5.8	6.8	7.7	9.0	9.7	11.1	12.2	15.1

HVL 4.0 MM CU FSD 80 CM

Depth			A	rea of Field	l in Square	Centimet	res		
in cm	0	20	35	50	80	100	150	200	400
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	84.6	95.6	97.2	97.9	98.8	99.1	99.8	100.3	101.0
2	71.4	88.0	89.7	91.1	92.8	93.6	95.0	95.9	97.9
2 3	60.2	78.5	81.5	83.4	86.0	87.0	88.9	90.4	93.2
4	50.9	68.8	72.7	75.0	78.2	79.7	82.2	83.9	87.5
4 5	43.5	60.2	63.9	66.7	70.2	71.9	74.9	77.1	80.9
6	37.2	52.2	56.3	59.2	62.7	64.8	67.8	70.1	74.2
7	31.7	45.3	49.2	52.1	55.7	57.8	60.9	63.6	67.9
7 8	27.1	39.3	43.1	45.7	49.4	51.3	54.6	57.3	62.1
9	23.1	34.0	37.5	40.1	43.6	45.4	48.8	51.5	56.0
10	19.7	29.5	32.7	35.0	38.6	40.4	43.6	46.1	50.8
11	16.8	25.6	28.5	30.6	34.0	35.8	38.8	41.3	45.9
12	14.4	22.2	24.8	26.7	29.9	31.6	34.4	36.8	41.4
13	12.3	19.3	21.6	23.4	26.4	27.9	30.6	32.7	37.4
14	10.5	16.6	18.8	20.4	23.1	24.7	27.2	29.1	33.6
15	9.0	14.4	16.3	17.8	20.3	21.6	24.0	25.9	30.1
16	7.7	12.5	14.2	15.6	17.8	19.1	21.3	23.0	27.0
17	6.6	10.8	12.4	13.7	15.7	16.8	18.9	20.3	24.2
18	5.7	9.4	10.8	12.0	13.8	14.8	16.7	18.1	21.7
19	4.9	8.1	9.4	10.5	12.1	13.1	14.8	16.1	19.5
20	4.2	7.0	8.2	9.1	10.6	11.5	13.1	14.3	17.6

Depth		Are	a of Field in Sq	uare Centimet	res	
in cm	0	20	50	100	200	400
0.5	100.0	100.0	100.0	100.0	100.0	100.0
1	94.6	96.2	97.0	97.5	97.6	97.7
2 3 4 5	85.2	89.2	90.6	91.4	91.8	92.1
3	76.8	82.3	84.2	85.4	86.1	86.8
4	69.3	75.7	78.2	79.6	80.6	81.6
5	62.6	69.5	72.4	74.0	75.3	76.6
6	56.4	63.7	66.8	68.6	70.2	71.8
7 8 9	51.0	58.3	61.4	63.4	65.3	67.1
8	46.1	53.3	56.4	58.6	60.7	62.7
	41.7	48.7	51.7	53.9	56.2	58.6
10	37.8	44.5	47.4	49.7	52.2	54.9
11	34.3	40.6	43.5	45.8	48.4	51.2
12	31.1	37.1	40.0	42.2	45.0	47.8
13	28.2	33.9	36.7	39.0	41.7	44.7
14	25.6	31.0	33.7	36.0	38.7	41.7
15	23.3	28.4	30.9	33.2	36.0	39.0
16	21.1	26.0	28.4	30.6	33.4	36.5
17	19.3	23.8	26.1	28.3	31.1	34.2
18	17.5	21.8	24.0	26.2	28.9	32.0
19	15.9	19.9	22.2	24.2	26.9	29.9
20	14.5	18.2	20.3	22.4	25.0	28.1

COBALT 60 SSD 60 CM

Depth		Arc	ea of Field in Sq	uare Centimet	res	
in cm	0	20	50	100	200	400
0.5	100.0	100.0	100.0	100.0	100.0	100.0
1	95.0	96.7	97.1	97.8	97.9	98.1
2	86.0	90.1	91.2	92.2	92.6	93.0
3	77.9	83.7	85.4	86.6	87.4	88.0
4	70.7	77.6	79.7	81.2	82.3	83.2
2 3 4 5	64.2	71.7	74.2	75.9	77.3	78.4
6	58.3	66.1	68.9	70.7	72.4	73.7
6 7 8 9	53.0	60.8	63.7	65.7	67.6	69.2
8	48.2	55.8	58.8	60.9	63.0	65.0
9	43.9	51.2	54.2	56.4	58.6	60.9
10	39.9	46.9	49.9	52.2	54.5	57.1
11	36.3	43.0	46.0	48.3	50.7	53.4
12	33.1	39.4	42.4	44.7	47.2	50.0
13	30.2	36.1	39.1	41.4	44.0	47.0
14	27.5	33.1	36.0	38.3	41.0	44.0
15	25.1	30.4	33.2	35.5	38.2	41.2
16	22.9	27.9	30.6	32.9	35.6	38.6
17	20.9	25.7	28.2	30.5	33.2	36.2
18	19.1	23.7	26.0	28.3	31.0	34.1
19	17.4	21.8	24.0	26.2	28.9	32.0
20	15.9	20.0	22.1	24.2	27.0	30.0

COBALT 60 SSD 80 CM

Depth		Are	ea of Field in Sq	juare Centimet	res	
in cm	0	20	50	100	200	400
0.5	160.0	100.0	100.Q	100.0	100.0	100.0
1	95.4	97.0	97.7	98.2	98.4	98.5
2	87.1	91.0	92.5	93.4	93.7	94.0
2 3	79.5	85.3	87.2	88.4	89.0	89.6
4 5	72.7	79.6	82.0	83.4	84.4	85.2
5	66.5	74.1	76.9	78.5	79.9	80.8
6 7	60.8	68.9	71.8	73.7	75.2	76.4
7	55.6	63.8	66.8	68.9	70.7	72.1
8	50. 9	58.9	62.1	64.2	66.3	68.0
9	46.6	54.3	57.5	59.8	62.1	64.1
10	42.7	50.1	53.3	55.7	58.1	60.3
11	39.2	46.2	49.4	51.8	54.3	56.7
12	35.9	42.6	45.8	48.2	50.8	53.3
13	32.9	39.3	42.4	44.9	47.6	50.1
14	30.2	36.3	39.3	41.8	44.5	47.1
15	27.7	33.5	36.4	38.9	41.8	44.3
16	25.4	31.0	33.8	36.2	39.0	41.7
17	23.3	28.7	31.3	33.8	36. 5	39.2
18	21.4	26.5	29.0	31.4	34.2	36 .9
19	19.6	24.5	27.0	29.3	32.0	34.7
2 0	18.0	22.6	25.0	27.3	30.0	32.7

COBALT 60 SSD 100 CM

Depth		Are	ea of Field in Sq	uare Centimet	res	
in cm	0	20	50	100	200	400
0.5	100.0	100.0	100.0	100.0	100.0	100.0
1	95.9	97.2	97.9	98.6	98.8	98.8
2 3	87.9	91.7	93.0	94.0	94.5	94.6
3	80.7	86.3	88.1	89.4	90.1	90.5
4	73.8	81.0	83.2	84.8	85.7	86.4
4 5	67.8	75.7	78.4	80.2	81.3	82.3
6 7	62.3	70.6	73.6	75.6	76.9	78.2
7	57.3	65.7	68.8	71.0	72.5	74.1
8	52.7	61.0	64.2	66.5	68.3	70.1
9	48.5	56.5	59.7	62.1	64.2	66.2
10	44.7	52.3	55.5	57.9	60.3	62.5
11	41.2	48.4	51.6	54.0	56.6	58.8
12	38.0	44.8	48.0	50.4	53.1	55.4
13	35.0	41.5	44.6	47.1	49.8	52.2
14	32.2	38.5	41.5	44.0	46.7	49.2
15	29.6	35.7	38.6	41.1	43.8	46.4
16	27.2	33.1	35.9	38.4	41.1	43.7
17	25.0	30.7	33.4	35.9	38.6	41.2
18	23.0	28.5	31.1	33.6	36.3	38.8
19	21.2	26.4	29.0	31.4	34.1	36.6
20	19.5	24.4	27.0	29.2	32.0	34.5

DEPTH DOSE IN WATER FOR LINEAR ACCELERATOR FOR 100% AT PEAK 4.2 Mev FSD 100 cm HVL 15.7 mm Cu Courtesy of M. J. Day and F. T. Farmer: Brit. J. Radiol.

Field Size	Zero Area	2×2	4×4	6×6	8×8	10×10	12×12	14×11	16×16	18×18	20×20
Equiv dia		cm									
	0	2.2	4.5	6.7	9.0	11.2	13.4	15.6	17.8	20.0	22.1
Depth cm											
1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1.35	99.0	99.0	99.1	99.1	99.2	99.2	99.3	99.3	99.3	99.4	99.5
1.5	97.9	98.0	98.0	98.1	98.3	98.5	98.7	98.8	99.0	99.2	99.3
2	93.9	94.6	95.2	96.0	96.4	96.7	97.0	97.2	97.4	97.7	97.9
2 4	80.2	82.9	85.0	86.6	87.5	88.1	88.6	89.0	89.3	89.7	90.1
6	68.6	71.9	74.6	76.8	78.0	78.9	79.5	80.0	80.6	81.2	81.6
6 8	59.1	61.9	65.0	67.7	69.3	70.5	71.3	72.1	72.7	73.3	73.7
10	50.9	53.6	56.7	59.6	61.5	62.9	63.9	65.0	65.7	66.5	67.1
12	44.2	46.4	49.3	52.1	54.3	55.8	57.0	57.9	59.0	59.8	60.5
14	38.2	40.2	42.8	45.5	47.4	49.0	50.2	51.3	52.3	53.3	54.0
16	33.4	35.3	37.6	89.9	41.5	43.5	44.8	45.9	47.0	47.9	48.7
18	29.2	30.7	32.7	34.8	36.8	38.4	39.6	40.8	41.8	42.8	43.5
20	25.5	26.8	28.6	30.6	32.6	34.0	35.3	36.4	37.4	38.3	39.2
22	22.3	23.4	25.2	26.9	28.5	30.0	31.3	32.3	33.2	34.2	34.9
24	19.5	20.6	22.0	23.6	25.2	26.5	27.6	28.6	29.5	30.5	31.2
26	17.1	18.0	19.5	20.8	22.3	23.4	24.4	25.3	26.2	27.0	27.8
28	14.9	15.8	17.0	18.4	19.6	20.7	21.6	22.4	23.3	24.1	24.7
30	13.1	14.0	15.1	16.3	17.3	18.3	19.1	19.8	20.7	21.4	22.0

22 Mev Betatron Radiation with Copper Compensating Filter

Depth	FSD — 70 cm	FSD - 100 cm
0.0	20	19
0.5	51.0	50.0
1.0	71.0	70.0
2.0	92.8	90.1
3.0	99.2	98.0
4.0	100.0	100.0
5.0	98.2	99.5
6.0	93.3	96.6
7.0	89.0	93.0
8.0	84.9	89.1
9.0	81.0	85.3
10.0	77.1	81.9
11.0	73.5	78.5
12.0	70.0	75.5
13.0	66.7	72.5
14.0	63.6	69.6
15.0	60.5	67.0
16.0	57.7	64.2
17.0	55.0	61.6
18.0	52.4	5 9 .1
19.0	49.9	56.8
20.0	47.5	54.5

Rectangular Fields $\,$ HVL 0.5 mm Cu $\,$ FSD 50 cm $\,$ Rectangular Fields in cm \times cm

Depth in cm	4×4	4×6	4×8	4×10	4×15	4×20	6×6	6×8	6×10	6×15	6×20
*	121.4	124.4	126.1	127.2	128.5	129.2	128.3	130.6	132.1	134.0	135.0
0 1	100.0 91.4	100.0 92.7	100.0 93.3	100.0 93.8	100.0 94.3	100.0 94.4	100.0 94.2	100.0 95.1	100.0 95.6	100.0 96.3	100.0 96.5
	77.6	79.7	80.9	81.6	82.5	82.8	82.4	83.9	84.9	86.0	86.4
9	64.4	66.9	68.4	69.4	70.5	71.1	70.2	72.2	73.3	74.8	75.5
4	52.6	55.4	57.1	58.2	59.5	60.1	59.0	61.3	62.6	64.3	65.2
2 3 4 5	42.9	45.7	47.4	48.6	50.0	50.7	49.3	51.6	53.0	54.9	55.8
6	35.0	37.7	39.4	40.4	41.9	42.6	41.1	43.3	44.6	46.6	47.6
7	28.5	31.0	32.6	33.5	35.0	35.7	34.2	36.2	37.4	39.4	40.4
8	23.5	25.6	27.0	27.9	29.3	30.0	28.4	30.2	31.4	33.3	34.2
	19.4	21.2	22.4	23.2	24.6	25.2	23.6	25.1	26.3	28.1	29.0
10	16.0	17.5	18.6	19.3	20.6	21.1	19.6	21.0	22.0	23.7	24.6
11	13.1	14.5	15.5	16.1	17.2	17.8	16.3	17.6	18.5	20.0	20.9
12	10.7	12.0	12.9	13.5	14.4	15.0	13.6	14.8	15.6	16.9	17.7
13	8.8	9.9	10.7	11.3	12.1	12.6	11.3	12.4	13.1	14.3	15.0
14	7.3	8.2	8.9	9.4	10.1	10.6	9.4	10.3	11.0	12.1	12.8
15	6.0	6.8	7.4	7.8	8.5	8.9	7.8	8.6	9.2	10.2	10.7
16	5.0	5.6	6.1	6.5	7.1	7.5	6.5	7.2	7.7	8.6	9.1
17	4.1	4.7	5.1	5.4	5.9	6.3	5.4	6.0	6.4	7.2	7.7
18	3.3	3.9	4.2	4.5	5.0	5.3	4.5	5.0	5.4	6.1	6.5
19	2.7	3.2	3,5	3.8	4.2	4.5	3.8	4.2	4.6	5.2	5.5
20	2.2	2.6	2.9	3.1	3.5	5.7	3.1	5.5	3.8	4.5	4.7
Depth											
in cm	8×8	8×10	8×15	8×20	10×10	10×15	10×20	15×15	15×20	20×20	
*	133.4	135.2	137.6	139.0	137.3	140.1	141.8	143.9	146.2	148.9	
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	
0 1	96.1	00 5	97.6	97.8	97.5	98.4	98.6	99.4	99.6	99.8	
2		96.7			97.0			00.1		33.0	
	85.8	96.7 86.7	88.1	88.6	87.9	89.5	90.1	91.3	92.0	92.9	
3	74.3	86.7 75.7	88.1 77.6	88.6 78.5	87.9 77.3	89.5 79.4	80.4	91.3 81.9	92.0 83.2	92.9 84.7	
2 3 4	74.3 63.8	86.7 75.7 65.3	88.1 77.6 67.4	88.6 78.5 68.5	87.9 77.3 67.1	89.5 79.4 69.5	80.4 70.7	91.3 81.9 72.4	92.0 83.2 73.9	92.9 84.7 75.7	
3 4 5	74.3	86.7 75.7	88.1 77.6	88.6 78.5	87.9 77.3	89.5 79.4	80.4	91.3 81.9	92.0 83.2	92.9 84.7	
5	74.3 63.8 54.2 45.8	86.7 75.7 65.3 55.8 47.4	88.1 77.6 67.4 58.1 49.8	88.6 78.5 68.5 59.2 51.0	87.9 77.3 67.1 57.7	89.5 79.4 69.5 60.3	80.4 70.7 61.6 53.4	91.3 81.9 72.4 63.5	92.0 83.2 73.9 65.1	92.9 84.7 75.7 66.9 58.9	
5 6 7	74.3 63.8 54.2 45.8 38.6	86.7 75.7 65.3 55.8 47.4 40.1	88.1 77.6 67.4 58.1 49.8 42.5	88.6 78.5 68.5 59.2 51.0 43.7	87.9 77.3 67.1 57.7 49.2 41.8	89.5 79.4 69.5 60.3 52.0 44.6	80.4 70.7 61.6 53.4 46.0	91.3 81.9 72.4 63.5 55.4 48.0	92.0 83.2 73.9 65.1 57.0 49.7	92.9 84.7 75.7 66.9 58.9 51.6	
5 6 7 8	74.3 63.8 54.2 45.8 38.6 32.3	86.7 75.7 65.3 55.8 47.4 40.1 33.8	88.1 77.6 67.4 58.1 49.8 42.5 36.1	88.6 78.5 68.5 59.2 51.0 43.7 37.3	87.9 77.3 67.1 57.7 49.2 41.8 35.4	89.5 79.4 69.5 60.3 52.0 44.6 38.1	80.4 70.7 61.6 53.4 46.0 39.5	91.3 81.9 72.4 63.5 55.4 48.0 41.4	92.0 83.2 73.9 65.1 57.0 49.7 43.1	92.9 84.7 75.7 66.9 58.9 51.6 45.0	
5 6 7 8 9	74.3 63.8 54.2 45.8 38.6 32.3 27.0	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5	80.4 70.7 61.6 53.4 46.0 39.5 33.8	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2	
5 6 7 8	74.3 63.8 54.2 45.8 38.6 32.3	86.7 75.7 65.3 55.8 47.4 40.1 33.8	88.1 77.6 67.4 58.1 49.8 42.5 36.1	88.6 78.5 68.5 59.2 51.0 43.7 37.3	87.9 77.3 67.1 57.7 49.2 41.8 35.4	89.5 79.4 69.5 60.3 52.0 44.6 38.1	80.4 70.7 61.6 53.4 46.0 39.5	91.3 81.9 72.4 63.5 55.4 48.0 41.4	92.0 83.2 73.9 65.1 57.0 49.7 43.1	92.9 84.7 75.7 66.9 58.9 51.6 45.0	
5 6 7 8 9 10	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8 27.1	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1	
5 6 7 8 9 10	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8 27.1 23.1 19.7	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4 21.5 18.3	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7	
5 6 7 8 9 10 11 12 13	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1 13.6	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1 14.5	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7 15.9	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8 27.1 23.1 19.7 16.8	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4 21.5 18.3 15.5	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1 17.2	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2 18.2	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6 26.3 22.5 19.3	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3 27.8 24.0 20.7	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7 22.2	
5 6 7 8 9 10 11 12 13 14	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1 13.6 11.4	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1 14.5 12.2	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7 15.9 13.5	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8 27.1 23.1 19.7 16.8 14.3	87.9 77.3 67.1 57.7 49.2 41.8 35.0 25.4 21.5 18.3 15.5 13.1	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1 17.2 14.7	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2 18.2 15.6	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6 26.3 22.5 19.3 16.6	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3 27.8 24.0 20.7 17.8	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7 22.2 19.2	
5 6 7 8 9 10 11 12 13	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1 13.6	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1 14.5	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7 15.9	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8 27.1 23.1 19.7 16.8	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4 21.5 18.3 15.5	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1 17.2	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2 18.2	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6 26.3 22.5 19.3	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3 27.8 24.0 20.7	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7 22.2	
5 6 7 8 9 10 11 12 13 14 15	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1 13.6 11.4 9.5	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1 14.5 12.2 10.2	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7 15.9 13.5 11.4	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8 27.1 23.1 19.7 16.8 14.3 12.2	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4 21.5 18.3 15.5 13.1 11.0	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1 17.2 14.7 12.5	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2 18.2 15.6 13.3	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6 26.3 22.5 19.3 16.6 14.2	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3 27.8 24.0 20.7 17.8 15.3	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7 22.2 19.2 16.6	
5 6 7 8 9 10 11 12 13 14 15	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1 13.6 11.4 9.5 8.0 6.7	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1 14.5 12.2 10.2	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7 15.9 13.5 11.4	88.6 78.5 68.5 59.2 51.0 43.7 37.8 27.1 23.1 19.7 16.8 14.3 12.2	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4 21.5 18.3 15.5 13.1 11.0 9.3 7.9	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1 17.2 14.7 12.5	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2 18.2 15.6 13.3	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6 26.3 22.5 19.3 16.6 14.2	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3 27.8 24.0 20.7 17.8 15.3	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7 22.2 16.6 14.4 12.4	
5 6 7 8 9 10 11 12 13 14 15	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1 13.6 9.5 8.0 6.7 5.6	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1 14.5 12.2 10.2 8.5 7.2 6.1	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7 15.9 13.5 11.4	88.6 78.5 68.5 59.2 51.0 43.7 37.3 31.8 27.1 19.7 16.8 14.3 12.2	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4 21.5 18.5 13.1 11.0 9.3 7.9 6.7	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1 17.2 14.7 12.5	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2 18.6 13.3	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6 26.3 22.5 19.3 16.6 14.2	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3 27.8 24.0 20.7 17.8 15.3	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7 22.2 16.6 14.4 10.7	
5 6 7 8 9 10 11 12 13 14 15	74.3 63.8 54.2 45.8 38.6 32.3 27.0 22.7 19.1 16.1 13.6 11.4 9.5 8.0 6.7	86.7 75.7 65.3 55.8 47.4 40.1 33.8 28.4 24.0 20.3 17.1 14.5 12.2 10.2	88.1 77.6 67.4 58.1 49.8 42.5 36.1 30.6 26.0 22.0 18.7 15.9 13.5 11.4	88.6 78.5 68.5 59.2 51.0 43.7 37.8 27.1 23.1 19.7 16.8 14.3 12.2	87.9 77.3 67.1 57.7 49.2 41.8 35.4 30.0 25.4 21.5 18.3 15.5 13.1 11.0 9.3 7.9	89.5 79.4 69.5 60.3 52.0 44.6 38.1 32.5 27.7 23.6 20.1 17.2 14.7 12.5	80.4 70.7 61.6 53.4 46.0 39.5 33.8 29.0 24.8 21.2 18.2 15.6 13.3	91.3 81.9 72.4 63.5 55.4 48.0 41.4 35.6 30.6 26.3 22.5 19.3 16.6 14.2	92.0 83.2 73.9 65.1 57.0 49.7 43.1 37.3 32.3 27.8 24.0 20.7 17.8 15.3	92.9 84.7 75.7 66.9 58.9 51.6 45.0 39.2 34.1 29.6 25.7 22.2 16.6 14.4 12.4	

^{*}The first line gives the surface dose for 100 r of primary.

Rectangular Fields – HVL 1.0 mm Cu – FSD 50 cm Rectangular Fields in cm \times cm

Datelle											
Depth in em	1×1	1×6	4×8	4×10	4×15	4×20	6×6	6×8	6×10	6×15	6×20
	17.1	120	7.70	7~70	7.77	7 ^ 20	0.0	0.70	0 / / //	0.77	0 / 20
*	118.0	121.1	123.0	124.3	125.8	126.6	125.2	127.9	129.7	131.8	133.0
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	92.9	94.7	95.5	96.0	96.6	96.8	96.9	97.9	98.5	99.3	99.5
2	81.3	84.3	85.7	86.5	87.4	87.7	87.9	89.6	90.6	91.7	92.1
3 4	70.3	73.5	75.3	76.5	77.8	78.3	77.4	79.8	81.3	82.9	83.6
4	60.0	63.2	65.1	66.4	68.0	68.7	67.2	69.7	71.3	73.4	74.4
5	50.7	53.8	55.8	57.1	58.7	59.5	57.7	60.2	61.9	64.2	65.2
6	42.7	45.5	47.4	48.8	50.4	51.3	49.2	51.6	53.4	55.7	56.8
7	35.8	38.3	40.1	41.5	43.1	44.0	41.7	44.1	45.8	48.1	49.2
8	29.9	32.2	33.9	35.2	36.8	37.7	35.3	37.6	39.2	41.4	42.5
9	25.0	27.1	28.7	29.8	31.4	32.2	29.9	32.0	33.5	35.6	36.7
10	20.9	22.8	24.2	25.2	26.7	27.5	25.3	27.2	28.6	30.6	31.6
11	17.4	19.2	20.4	21.3	22.7	23.5	21.4	23.1	24.3	26.2	27.2
12	14.6	16.2	17.3	18.1	19.4	20.1	18.1	19.6	20.7	22.5	23.4
12 13	12.2	13.6	14.6	15.4	16.5	17.1	15.3	16.6	17.6	19.3	20.1
14	10.2	11.4	12.3	13.0	14.0	14.6	12.9	14.1	15.0	16.5	17.2
15	8.6	9.6	10.4	11.0	11.9	12.5	10.9	12.0	12.8	14.1	14.8
16			8.7								
17	7.2	8.1	8.7	9.3	10.1	10.7	9.2	10.2	10.9 9.2	12.0	12.7 10.9
	6.0	6.8	7.3	7.8	8.6	9.1	7.8	8.6		10.3	
18	5.0	5.7	6.2 5.2	6.6	7.3	7.7	6.6	7.3 6.2	7.8	8.8	9.4
19	4.2	4.8	5.2	5.6	6.2	6.6	5.6	6.2	6.7	7.5	8.1
20	3.5	4.0	4.4	4.8	5.3	5.6	4.7	5.3	5.7	6.4	6.9
Depth				_	_					_	
in cm	8×8	8×10	8×15	8×20	10×10	10×15	10×20	15×15	15×20	20×20	
*	131.1	133.3	136.0	137.5	135.7	138.9	140.7	143.0	145.6	148.7	
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
1	99.1	99.8	100.7	100.9	100.6	101.5	101.8	102.6	102.8	103.0	
2 3	91.6	92.8	94.0	94.5	94.0	95.4	95.9	97.0	97.6	98.4	
3	82.5	84.2	86.2	87.0	86.1	88.3	89.2	90.9	92.0	93.4	
4	72.6	74.5	77.0	78.1	76.6	79.4	80.7	82.8	84.4	86.1	
5	63.2	65.2	67.8	69.1	67.3	70.3	71.8	74.0	75.8	77.8	
6		5.G. C	59.4	60.6	58.8	61.9	63.4	65.6	67.5	69.7	
	54.6	56.6		00.0					59.9	62.2	
7	54.6 46.9	48.9	51.7	52.9	51.1	54.2	55.7	57.9			
7		48.9		52.9 46.1		54.2 47.2	55.7 48.8	57.9 50.9	53.0	55.3	
7 8 9	46.9 40.2	48.9 42.1	51.7 44.8	52.9 46.1	51.1 44.2	54.2		57.9 50.9 44.6			
7 8 9 10	46.9	48.9	51.7	52.9	51.1	54.2 47.2	48.8	50.9	53.0	55.3	
7 8 9	46.9 40.2 34.4	48.9 42.1 36.2 31.1	51.7 44.8 38.7	52.9 46.1 40.1	51.1 44.2 38.2	54.2 47.2 41.1	48.8 42.6	50.9 44.6	53.0 46.7	55.3 49.1 43.4 38.2	
7 8 9 10	46.9 40.2 34.4 29.4 25.1	48.9 42.1 36.2 31.1 26.6	51.7 44.8 38.7 33.4 28.8	52.9 46.1 40.1 34.8	51.1 44.2 38.2 32.9 28.3	54.2 47.2 41.1 35.6	48.8 42.6 37.1	50.9 44.6 39.0 34.0	53.0 46.7 41.0 35.9	55.3 49.1 43.4 38.2	
7 8 9 10	46.9 40.2 34.4 29.4 25.1 21.4	48.9 42.1 36.2 31.1 26.6 22.7	51.7 44.8 38.7 33.4 28.8 24.9	52.9 46.1 40.1 34.8 30.2 26.1	51.1 44.2 38.2 32.9 28.3 24.3	54.2 47.2 41.1 35.6 30.8 26.6	48.8 42.6 37.1 32.3 28.1	50.9 44.6 39.0 34.0 29.6	53.0 46.7 41.0 35.9 31.4	55.3 49.1 43.4 38.2 33.5	
7 8 9 10 11 12 13	46.9 40.2 34.4 29.4 25.1 21.4 18.3	48.9 42.1 36.2 31.1 26.6 22.7 19.4	51.7 44.8 38.7 33.4 28.8 24.9 21.4	52.9 46.1 40.1 34.8 30.2 26.1 22.5	51.1 44.2 38.2 32.9 28.3 24.3 20.8	54.2 47.2 41.1 35.6 30.8 26.6 23.0	48.8 42.6 37.1 32.3 28.1 24.3	50.9 44.6 39.0 34.0 29.6 25.8	53.0 46.7 41.0 35.9 31.4 27.4	55.3 49.1 43.4 38.2 33.5 29.3	
7 8 9 10	46.9 40.2 34.4 29.4 25.1 21.4	48.9 42.1 36.2 31.1 26.6 22.7	51.7 44.8 38.7 33.4 28.8 24.9	52.9 46.1 40.1 34.8 30.2 26.1	51.1 44.2 38.2 32.9 28.3 24.3	54.2 47.2 41.1 35.6 30.8 26.6	48.8 42.6 37.1 32.3 28.1	50.9 44.6 39.0 34.0 29.6	53.0 46.7 41.0 35.9 31.4	55.3 49.1 43.4 38.2 33.5	
7 8 9 10 11 12 13 14 15	46.9 40.2 34.4 29.4 25.1 21.4 18.3 15.6 13.2	48.9 42.1 36.2 31.1 26.6 22.7 19.4 16.6 14.2	51.7 44.8 38.7 33.4 28.8 24.9 21.4 18.4 15.8	52.9 46.1 40.1 34.8 30.2 26.1 22.5 19.4 16.7	51.1 44.2 38.2 32.9 28.3 24.3 20.8 17.8 15.3	54.2 47.2 41.1 35.6 30.8 26.6 23.0 19.8 17.1	48.8 42.6 37.1 32.3 28.1 24.3 21.0 18.2	50.9 44.6 39.0 34.0 29.6 25.8 22.4 19.4	53.0 46.7 41.0 35.9 31.4 27.4 23.9 20.8	55.3 49.1 43.4 38.2 33.5 29.3 25.7 22.5	
7 8 9 10 11 12 13 14 15	46.9 40.2 34.4 29.4 25.1 21.4 18.3 15.6 13.2	48.9 42.1 36.2 31.1 26.6 22.7 19.4 16.6 14.2	51.7 44.8 38.7 33.4 28.8 24.9 21.4 18.4 15.8	52.9 46.1 40.1 34.8 30.2 26.1 22.5 19.4 16.7	51.1 44.2 38.2 32.9 28.3 24.3 20.8 17.8 15.3	54.2 47.2 41.1 35.6 30.8 26.6 23.0 19.8 17.1	48.8 42.6 37.1 32.3 28.1 24.3 21.0 18.2	50.9 44.6 39.0 34.0 29.6 25.8 22.4 19.4	53.0 46.7 41.0 35.9 31.4 27.4 23.9 20.8	55.3 49.1 43.4 38.2 33.5 29.3 25.7 22.5	
7 8 9 10 11 12 13 14 15	46.9 40.2 34.4 29.4 25.1 21.4 18.3 15.6 13.2 11.2 9.5	48.9 42.1 36.2 31.1 26.6 22.7 19.4 16.6 14.2	51.7 44.8 38.7 33.4 28.8 24.9 21.4 18.4 15.8	52.9 46.1 40.1 34.8 30.2 26.1 22.5 19.4 16.7	51.1 44.2 38.2 32.9 28.3 24.3 20.8 17.8 15.3	54.2 47.2 41.1 35.6 30.8 26.6 23.0 19.8 17.1 14.8 12.7	48.8 42.6 37.1 32.3 28.1 24.3 21.0 18.2 15.8 13.7	50.9 44.6 39.0 34.0 29.6 25.8 22.4 19.4 16.9 14.7	53.0 46.7 41.0 35.9 31.4 27.4 23.9 20.8 18.2 15.9	55.3 49.1 43.4 38.2 33.5 29.3 25.7 22.5 19.7 17.2	
7 8 9 10 11 12 13 14 15 16 17 18	46.9 40.2 34.4 29.4 25.1 21.4 18.3 15.6 13.2 11.2 9.5 8.1	48.9 42.1 36.2 31.1 26.6 22.7 19.4 16.6 14.2	51.7 44.8 38.7 33.4 28.8 24.9 21.4 18.4 15.8 13.5 11.6	52.9 46.1 40.1 34.8 30.2 26.1 22.5 19.4 16.7 14.4 10.7	51.1 44.2 38.2 32.9 28.3 24.3 20.8 17.8 15.3	54.2 47.2 41.1 35.6 30.8 26.6 23.0 19.8 17.1 14.8 12.7 10.9	48.8 42.6 37.1 32.3 28.1 24.3 21.0 18.2 15.8 13.7 11.8	50.9 44.6 39.0 34.0 29.6 25.8 22.4 19.4 16.9 14.7 12.7	53.0 46.7 41.0 35.9 31.4 27.4 23.9 20.8 18.2 15.9 13.8	55.3 49.1 43.4 38.2 33.5 29.3 25.7 22.5 19.7 17.2 15.1	
7 8 9 10 11 12 13 14 15	46.9 40.2 34.4 29.4 25.1 21.4 18.3 15.6 13.2 11.2 9.5	48.9 42.1 36.2 31.1 26.6 22.7 19.4 16.6 14.2	51.7 44.8 38.7 33.4 28.8 24.9 21.4 18.4 15.8	52.9 46.1 40.1 34.8 30.2 26.1 22.5 19.4 16.7	51.1 44.2 38.2 32.9 28.3 24.3 20.8 17.8 15.3	54.2 47.2 41.1 35.6 30.8 26.6 23.0 19.8 17.1 14.8 12.7	48.8 42.6 37.1 32.3 28.1 24.3 21.0 18.2 15.8 13.7	50.9 44.6 39.0 34.0 29.6 25.8 22.4 19.4 16.9 14.7	53.0 46.7 41.0 35.9 31.4 27.4 23.9 20.8 18.2 15.9	55.3 49.1 43.4 38.2 33.5 29.3 25.7 22.5 19.7 17.2	

^{*} The first line gives the surface dose for 100 r of primary.

RECTANGULAR FIELDS HVL 1.5 mm Cu $^{\circ}$ FSD 50 cm Rectangular Fields in cm \times cm

Depth											
in cm	4×1	4×6	4×8	4×10	4×15	4×20	6×6	6×8	6×10	6×15	6×20
*	116.6	119.3	121.0	122.2	123.7	124.5	123.0	125.3	126.9	129.1	130.3
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	94.0	95.3	96.0	96.4	97.0	97.2	97.0	97.8	98.4	99.1 92.1	99.4
2	83.2	85.5	86.8	87.5	88.4	88.8	88.5	90.0	91.0	92.1	92.6
3	72.0	74.9	76.6	87.5 77.6	78.8	79.3	88.5 78.5	80.8	82.1	83.8	84.5
0 1 2 3 4 5	61.3	64.4	66.3	67.6	69.0	88.8 79.3 69.7	68.2	70.8	72.4	74.4	75.3
5	52.2	55.1	66.3 57.1	58.4	60.0	60.8	68.2 58.9	70.8 61.5	82.1 72.4 63.2	74.4 65.4	100.0 99.4 92.6 84.5 75.3 66.4
6 7 8 9	44.2	47.0	48.9	50.2	52.0	52.8	50.6	53.2	54.9	57.2	58.3
7	37.3	40.0 33.9	41.8 35.6	43.1	44.8	45.7 39.4	43.4 37.0	45.8 39.3	47.5 40.9	49.8	51.0 44.4
8	31.4	33.9	35.6	36.8	38.5	39.4	37.0	39.3	40.9	43.2	44.4
9	26.4	28.6	30.2 25.6	31.4	33.0	33.9 29.1	31.5 26.9	33.6 28.8	35.2 30.2	37.4	38.6 33.5
10	22.3			43.1 36.8 31.4 26.7	44.8 38.5 33.0 28.2					49.8 43.2 37.4 32.3	
11	18.8 15.8	20.5 17.4 14.7 12.4	21.8 18.5 15.7 13.4	22.8 19.4 16.5 14.1	24.2 20.7 17.7	25.0 21.5 18.5 15.9 13.6	22.9 19.5 16.6 14.1 12.0	24.6 21.0 17.9	25.9 22.2 19.0 16.3 14.0	27.8 24.0 20.7 17.8	29.0 25.1 21.7 18.7
12	15.8	17.4	18.5	19.4	20.7	21.5	19.5	21.0	22.2	24.0	25.1
13	13.3	14.7	15.7	16.5	17.7	18.5	16.6	17.9	19.0	20.7	21.7
14 15	11.2	12.4	13.4	14.1	15.2 13.1	15.9	14.1	15.3 13.1	16.3	17.8	18.7
	9.4	10.5	11.4	12.0	13.1	13.6		13.1	14.0	15.4	16.2
16	7.9	8.9 7.5	9.6	10.2 8.7	11.2 9.6	11.7 10.1	10.2 8.7	11.2 9.6	12.0 10.3	13.3 11.5 10.0	14.0 12.1 10.5 9.1 7.9
17	6.7	7.5	8.2	8.7	9.6	10.1	8.7	9.6	10.3	11.5	12.1
18 19	5.7 4.8 4.0	6.4 5.4 4.6	7.0 5.9 5.0	7.4 6.3 5.4	8.2 7.1 6.1	8.7	7.4 6.3 5.3	8.2 7.0	8.9	10.0	10.5
19	4.8	5.4	5.9	6.3	7.1	7.5 6.5	6.3	7.0	7.6 6.5	8.6 7.4	9.1
20	4.0	4.6	5.0	5.4	6.1	6.5	5.3	6.0	6.5	7.4	7.9
Dahah											
Depth in cm	8 ×8	8 ×10	8×15	8×20	10×10	10×15	10×20	15×15	15×20	20×20	
Depth in cm *	8 ×8 128.2	8×10 130.2	8×15 133.0	8×20 134.5			10×20 137.6				
in cm *	128.2	130.2	133.0	134.5	132.4	135.7	137.6	140.0	142.6	145.7	
in cm * 0	128.2 100.0	130.2 100.0	133.0 100.0	134.5 100.0	132.4 100.0	135.7 100.0	137.6 100.0	140.0 100.0	142.6 100.0	145.7 100.0	
in cm * 0	128.2 100.0 98.8	130.2 100.0 99.5	133.0 100.0 100.3	134.5 100.0 100.6	132.4 100.0 100.2	135.7 100.0	137.6 100.0 101.5	140.0 100.0	142.6 100.0	145.7 100.0	
in cm * 0	128.2 100.0 98.8 91.8	130.2 100.0 99.5 92.9	133.0 100.0 100.3 94.3	134.5 100.0 100.6	132.4 100.0 100.2 94.1	135.7 100.0 101.2 95.6	137.6 100.0 101.5 96.3	140.0 100.0 102.3 97.4	142.6 100.0 102.5 98.3	145.7 100.0 102.7 99.3	
in cm * 0	128.2 100.0 98.8 91.8 83.2	130.2 100.0 99.5 92.9 84.8	133.0 100.0 100.3 94.3 86.8	134.5 100.0 100.6 94.9 87.7	132.4 100.0 100.2 94.1 86.6	135.7 100.0 101.2 95.6 88.8	137.6 100.0 101.5 96.3 89.8	140.0 100.0 102.3 97.4	142.6 100.0 102.5 98.3 92.7	145.7 100.0 102.7 99.3 94.2	
in cm * 0	128.2 100.0 98.8 91.8 83.2 73.7	130.2 100.0 99.5 92.9 84.8 75.6	133.0 100.0 100.3 94.3 86.8 78.0	134.5 100.0 100.6 94.9 87.7 79.0	132.4 100.0 100.2 94.1 86.6 77.7	135.7 100.0 101.2 95.6 88.8 80.4	137.6 100.0 101.5 96.3 89.8 81.6	140.0 100.0 102.3 97.4	142.6 100.0 102.5 98.3 92.7	145.7 100.0 102.7 99.3 94.2 86.9	
* 0 1 2 3 4 5	128.2 100.0 98.8 91.8 83.2 73.7 64.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1	134.5 100.0 100.6 94.9 87.7 79.0 70.3	132.4 100.0 100.2 94.1 86.6 77.7 68.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1	140.0 100.0 102.3 97.4 91.4 83.5 75.3	142.6 100.0 102.5 98.3 92.7 85.1 77.1	145.7 100.0 102.7 99.3 94.2 86.9 79.2	
* 0 1 2 3 4 5	128.2 100.0 98.8 91.8 83.2 73.7 64.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1	134.5 100.0 100.6 94.9 87.7 79.0 70.3	132.4 100.0 100.2 94.1 86.6 77.7 68.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1	140.0 100.0 102.3 97.4 91.4 83.5 75.3	142.6 100.0 102.5 98.3 92.7 85.1 77.1	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7	
* 0 1 2 3 4 5	128.2 100.0 98.8 91.8 83.2 73.7 64.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8	132.4 100.0 100.2 94.1 86.6 77.7 68.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1	140.0 100.0 102.3 97.4 91.4 83.5 75.3	142.6 100.0 102.5 98.3 92.7 85.1 77.1	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7	
* 0 1 2 3 4 5	128.2 100.0 98.8 91.8 83.2 73.7 64.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8	132.4 100.0 100.2 94.1 86.6 77.7 68.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1	140.0 100.0 102.3 97.4 91.4 83.5 75.3	142.6 100.0 102.5 98.3 92.7 85.1 77.1	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9	
in cm * 0	128.2 100.0 98.8 91.8 83.2 73.7 64.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8	132.4 100.0 100.2 94.1 86.6 77.7 68.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1	140.0 100.0 102.3 97.4	142.6 100.0 102.5 98.3 92.7 85.1 77.1	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7	
in cm * 0 1 2 3 4 5 6 7 8 9 10	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 560.4 49.2 43.1 37.6	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 45.9	
in cm * 0 1 2 3 4 5 6 7 8 9 10	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 560.4 49.2 43.1 37.6	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 45.9	
in cm * 0 1 2 3 4 5 6 7 8 9 10 11 12 13	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1 26.7 22.9 19.7	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8 28.3 24.3	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 560.4 49.2 43.1 37.6	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4 38.2 33.6 29.4	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 40.6 35.8 31.5	
in cm * 0 1 2 3 4 5 6 7 8 9 10 11 12 13	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1 26.7 22.9 19.7	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8 28.3 24.3	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 560.4 49.2 43.1 37.6	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4 38.2 33.6 29.4	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 40.6 35.8 31.5	
in cm * 0 1 2 3 4 5 6 7 8 9 10	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 560.4 49.2 43.1 37.6	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4 38.2 33.6	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 45.9 40.6 35.8	
in cm * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1 26.7 22.9 19.7 16.9 14.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8 28.3 24.3 20.9 18.0 15.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3 30.6 26.5 22.9 19.8 17.2	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7 32.0 27.8 24.1 21.0 18.3	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7 30.0 25.9 22.4 19.4 16.8	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 56.0 49.2 43.1 37.6 32.7 28.4 24.7 21.5 18.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2 34.3 30.0 26.1 22.8 19.9	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2 36.1 31.6 27.6 24.2 21.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4 38.2 33.6 29.4 25.8 22.7	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 45.9 40.6 35.8 31.5 27.7 24.3	
in cm * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1 26.7 22.9 19.7 16.9 14.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8 28.3 24.3 20.9 18.0 15.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3 30.6 26.5 22.9 19.8 17.2	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7 32.0 27.8 24.1 21.0 18.3	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7 30.0 25.9 22.4 19.4 16.8	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 56.0 49.2 43.1 37.6 32.7 28.4 24.7 21.5 18.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2 34.3 30.0 26.1 22.8 19.9	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2 36.1 31.6 27.6 24.2 21.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4 38.2 33.6 29.4 25.8 22.7	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 45.9 40.6 35.8 31.5 27.7 24.3	
in cm * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1 26.7 22.9 19.7 16.9 14.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8 24.3 20.9 18.0 15.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3 30.6 26.5 22.9 19.8 17.2	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7 32.0 27.8 24.1 21.0 18.3	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7 30.0 25.9 22.4 19.4 16.8	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 56.0 49.2 43.1 37.6 32.7 28.4 24.7 21.5 18.7	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2 34.3 30.0 26.1 22.8 19.9	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2 36.1 31.6 27.6 24.2 21.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4 38.2 33.6 29.4 25.8 22.7	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 51.7 45.9 40.6 35.8 31.5 27.7 24.3	
in cm * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	128.2 100.0 98.8 91.8 83.2 73.7 64.5 56.1 48.6 42.0 36.2 31.1 26.7 22.9 19.7 16.9 14.5	130.2 100.0 99.5 92.9 84.8 75.6 66.5 58.1 50.6 43.9 38.0 32.8 28.3 24.3 20.9 18.0 15.5	133.0 100.0 100.3 94.3 86.8 78.0 69.1 60.9 53.4 46.6 40.6 35.3 30.6 26.5 22.9 19.8 17.2	134.5 100.0 100.6 94.9 87.7 79.0 70.3 62.2 54.8 48.1 42.1 36.7	132.4 100.0 100.2 94.1 86.6 77.7 68.7 60.4 52.9 46.1 40.1 34.7 30.0 25.9 22.4 19.4 16.8	135.7 100.0 101.2 95.6 88.8 80.4 71.7 63.5 560.4 49.2 43.1 37.6	137.6 100.0 101.5 96.3 89.8 81.6 73.1 65.0 57.7 50.9 44.8 39.2 34.3 30.0 26.1 22.8 19.9	140.0 100.0 102.3 97.4 91.4 83.5 75.3 67.3 59.9 53.0 46.8 41.2 36.1 31.6 27.6 24.2 21.2	142.6 100.0 102.5 98.3 92.7 85.1 77.1 69.3 62.0 55.3 49.1 43.4 38.2 33.6 29.4 25.8 22.7	145.7 100.0 102.7 99.3 94.2 86.9 79.2 71.7 64.6 57.9 40.6 35.8 31.5 27.7 24.3	

^{*}The first line gives the surface dose for 100 r of primary.

RECTANGULAR FIELDS = 11VL 2.0 mm Cu = FSD 50 cm Rectangular Fields in cm \times cm

				74207711	- COLINE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,				
Depth											
in cm	4×1	1×6	4×8	4×10	4×15	4×20	6×6	6×8	6×10	6×15	6×2
*	114.4	116.9	118.4	119.4	120.8	121.6	120.1	122.2	123.7	125.7	126.
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.
1	93.8	95.2	95.8	96.2	96.7	96.9	96.8	97.7	98.2	98.8	99.
2 3 4	83.9	85.9	87.0	87.7	88.5	88.9	88.4	89.8	90.7	91.8	92.
3	72.5	75.2	76.7	77.7	78.9	79.4	78.6	80.6	81.9	83.5	84.
4	62.1	65.0	66.7	67.9	69.4	70.0	68.7	71.0	72.5	74.5	75.
5	52.9	55.7	57.6	58.8	60.5	61.2	59.5	61.9	63.5	65.6	66.
6	44.9	47.6	49.5	50.7	52.4	53.2	51.3	53.7	55.3	57.5	58.
7	38.0	40.6	42.4	43.6	45.3	46.1	44.1	46.4	48.0	50.3	51.
8	32.1	34.6	36.3	37.4	39.1	39.9	37.8	40.1	41.6	43.8	45.
9	27.1	29.4	31.0	32.1	33.7	34.5	32.4	34.5	36.0	38.1	39.
10	22.9	25.0	26.5	27.5	29.0	29.8	27.7	29.7	31.1	33.1	34.
11	19.4	21.3	22.6	23.6	25.0	25.8	23.6	25.5	26.8	28.7	29.
12	16.5	18.1	19.3	20.2	21.5	22.3	20.2	21.9	23.1	24.9	25.
13	14.0	15.4	16.5	17.3	18.5	19.3	17.3	18.8	19.9	21.6	22.
14	11.9	13.1	14.1	14.8	15.9	16.7	14.8	16.1	17.1	18.7	19.
15	10.1	11.2	12.1	12.7	13.7	14.4	12.7	13.8	14.7	16.2	17.
16	8.5	9.5	10.3	10.9	11.8	12.4	10.9	11.8	12.6	14.0	14.
17	7.2	8.1	8.8	9.3	10.2	10.7	9.3	10.1	10.9	12.1	12.
18	6.1	6.9	7.5	8.0	8.8	9.3	7.9	8.7	9.4	10.5	11.
19	5.2	5.9	6.4	6.8	7.6	8.0	6.7	7.5	8.1	9.1	9.
20	4.4	4.9	5.4	5.8	6.5	6.9	5.7	6.4	6.9	7.9	8.
Dabib											
Depth	0 > 0	0 > 10	0 ∨ 1 €	0 > 00	10 > 10	10 × 18	10~20	15 > 15	15×20	20×20	
in cm	8×8	8×10	8×15	8×20	10×10	10×15	10×20	15×15	15 × 20	20 × 20	
*	124.8	126.5	129.2	130.7	128.6	131.7	133.5	135.8	138.4	141.5	
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
1	98.6	99.3	100.0	100.3	99.9	100.8	101.0	101.7	102.0	102.4	
2	91.4	92.5	93.8	94.4	93.6	95.1	95.8	96.9	97.8	98.9	
2	83.0	84.5	86.4	87.3	86.1	88.3	89.3	90.9	92.1	93.6	
4	73.6	75.4	77.8	78.9	77.4	80.1	81.4	83.4	85.0	86.8	
5	64.7	66.6	69.1	70.4	68.7	71.6	73.0	75.1	77.0	79.1	
6	56.5	58.5	61.1	62.5	60.6	63.6	65.2	67.3	69.8	71.6	
7	49.2	51.1	53.8	55.3	53.2	56.3	57.9	60.1	62.2	64.6	
8	42.7	44.5	47.2	48.7	46.6	49.7	51.3	53.5	55.6	58.1	
9	37.0	38.7	41.4	42.8	40.7	43.8	45.3	47.5	49.6	52.1	
10	32.0	33.6	36.2	37.5	3 5.5	38.4	40.0	42.0	44.1	46.5	
11	27.6	29.1	31.6	32.8	30.9	33.6	35.2	37.1	39.1	41.4	
12	23.8	25.2	27.5	28.7	26.9	29.4	30.9	32.7	34.6	36.7	
13	20.5	21.8	23.9	25.1	23.4	25.7	27.1	28.7	30.5	32.5	
14	17.6	18.9	20.8	21.9	20.3	22.4	23.8	25.2	26.9	28.7	
	15.2	16.3	18.1	19.1	17.6	19.6	20.8	22.2	23.7	25.4	
15							100	19.5	20.9	22.5	
	13.1	14.1	15.7	16.7	15.2	17.1	18.2	19.5	40.9		
15 16 17	13.1 11.3	14.1 12.2	15.7 13.7	16.7 14.6	15.2 13.2	17.1 15.0	18.2 16.0	17.2	18.4	19.9	
16 17 18	11.3	12.2 10.5	13.7	14.6	15.2 13.2 11.5	17.1 15.0 1 3 .2	16.0 14.0	17.2 15.2			
16	13.1 11.3 9.8 8.4		15.7 13.7 12.0 10.5		15.2 13.2 11.5 10.0	17.1 15.0 1 3 .2 11.5 10.0	16.0 14.0 12.3	17.2	18.4	19.9	

^{*} The first line gives the surface dose for 100 r of primary.

Rectangular Fields – HVL 3.0 mm Cu $^{\circ}$ FSD 50 cm $^{\circ}$ Rectangular Fields in cm \times cm

Depth											
in cm	4×1	4×6	4×8	4×10	4×15	4×20	6×6	6×8	6×10	6×15	6×20
*	111.6	113.7	114.9	115.8	117.0	117.6	116.4	118.2	119.4	121.1	122.1
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	93.9	95.1	95.6	95.9	96.3	96.5	96.5	97.1	97.5	98.1	98.3
2	84.6	86.2	87.1	87.6	88.4	88.7	88.3	89.4	90.1	91.2	91.5
3	73.7	76.0	77.3	78.1	79.2	79.7	78.8	80.5	81.6	83.1	83.6
4	63.1	65.8	67.4	68.4	69.6	70.3	69.0	71.0	72.4	74.1	75.0
5	54.2	56.7	58.4	59.5	60.9	61.6	60.1	62.2	63.7	65.6	66.6
6 7 8	46.3	48.7	50.4	51.5	53.1	53.8	52.0	54.2	55.7	57.8	58.8
7	39.3	41.7	43.4	44.5	46.1	46.8	44.9	47.1	48.6	50.8	51.8
8	33.4	35.7	37.3	38.5	40.0	40.7	38.7	40.9	42.4	44.5	45.6
9	28.5	30.6	32.1	33.2	34.7	35.4	33.4	35.4	36.9	38.9	40.0
10	24.3	26.2	27.6	28.6	30.0	30.8	28.7	30.6	32.0	34.0	3 5.0
11	20.7	22.4	23.7	24.6	26.0	26.7	24.7	26.4	27.7	29.6	30.6
12	17.6	19.1	20.4	21.2	22.5	23.1	21.2	22.8	24.0	25.7	26.7
13	15.1	16.3	17.5	18.3	19.5	20.0	18.2	19.7	20.8	22.4	23.3
14	12.9	14.0	15.0	15.7	16.9	17.4	15.7	17.0	18.0	19.5	20.3
15	11.0	12.0	12.8	13.5	14.6	15.1	13.5	14.6	15.5	17.0	17.7
16	9.4	10.3	11.0	11.6	12.6	13.1	11.6	12.6	13.4	14.8	15.5
17	8.0	8.8	9.4	10.0	10.9	11.4	10.0	10.9	11.6	12.9	13.5
18	6.8	7.5	8.1	8.6	9.4	9.9	8.6	9.4	10.0	11.2	11.8
19	5.8	6.4	7.0	7.4	8.1	8.6	7.4	8.1	8.7	9.8	10.3
20	4.9	5.5	6.0	6.4	7.1	7.5	6.3	7.0	7.6	8.5	9.0
District											
Depth	8×8	8×10	8×15	8×20	10×10	10×15	10×20	15×15	15×20	20×20	
in cm	0 ^ 0	0 10	0/1/	0 / 20							
in cm *						126.2	127.7	129.6	131.5	133.7	
*	120.4	121.9	124.1	125.3	123.7	126.2	127.7	129.6	131.5	133.7	
*	120.4 100.0	121.9 100.0	124.1 100.0	125.3 100.0	123.7 100.0	100.0	100.0	100.0	100.0	100.0	
* 0 1	120.4 100.0 97.9	121.9 100.0 98.3	124.1 100.0 99.1	125.3 100.0 99.3	123.7 100.0 98.9	100.0 99.7	100.0 100.0	100.0 100.6	100.0 101.0	100.0 101.4	
* 0 1 2	120.4 100.0 97.9 90.7	121.9 100.0 98.3 91.6	124.1 100.0 99.1 92.8	125.3 100.0 99.3 93.3	123.7 100.0 98.9 92.6	100.0 99.7 93.9	100.0 100.0 94.5	100.0 100.6 95.6	100.0 101.0 96.2	100.0 101.4 96.8	
* 0 1 2	120.4 100.0 97.9 90.7 82.4	121.9 100.0 98.3 91.6 83.7	124.1 100.0 99.1 92.8 85.4	125.3 100.0 99.3 93.3 86.3	123.7 100.0 98.9 92.6 85.1	100.0 99.7 93.9 87.0	100.0 100.0 94.5 88.1	100.0 100.6 95.6 89.5	100.0 101.0 96.2 90.8	100.0 101.4 96.8 92.3	
* 0 1	120.4 100.0 97.9 90.7	121.9 100.0 98.3 91.6	124.1 100.0 99.1 92.8	125.3 100.0 99.3 93.3	123.7 100.0 98.9 92.6	100.0 99.7 93.9	100.0 100.0 94.5	100.0 100.6 95.6	100.0 101.0 96.2	100.0 101.4 96.8	
* 0 1 2 3 4 5	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8	121.9 100.0 98.3 91.6 83.7 74.9 66.5	124.1 100.0 99.1 92.8 85.4 77.1 68.8	125.3 100.0 99.3 93.3 86.3 78.1 70.0	123.7 100.0 98.9 92.6 85.1 76.7 68.4	100.0 99.7 93.9 87.0 79.1 71.1	100.0 100.0 94.5 88.1 80.3 72.5	100.0 100.6 95.6 89.5 82.1 74.5	100.0 101.0 96.2 90.8 83.8 76.2	100.0 101.4 96.8 92.3 85.7 78.3	
* 0 1 2 3 4 5 6 7	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6	100.0 99.7 93.9 87.0 79.1 71.1 63.5	100.0 100.0 94.5 88.1 80.3 72.5	100.0 100.6 95.6 89.5 82.1 74.5	100.0 101.0 96.2 90.8 83.8 76.2 68.9	100.0 101.4 96.8 92.3 85.7 78.3	
* 0 1 2 3 4 5 6 7	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1 54.1	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2	
* 0 1 2 3 4 5 6 7	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6	100.0 99.7 93.9 87.0 79.1 71.1 63.5	100.0 100.0 94.5 88.1 80.3 72.5	100.0 100.6 95.6 89.5 82.1 74.5	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9	
* 0 1 2 3 4 5	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1 54.1 47.7	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2	
* 0 1 2 3 4 5 5 6 7 7 8 9 10 11	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4 37.8 32.8 28.5	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1 54.1 47.7 42.0 36.9	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 44.5	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7	
* 0 1 2 3 4 5 5 6 7 8 9 10 11 12	120.4 100.0 97.9 90.7 82.4 73.4 64.8 49.7 43.4 37.8 32.8 28.5 24.8	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 44.5	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.2	
* 0 1 2 3 4 4 5 6 7 8 9 10 11 12 13	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4 37.8 32.8 28.5 24.8 21.5	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1 22.7	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3 24.7	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4 25.8	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7 24.2	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3 26.6	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5 27.8	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3 29.4	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 44.5 39.6 35.1 31.1	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.2 33.1	
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.7.8 32.8 28.5 24.8 21.5 18.6	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1 22.7 19.7	124.1 100.0 99.1 92.8 85.4 777.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3 24.7 21.6	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4 25.8 22.6	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7 24.2 21.1	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3 26.6 23.3	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5 27.8 24.5	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3 29.4 25.9	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 44.5 39.6 35.1 31.1 27.5	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.2 33.1 29.4	
* 0 1 2 3 4 4 5 6 7 8 9 10 11 12 13	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4 37.8 32.8 28.5 24.8 21.5	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1 22.7	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3 24.7	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4 25.8	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7 24.2	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3 26.6	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5 27.8	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3 29.4	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 44.5 39.6 35.1 31.1	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.2 33.1	
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4 37.8 32.8 28.5 24.8 21.5 18.6 16.1	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1 22.7 19.7 17.1	124.1 100.0 99.1 92.8 85.4 777.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3 24.7 21.6 18.9	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4 25.8 22.6 19.8	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7 24.2 21.1 18.4	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3 26.6 23.3 20.4	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5 27.8 24.5 21.6	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3 29.4 25.9 22.9	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 44.5 39.6 35.1 31.1 27.5 24.4	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.2 33.1 29.4 26.2 23.2	
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4 37.8 32.8 28.5 24.8 21.5 18.6 16.1 13.9 12.0	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1 22.7 19.7 17.1 14.9 13.0	124.1 100.0 99.1 92.8 85.4 777.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3 24.7 21.6 18.9	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4 25.6 19.8 17.4 15.3	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7 24.2 21.1 18.4	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3 26.6 23.3 20.4	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5 27.8 24.5 21.6	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3 29.4 25.9 22.9	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 39.6 35.1 31.1 27.5 24.4 21.6 19.1	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.2 33.1 29.4 26.2 23.2 20.7	
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4 37.8 32.8 28.5 24.8 21.5 18.6 16.1 13.9 12.0 10.4	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1 22.7 19.7 17.1 14.9 13.0 11.3	124.1 100.0 99.1 92.8 85.4 77.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3 24.7 21.6 18.9	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4 25.8 17.4 15.3 13.4	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7 24.2 21.1 18.4 16.0 13.9 12.2	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3 26.6 23.3 20.4 17.9 15.7 13.8	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5 27.8 24.5 21.6 19.0 16.7 14.7	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3 29.4 25.9 20.2 17.8 15.7	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 44.5 39.6 35.1 31.1 27.5 24.4 21.6 19.1 16.9	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.1 29.4 26.2 23.2 20.7 18.5	
* 0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17	120.4 100.0 97.9 90.7 82.4 73.4 64.8 56.8 49.7 43.4 37.8 32.8 28.5 24.8 21.5 18.6 16.1 13.9 12.0	121.9 100.0 98.3 91.6 83.7 74.9 66.5 58.6 51.5 45.2 39.6 34.5 30.0 26.1 22.7 19.7 17.1 14.9 13.0	124.1 100.0 99.1 92.8 85.4 777.1 68.8 61.1 54.1 47.7 42.0 36.9 32.3 28.3 24.7 21.6 18.9	125.3 100.0 99.3 93.3 86.3 78.1 70.0 62.3 55.3 49.0 43.3 38.1 33.5 29.4 25.6 19.8 17.4 15.3	123.7 100.0 98.9 92.6 85.1 76.7 68.4 60.6 53.6 47.2 41.5 36.3 31.7 27.7 24.2 21.1 18.4	100.0 99.7 93.9 87.0 79.1 71.1 63.5 56.5 50.1 44.3 39.1 34.4 30.3 26.6 23.3 20.4	100.0 100.0 94.5 88.1 80.3 72.5 65.0 58.1 51.7 45.9 40.6 35.8 31.5 27.8 24.5 21.6	100.0 100.6 95.6 89.5 82.1 74.5 67.0 60.1 53.7 47.9 42.6 37.7 33.3 29.4 25.9 22.9	100.0 101.0 96.2 90.8 83.8 76.2 68.9 62.0 55.6 49.8 39.6 35.1 31.1 27.5 24.4 21.6 19.1	100.0 101.4 96.8 92.3 85.7 78.3 71.3 64.2 57.9 52.0 46.7 41.7 37.2 33.1 29.4 26.2 23.2 20.7	

^{*}The first line gives the surface dose for 100 r of primary.

RECTANGULAR FIELDS | COPALT 60 | ESD 50 cm | RECTANGULAR FIELDS IN CM \times CM

Depth											
in cm	4×1	4×6	4×8	4 ×10	4×15	4×20	6×6	6×8	6×10	6×15	6×20
*	101.1	101.3	101.5	101.6	101.8	101.9	101.6	101.8	102.0	102.3	102.5
0	Surfac	e dose 30	to 50%	dependi	ng upon	collimat	tor				
0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	96.0	96.3	96.5	96.6	96.6	96.6	96.7	96.9	97.0	97.1	97.1
2 3	88.7	89.3	89.6	89.8	89.9	89.9	90.1	90.5	90.6	90.8	90.9
3	81.6	82.5	82.9	83.1	83. 3	83.4	83.6	84.1	84.4	84.7	84.8
4	75.0	76.0	76.5	76.7	77.0	77.1	77.3	77.9	78.3	78.7	78.9
5	68.8	70.0	70.4	70.7	71.1	71.2	71.3	72.0	72.5	73.0	73.2
6 7	63.0	64.1	64.7	65.1	65.5	65.6	65.6	66.4	66.9	67.5	67.8
7	57.6	58.7	59.4	59.8	60.2	60.4	60.2	61.1	61.6	62.2	62.6
8	52.6	53.7	54.4	54.8	55.3	55.5	55.2	56.1	56.6	57.3	57.7
.9	48.0	49.1	49.8	50.1	50.7	51.0	50.5	51.4	52.0	52.7	53.2
10	43.8	44.9	45.5	45.9	46.5	46.8	46.2	47.1	47.7	48.5	4 9.0
11	40.0	41.0	41.6	42.0	42.6	43.0	42.3	43.2	43.8	44.7	45.1
12	36.5	37.5	38.1	38.5	39.1	39.5	38.8	39.7	40.2	41.1	41.6
13	33.3	34.3	34.9	35.3	35.9	36.3	35.6	36.4	37.0	37.9	38.4
14	30.5	31.4	32.0	32.4	33.0	33.4	32.6	33.4	34.0	34.9	35.4
15	27.9	28.7	29.3	29.7	30.3	30.7	29.9	30.6	31.2	32.1	32.7
16	25.5	26.2	26.8	27.2	27.9	28.2	27.4	28.1	28.7	29.6	30.2
17	23.3	24.0	24.6	24.9	25.6	26.0	25.1	25.8	26.4	27.3	27.9
18	21.3	22.0	22.6	22.9	23.5	24.0	23.0	23.7	24.3	25.2	25.8
19	19.5	20.2	20.7	21.0	21.6	22.1	21.1	21.8	22.4	23.3	23.8
20	17.8	18.5	19.0	19.3	19.9	20.3	19.4	20.0	20.6	21.5	22.0
Depth											
in cm	8×8	8×10	8×15	8×20	10×10	10×15	10×20	15×15	15×20	20×20	
*	102.1	102.3	102.7	103.0	102.5	103.0	103.4	103.7	104.1	104.6	
0	Surfac	e dose 30	to 50%	dependi	ng upon	collimat	or				
0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
1	97.1	97.3	97.4	97.4	97.5	97.6	97.6	97.7	97.7	97.7	
	90.9	91.1	91.3	91.4	91.4	91.6	91.7	91.9	92.0	92.1	
2 3 4	84.7	85.0	85.4	85.5	85.4	85.8	86.0	86.2	86.5	86.7	
4	78.7	79.1	79.6	79.8	79.6	80.1	80.4	80.7	81.1	81.5	
5	72.9	73.4	74.0	74.3	74.0	74.6	75.0	75.4	75.9	76.4	
6	67.4	67.9	68.6	69.0	68.6	69.4	69.8	70.3	70.9	71.6	
7	62.1	62.7	63.5	64.0	63.4	64.4	64.9	65.5	66.2	67.0	
8	57.1	57.7	58.6	59.2	58.5	59.6	60.2	60.9	61.7	62.6	
9	52.4	53.1	54.1	54.7	53.9	55.1	55.8	56.6	57.5	58.5	
10	48.1	48.8	49.9	50.5	49.7	50.9	51.7	52.5	53.6	54.7	
11	44.2	44.9	46.0	46.7	45.8	47.1	47.9	48.7	49.9	51.1	
12					42.2	43.6	44.4	45.2	46.4	47.7	
	40.7	41.4	42.5	43.2							
13	40.7 37.4	41.4 38.1	39.2	39.9	39.0	40.3	41.1	42.0	43.2	44.5	
13 14	40.7 37.4 34.4	41.4 38.1 35.1	39.2 36.2	39.9 36.9	39.0 36.0	40.3 37.3	38.1	39.0	40.2	41.6	
13 14 15	40.7 37.4 34.4 31.6	41.4 38.1 35.1 32.3	39.2 36.2 33.4	39.9 36.9 34.1	39.0 36.0 33.2	40.8 37.3 34 .5	38.1 35.3	39.0 36.3	40.2 37.5	41.6 38.8	
13 14 15	40.7 37.4 34.4 31.6 29.1	41.4 38.1 35.1 32.3 29.7	39.2 36.2 33.4 30.9	39.9 36.9 34.1 31.6	39.0 36.0 33.2 30.6	40.3 37.3 34.5 32.0	38.1 35.3 32.8	39.0 36.3 33.8	40.2 37.5 35.0	41.6 38.8 36.3	
13 14 15 16 17	40.7 37.4 34.4 31.6 29.1 26.8	41.4 38.1 35.1 32.3 29.7 27.4	39.2 36.2 33.4 30.9 28.6	39.9 36.9 34.1 31.6 29.3	39.0 36.0 33.2 30.6 28.2	40.3 37.3 34.5 32.0 29.7	38.1 35.3 32.8 30.5	39.0 36.3 33.8 31.5	40.2 37.5 35.0 32.7	41.6 38.8 36.3 34.0	
13 14 15 16 17 18	40.7 37.4 34.4 31.6 29.1 26.8 24.7	41.4 38.1 35.1 32.3 29.7 27.4 25.3	39.2 36.2 33.4 30.9 28.6 26.5	39.9 36.9 34.1 31.6 29.3 27.2	39.0 36.0 33.2 30.6 28.2 26.1	40.3 37.3 34.5 32.0 29.7 27.5	38.1 35.3 32.8 30.5 28.3	39.0 36.3 33.8 31.5 29.3	40.2 37.5 35.0 32.7 30.5	41.6 38.8 36.3 34.0 31.8	
13 14 15 16 17	40.7 37.4 34.4 31.6 29.1 26.8	41.4 38.1 35.1 32.3 29.7 27.4	39.2 36.2 33.4 30.9 28.6	39.9 36.9 34.1 31.6 29.3	39.0 36.0 33.2 30.6 28.2	40.3 37.3 34.5 32.0 29.7	38.1 35.3 32.8 30.5	39.0 36.3 33.8 31.5	40.2 37.5 35.0 32.7	41.6 38.8 36.3 34.0	

^{*}The first line gives the dose at the maximum for 100 r of primary.

RECTANGULAR FIELDS | COBAUT 60 | FSD 60 cm RECTANGULAR FIELDS IN CM X CM

Depth											
in cm	4×+	4×6	4×8	4×10	4×15	4×20	6×6	6×8	6×10	6×15	6×20
*	101.0	101.3	101.4	101.5	101.7	101.9	101.6	101.8	102.0	102.3	102.5
0				dependi						,	
0.5	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0
1	96.5	96.7	96.8	96.9	97.0	97.0	97.0	97.2	97.3	97.4	97.4
2	89.7	90.2	90.5	90.7	90.8	90.8	90.8	91.2	91.4	91.6	91.7
3	83.2	83.9	84.3	84.6	84.8	84.8	84.8	85.3	85.6	85.9	86.1
4	77.0	77.8	78.3	78.6	78.9	79.0	78.9	79.6	80.0	80.3	80.5
5	71.0	71.9	72.5	72.8	73.1	73.4	73.2	74.0	74.5	74.8	75.1
6	65.4	66.4	67.0	67.3	67.7	68.0	67.7	68.6	69.1	69.6	69.9
7	60. l	61.2	61.8	62.1	62.6	62.8	62.5	63.4	63.9	64.5	64.9
8	55.1	56.2	56.8	57.2	57.7	57.9	57.6	58.4	59.0	59.7	60.1
9	50.4	51.5	52.1	52.6	53.1	53.4	53.0	53 .8	54.4	55.1	55.6
10	46.1	47.2	47.8	48.3	48.8	49.2	48.7	49.5	50.1	50.9	51.4
11	42.2	43.3	43.9	44.4	44.9	45.3	44.8	45.6	46.2	47.0	47.5
12	38.7	39.8	40.4	40.9	41.4	41.8	41.2	42.0	42.6	43.4	44.0
13	35.5	36.5	37.2	37.6	38.2	3 8.5	37.9	38.7	39.3	40.1	40.7
14	32.5	33.5	34.2	34.6	35.2	35.5	34.8	35.7	36.3	37.1	37.7
15	29.8	30.8	31.4	31.8	32.4	32.8	32.0	32.9	33.5	34.3	34.9
16	27.4	28.3	28.9	29.3	29.9	30.3	29.4	30.3	30.9	31.7	32.3
17	25.2	26.1	26.6	27.0	27.6	28.0	27.1	28.0	28.5	29.3	29.9
18	23.2	24.0	24.5	24.9	25.5	25.9	25.0	25.8	26.3	27.2	27.8
		00.1	00.0	00.0	23.6	23.9	23.0	25.8	24.3	25.2	25.8
19	21.3	22.1	22.6	22.9							
20 	21.3 19.5	20.3	20.8	21.0	21.8	22.0	21.1	21.9	22.4	23.3	23.9
20 ————————————————————————————————————	19.5	20.3	20.8	21.0	21.8	22.0	21.1	21.9	22.4		23.9
20 Depth in cm	19.5 8×8	20.3 8×10	20.8 8×15	21.0 8×20	21.8 10×10	22.0 10×15	21.1 10×20	21.9 15×15	22.4 15×20	20×20	23.9
Depth in cm *	19.5 8×8 102.1	8×10 102.3	8×15 102.7	8×20 102.9	21.8 10×10 102.5	22.0 10×15 103.0	21.1 10×20 103.3	21.9	22.4		28.9
Depth in cm *	8×8 102.1 Surface	8×10 102.3 e dose 30	8×15 102.7 10 to 50%	8×20 102.9 dependi	21.8 10×10 102.5 ng upon	22.0 10×15 103.0 collimate	21.1 10×20 103.3	21.9 15×15 103.6	22.4 15×20 104.1	20×20 104.6	28.9
20 Depth in cm * 0 0.5	8×8 102.1 Surface 100.0	8×10 102.3 e dose 30 100.0	8×15 102.7 1050% 100.0	8×20 102.9 dependi 100.0	21.8 10×10 102.5 ng upon 100.0	22.0 10×15 103.0 collimat 100.0	21.1 10×20 103.3 or 100.0	21.9 15×15 103.6 100.0	22.4 15×20 104.1 100.0	20×20 104.6 100.0	28.9
20 Depth in cm * 0 0.5 1 2	8×8 102.1 Surfac 100.0 97.4	8×10 102.3 e dose 30 100.0 97.5	8×15 102.7 100.0 97.7	8×20 102.9 dependi 100.0 97.7	21.8 10×10 102.5 ng upon 100.0 97.7	22.0 10×15 103.0 collimat 100.0 97.8	21.1 10×20 103.3 .or 100.0 97.9	21.9 15×15 103.6 100.0 98.0	22.4 15×20 104.1 100.0 98.0	20×20 104.6 100.0 98.1	28.9
20 Depth in cm * 0 0.5 1 2	8×8 102.1 Surfac 100.0 97.4 91.7	8×10 102.3 e dose 30 100.0 97.5 91.9	8×15 102.7 100.0 97.7 92.1	8×20 102.9 dependi 100.0 97.7 92.2	21.8 10×10 102.5 ng upon 100.0 97.7 92.1	22.0 10×15 103.0 collimat 100.0 97.8 92.4	21.1 10×20 103.3 .or 100.0 97.9 92.5	21.9 15×15 103.6 100.0 98.0 92.7	22.4 15×20 104.1 100.0 98.0 92.8	20×20 104.6 100.0 98.1 93.0	28.9
20 Depth in cm * 0 0.5 1 2	8×8 102.1 Surfac 100.0 97.4 91.7 86.0	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3	8×15 102.7 100.0 97.7 92.1 86.6	8×20 102.9 dependi 100.0 97.7 92.2 86.8	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2	21.9 15×15 103.6 100.0 98.0 92.7 87.5	22.4 15×20 104.1 100.0 98.0 92.8 87.7	20×20 104.6 100.0 98.1 93.0 88.0	23.9
20 Depth in cm * 0 0.5 1	8×8 102.1 Surfac 100.0 97.4 91.7	8×10 102.3 e dose 30 100.0 97.5 91.9	8×15 102.7 100.0 97.7 92.1	8×20 102.9 dependi 100.0 97.7 92.2	21.8 10×10 102.5 ng upon 100.0 97.7 92.1	22.0 10×15 103.0 collimat 100.0 97.8 92.4	21.1 10×20 103.3 .or 100.0 97.9 92.5	21.9 15×15 103.6 100.0 98.0 92.7	22.4 15×20 104.1 100.0 98.0 92.8	20×20 104.6 100.0 98.1 93.0	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surfaction.0 97.4 91.7 86.0 80.3	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7	8×15 102.7 0 to 50% 100.0 97.7 92.1 86.6 81.2	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8	10×20 103.3 or 100.0 97.9 92.5 87.2 82.0	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7	20×20 104.6 100.0 98.1 93.0 88.0 83.1	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surface 100.0 97.4 91.7 86.0 80.3 74.8	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3	8×15 102.7 105.0 100.0 97.7 92.1 86.6 81.2 75.9	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9	22.0 10×15 108.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6	10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surfact 100.0 97.4 91.7 86.0 80.3 74.8 69.5	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0	8×15 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5	10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7	8×8 102.1 Surfact 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9	8×15 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5 67.8	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0 68.4	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8	8×8 102.1 Surfact 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 70.0 64.9 60.1	8×15 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9	21.1 10×20 103.3 .or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3	22.4 15×20 104.1 100.0 98.0 92.8 87.7 77.8 23.0 68.4 64.0	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surfac 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 70.0 64.9 60.1 55.6 51.3	8×15 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0 56.6 52.4 48.5	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1	22.4 15×20 104.1 100.0 98.0 92.8 87.7 77.8 22.7 77.8 68.4 64.0 59.8 55.8 52.1	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 60.9 57.0	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12	8×8 102.1 Surfac 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8	8×15 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 65.6 52.4 48.5 44.9	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 45.6	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 44.6	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5 45.9	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2 46.7	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6	22.4 15×20 104.1 100.0 98.0 92.8 87.7 77.8 27.7 77.8 68.4 64.0 59.8 55.8 52.1 48.7	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 60.9 57.0 53.4 50.0	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13	8×8 102.1 Surface 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1 39.8	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8 40.5	8×15 102.7 0 to 50% 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0 56.4 48.5 44.9 41.6	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 45.6 42.3	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 44.6 41.3	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5 45.9 42.6	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2 46.7 43.4	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6 44.4	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0 68.4 64.0 55.8 55.8 52.1 48.7 45.5	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 57.0 53.4 50.0 46.9	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14	8×8 102.1 Surfaction.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1 39.8 36.7	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8 40.5 37.5	8×/5 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0 56.6 52.4 44.9 41.6 38.5	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 42.3 39.2	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 44.6 41.3 38.2	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5 42.6 39.6	10×20 103.3 for 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2 46.7 43.4 40.4	21.9 15×15 103.6 100.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6 44.4 41.4	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0 68.4 64.0 59.8 55.8 52.1 48.7 45.5 42.5	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 60.9 57.0 46.9 43.9	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13	8×8 102.1 Surface 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1 39.8	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8 40.5	8×15 102.7 0 to 50% 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0 56.4 48.5 44.9 41.6	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 45.6 42.3	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 44.6 41.3	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5 45.9 42.6	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2 46.7 43.4	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6 44.4	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0 68.4 64.0 55.8 55.8 52.1 48.7 45.5	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 57.0 53.4 50.0 46.9	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8×8 102.1 Surfact 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1 39.8 36.7 33.9	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8 40.5 37.5 34.6	8×15 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0 56.6 52.4 44.9 48.5 44.9 38.5 35.7	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 45.6 42.3 39.2 36.4	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 41.3 38.2 35.4 32.8	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 45.9 42.6 39.6 36.8 34.2	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2 46.7 43.4 40.4 37.6 35.0	21.9 15×15 103.6 100.0 98.0 98.0 92.7 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6 44.4 41.4 38.6 36.0	22.4 15×20 104.1 100.0 98.0 92.8 87.7 77.8 73.0 68.4 64.0 59.8 55.8 52.1 48.7 45.5 42.5 39.7 37.1	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 60.9 57.0 53.4 50.0 46.9 43.9 41.1	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	8×8 102.1 Surfaction.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1 39.8 36.7 33.9	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8 40.5 37.5 34.6	8×/5 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0 56.6 52.4 48.5 44.9 41.6 38.5 35.7	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 45.6 42.3 39.2 36.4 33.8 31.4	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 44.6 41.3 38.2 35.4 32.8 30.4	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5 42.6 39.6 36.8 34.2 31.8	10×20 103.3 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2 46.7 43.4 40.4 37.6 35.0 32.6	21.9 15×15 103.6 100.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6 44.4 41.4 38.6 36.0 33.6	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0 68.4 64.0 59.8 55.8 52.1 48.5 42.5 39.7 37.1 34.8	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 60.9 57.0 46.9 43.9 41.1 38.5 36.1	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	8×8 102.1 Surfact 100.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1 39.8 36.7 33.9 31.3 28.9 26.7	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8 40.5 32.0 29.6 27.4	8×15 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 61.0 56.6 52.4 48.5 44.9 41.6 38.5 35.7	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 45.6 42.3 39.2 36.4	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 44.6 41.3 38.2 35.4 32.8 30.4 28.2	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5 45.9 42.6 39.6 36.8 34.2 31.8 29.6	21.1 10×20 103.3 or 100.0 97.9 92.5 87.2 82.0 76.9 71.9 62.4 58.1 54.0 50.2 46.7 43.4 40.4 37.6 35.0 32.6 30.4	21.9 15×15 103.6 100.0 98.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6 44.4 41.4 38.6 36.0 33.6 31.4	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0 68.4 64.0 59.8 55.8 52.1 48.7 42.5 39.7 37.1 34.8 32.6	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 60.9 57.0 45.9 41.1 38.5 36.1 33.9	23.9
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	8×8 102.1 Surfaction.0 97.4 91.7 86.0 80.3 74.8 69.5 64.4 59.5 54.9 50.6 46.7 43.1 39.8 36.7 33.9	8×10 102.3 e dose 30 100.0 97.5 91.9 86.3 80.7 75.3 70.0 64.9 60.1 55.6 51.3 47.4 43.8 40.5 37.5 34.6	8×/5 102.7 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.7 61.0 56.6 52.4 48.5 44.9 41.6 38.5 35.7	8×20 102.9 dependi 100.0 97.7 92.2 86.8 81.4 76.2 71.1 66.2 61.5 57.1 52.9 49.1 45.6 42.3 39.2 36.4 33.8 31.4	21.8 10×10 102.5 ng upon 100.0 97.7 92.1 86.6 81.2 75.9 70.7 65.6 60.8 56.3 52.1 48.2 44.6 41.3 38.2 35.4 32.8 30.4	22.0 10×15 103.0 collimat 100.0 97.8 92.4 87.1 81.8 76.6 71.5 66.6 61.9 57.5 53.4 49.5 42.6 39.6 36.8 34.2 31.8	10×20 103.3 100.0 97.9 92.5 87.2 82.0 76.9 71.9 67.0 62.4 58.1 54.0 50.2 46.7 43.4 40.4 37.6 35.0 32.6	21.9 15×15 103.6 100.0 92.7 87.5 82.4 77.4 72.5 67.8 63.3 59.0 54.9 51.1 47.6 44.4 41.4 38.6 36.0 33.6	22.4 15×20 104.1 100.0 98.0 92.8 87.7 82.7 77.8 73.0 68.4 64.0 59.8 55.8 52.1 48.5 42.5 39.7 37.1 34.8	20×20 104.6 100.0 98.1 93.0 88.0 83.1 78.3 73.7 69.2 64.9 60.9 57.0 46.9 43.9 41.1 38.5 36.1	23.9

^{*}The first line gives the dose at the maximum for 100 r of primary.

RECTANGULAR FIELDS - COBALT 60 - FSD 80 cm Rectangular Fields in cm \times cm

Depth											
in cm	4×1	4×6	4×8	4×10	4×15	4×20	6×6	6×8	6×10	6×15	6×20
*	101.1	101.3	101.5	101.6	101.8	101.9	101.6	101.8	102.0	102.3	102.5
-								101.0	104.0	102.0	104.5
0 0.5		100.0	100.0	100.0	ng սթօո 100.0	100.0	or 100.0	100.0	100.0	100.0	100.0
	100.0	97.0	97.2	97.3	97.4	97.4	97.4	97.6	97.7	97.8	97.8
1	96.8	91.2	91.5	91.6	91.8	91.8		92.2	92.5	97.8 92.7	92.8
2 3	90.6 84.7	.85.5	85.9	86.1	86.4	86.4	91.9 86.5	86.9	87.3	87.6	87.7
3	79.0	.83.5 79.9	80.4	80.6	81.0	81.1	81.1	81.7	82.1	82.5	82.7
4 5	79.0 73.5	74.5	75.1	75.3	75.7	75.9	75.9	76.6	77.0	77.5	77.7
6 7	68.1 62.9	69.2 64.1	69.9 64.8	70.1 65.1	70.5 65.5	70.7 65.7	70.7 65.7	71.5 66.5	71.9 6 7.0	72.5 67 .6	72.7 67.9
,	58.0	59.2	59.9	60.3	60.8	61.0	60.8	61.7	62.2	62.9	63.3
8 9	53.5	54.7	55.3	55.8	56.3	56.6	56.2	57.1	57.7	58.5	58.9
10	49.3	50.5	51.1	51.6	52.2	52.5	52.0	52.9	53.5	54.4	54.8
11	45.5	46.6	47.3	47.8	48.4	48.6	48.1	49.0	49.6	50.5	51.0
12	41.9	43.0	43.7	44.2	44.8	45.1	44.5	45.4	46.0	46.9	47.4
13	38.6	39.7	40.4	40.9	41.4	41.8	41.1	42.0	42.7	43.6	44.1
14	35.6	36.6	37.3	37.8	38.4	38.7	38.0	38.9	39.6	40.5	41.0
15	32.9	33.8	34.5	35.0	35.6	35.9	35.2	36.1	36.7	37.6	38.1
16	30.4	31.3	32.0	32.4	33.1	33.4	32.6	33.5	34.1	35.0	35.5
17	28.1	29.0	29.6	30.0	30.7	31.0	30.2	31.1	31.6	32.6	33.1
18	26.0	26.9	27.4	27.9	28.5	28.8	28.0	28.8	29.4	30.3	30.8
	40.0									00.0	007
19	24.0	24.9	25.4	25.9	26.5	26.8	26,0	26.7	27.4	28.2	20.7
20						26.8 24.8	26.0 24.0	26.7 24.8	27.4 25.4	26.2	
20 Depth	24.0 22.1	24.9 22.9	25.4 23.5	25.9 23.9 ————	26.5 24.5	24.8	24.0	24.8	25.4		
20 Depth in cm	24.0 22.1 8×8	24.9 22.9 8×10	25.4 23.5 8×15	25.9 23.9 8×20	26.5 24.5	24.8 10×15	24.0 10×20	24.8 15×15	25.4 15×20	26.2 20×20	28.7 26.8
20 Depth in cm *	24.0 22.1 8×8 102.1	24.9 22.9 8×10 102.3	25.4 23.5 8×15 102.7	25.9 23.9 8×20 102.9	26.5 24.5 10×10 102.5	24.8 10×15 103.0	24.0 10×20 103.3	24.8	25.4	26.2	
Depth n cm *	24.0 22.1 8×8 102.1 Surface	8×10 102.3 e dose 30	25.4 23.5 8×15 102.7 to 50%	25.9 23.9 8×20 102.9 depending	26.5 24.5 10×10 102.5 ng upon	24.8 10×15 103.0 collimate	24.0 10×20 103.3	24.8 15×15 103.6	25.4 15×20 104.1	26.2 20×20 104.6	
20 Depth n cm 0 0.5	8×8 102.1 surface 100.0	8×10 102.3 e dose 30 100.0	25.4 23.5 8×15 102.7 to 50% 100.0	25.9 23.9 8×20 102.9 depending 100.0	26.5 24.5 10×10 102.5 ng upon 100.0	24.8 10×15 103.0 collimate 100.0	24.0 10×20 103.3 or 100.0	24.8 15×15 103.6 100.0	25.4 15×20 104.1 100.0	26.2 20×20 104.6 100.0	
20 Depth n cm * 0 0.5	8×8 102.1 surface 100.0 97.8	8×10 102.3 e dose 30 100.0 98.0	25.4 23.5 8×15 102.7 to 50% 100.0 98.1	25.9 23.9 8×20 102.9 depending 100.0 98.1	26.5 24.5 10×10 102.5 ng upon 100.0 98.2	24.8 10×15 103.0 collimate 100.0 98.3	24.0 10×20 103.3 or 100.0 98.3	24.8 15×15 103.6 100.0 98.4	25.4 15×20 104.1 100.0 98.4	26.2 20×20 104.6 100.0 98.4	
20 Depth n cm * 0 0.5	8×8 102.1 Surface 100.0 97.8 92.7	8×10 102.3 e dose 30 100.0 98.0 93.0	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2	25.9 23.9 8×20 102.9 dependin 100.0 98.1 93.3	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3	24.8 10×15 103.0 collimate 100.0 98.3 93.6	24.0 10×20 103.3 or 100.0 98.3 93.6	24.8 15×15 103.6 100.0 98.4 93.9	25.4 15×20 104.1 100.0 98.4 93.9	26.2 20×20 104.6 100.0 98.4 94.0	
20 Depth n cm * 0 0.5 1 2 3	8×8 102.1 Surface 100.0 97.8 92.7 87.6	8×10 102.3 e dose 30 100.0 98.0 93.0 87.9	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3	25.9 23.9 8×20 102.9 dependin 100.0 98.1 93.3 88.5	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9	24.8 15×15 103.6 100.0 98.4 93.9 89.3	25.4 15×20 104.1 100.0 98.4 93.9 89.4	26.2 20×20 104.6 100.0 98.4 94.0 89.6	
20 Depth n cm * 0 0.5	8×8 102.1 Surface 100.0 97.8 92.7	8×10 102.3 e dose 30 100.0 98.0 93.0	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2	25.9 23.9 8×20 102.9 dependin 100.0 98.1 93.3	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3	24.8 10×15 103.0 collimate 100.0 98.3 93.6	24.0 10×20 103.3 or 100.0 98.3 93.6	24.8 15×15 103.6 100.0 98.4 93.9	25.4 15×20 104.1 100.0 98.4 93.9	26.2 20×20 104.6 100.0 98.4 94.0	
20 Depth n cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4	8×10 102.3 e dose 30 100.0 98.0 87.9 82.9 77.9	8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 88.3 83.4 78.5	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2	10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8	
20 Depth n cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4 72.4	8×10 102.3 e dose 30 100.0 98.0 97.9 82.9 77.9 73.0	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4	
20 Depth in cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5	8×10 102.3 e dose 30 100.0 98.0 93.0 98.9 77.9 73.0 68.1	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0 69.2	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.4 78.5 73.6 68.8	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1	
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5 62.7	24.9 22.9 8×10 102.3 e dose 30 100.0 98.0 98.0 98.9 77.9 73.0 68.1 63.4	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3	25.9 23.9 8×20 102.9 dependin 100.0 98.1 93.3 88.5 88.6 78.8 74.0 69.2 64.7	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 88.3 83.4 78.5 73.6 68.8 64.1	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2	24.0 10×20 103.3 pr 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5	25.4 15×20 104.1 100.0 98.4 93.9 89.4 80.4 75.8 71.4 67.2	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0	
20 Depth n cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5	8×10 102.3 e dose 30 100.0 98.0 93.0 98.9 77.9 73.0 68.1	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0 69.2	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.4 78.5 73.6 68.8	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1	
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surface 100.0 97.8 72.7 87.6 82.5 77.4 72.4 67.5 62.7 58.2 54.0	8×10 102.3 e dose 30 100.0 98.0 93.0 98.9 77.9 73.0 68.1 63.4 58.9 54.8	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 98.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8	8×20 102.9 dependin 100.0 98.1 93.3 88.5 78.8 74.0 69.2 64.7 60.4 56.3	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 56.9	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2	
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surfact 100.0 97.8 92.7 87.6 82.5 77.4 67.5 62.7 58.2 54.0	8×10 102.3 e dose 30 100.0 98.0 93.0 87.9 82.9 77.9 68.1 63.4 58.9 54.8 50.9	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8 52.0	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 74.0 69.2 64.7 60.4 56.3 52.5	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 56.9 53.1	24.0 10×20 103.3 pr 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4 53.7	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6	
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12	8×8 102.1 5urfac 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5 62.7 54.0 50.1 46.5	8×10 102.3 e dose 30 100.0 98.0 98.0 97.9 77.9 78.0 68.1 63.4 58.9 54.8 50.9 47.3	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 55.8 52.0 48.4	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 74.0 69.2 64.7 60.4 56.3 52.5 49.0	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 48.1	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 56.9 53.1 49.5	24.0 10×20 103.3 pr 100.0 98.3 93.6 88.9 74.7 70.1 65.7 61.4 57.4 53.7 50.2	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6 53.2	
20 Depth ncm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surface 100.0 97.8 72.7 87.6 82.5 77.4 72.4 67.5 62.7 58.2 54.0 50.1 46.5 43.2	8×10 102.3 e dose 30 100.0 98.0 93.0 87.9 82.9 77.9 73.0 68.1 63.4 54.8 50.9 47.3 44.0	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8 52.0 48.4 45.1	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0 69.2 64.7 60.4 56.3 52.5 49.0 45.7	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 48.1 44.8	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 56.9 53.1 49.5 46.2	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4 53.7 50.2 46.9	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2 47.9	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1 48.8	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6 53.2 50.0	
20 Depth ncm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11	8×8 102.1 5urfac 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5 62.7 54.0 50.1 46.5	8×10 102.3 e dose 30 100.0 98.0 98.0 97.9 77.9 78.0 68.1 63.4 58.9 54.8 50.9 47.3	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 55.8 52.0 48.4	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 74.0 69.2 64.7 60.4 56.3 52.5 49.0	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 48.1	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 56.9 53.1 49.5	24.0 10×20 103.3 pr 100.0 98.3 93.6 88.9 74.7 70.1 65.7 61.4 57.4 53.7 50.2	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6 53.2	
20 Depth incm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5 62.7 54.0 50.1 46.5 43.2 40.1 37.2	8×10 102.3 e dose 30 100.0 98.0 93.0 87.9 82.9 77.9 73.0 68.1 63.4 54.8 50.9 47.3 44.0 40.9 38.0	8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8 52.0 48.4 45.1 42.0 39.2	8×20 102.9 dependii 100.0 98.1 93.3 88.5 83.6 74.0 69.2 64.7 60.4 56.3 52.5 49.0 45.7 42.6 39.8	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 48.1 44.8 41.8 38.9	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 53.1 49.5 46.2 43.1 40.3	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4 53.7 50.2 46.9 43.9 41.0	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2 47.9 44.9 42.0	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1 48.8 45.8 43.0	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6 53.2 50.0 47.0 44.2	
20 Depth ncm 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8×8 102.1 Surface 100.0 97.8 82.5 77.4 72.4 67.5 62.7 54.0 50.1 46.5 43.2 40.1 37.2 34.5	8×10 102.3 e dose 30 100.0 98.0 98.0 97.9 73.0 68.1 63.4 54.8 50.9 47.3 44.0 40.9 38.0 35.3	8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8 52.0 48.4 45.1 42.0 39.2 36.5	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0 69.2 64.7 60.4 56.3 52.5 49.0 45.7 42.6 39.8 37.1	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 48.1 44.8 41.8 38.9 36.2	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 53.1 49.5 46.2 43.1 40.3 37.6	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4 57.4 57.4 58.7 50.2 46.9 41.0 38.3	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2 47.9 44.9 42.0 39.3	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1 48.8 45.8 43.0 40.3	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 60.2 56.6 53.2 50.0 47.0 44.2 41.5	
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5 62.7 58.2 54.0 50.1 46.5 43.2 40.1 37.2 34.5	8×10 102.3 e dose 30 100.0 98.0 98.0 98.0 98.0 98.0 98.1 68.1 63.4 58.9 54.8 50.9 44.0 40.9 38.0 35.3 32.8	8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8 52.0 48.4 45.1 42.0 39.2 36.5 34.0	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0 69.2 64.7 60.4 56.3 52.5 49.0 45.7 42.6 39.8 37.1 34.6	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 44.8 41.8 38.9 36.2 33.7	24.8 10×15 103.0 collimate 100.6 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 53.1 49.5 46.2 43.1 40.3 37.6 35.1	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4 57.4 58.7 50.9 41.0 38.3 35.8	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2 44.9 42.0 39.3 36.8	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1 48.8 45.8 43.0 40.3 37.8	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6 53.2 50.0 47.0 44.2 41.5 39.0	
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	8×8 102.1 Surfact 100.0 97.8 92.7 87.6 82.5 77.4 67.5 62.7 58.2 54.0 50.1 46.5 43.2 40.1 37.2 34.5 32.1 29.8	8×10 102.3 e dose 30 100.0 98.0 93.0 87.9 77.9 73.0 68.1 63.4 58.9 54.8 50.9 47.3 44.0 40.9 38.0 35.3 32.8 30.5	25.4 23.5 8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8 52.0 48.4 45.1 42.0 39.2 36.5 34.0 31.7	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0 69.2 64.7 60.4 56.3 52.5 49.0 45.7 42.6 39.8 37.1 34.6 32.3	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 48.1 44.8 38.9 36.2 33.7 31.4	24.8 10×15 103.0 collimate 100.0 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 56.9 53.1 49.5 46.2 43.1 40.3 37.6 35.1 32.8	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4 53.7 50.2 46.9 41.0 38.3 35.8 33.5	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2 47.9 44.9 42.0 39.3 36.8 34.5	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1 48.8 45.	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6 53.2 50.0 47.0 44.2 41.5 39.0 36.7	
20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	8×8 102.1 Surface 100.0 97.8 92.7 87.6 82.5 77.4 72.4 67.5 62.7 58.2 54.0 50.1 46.5 43.2 40.1 37.2 34.5	8×10 102.3 e dose 30 100.0 98.0 98.0 98.0 98.0 98.0 98.1 68.1 63.4 58.9 54.8 50.9 44.0 40.9 38.0 35.3 32.8	8×15 102.7 to 50% 100.0 98.1 93.2 88.3 83.4 78.5 73.7 68.9 64.3 59.9 55.8 52.0 48.4 45.1 42.0 39.2 36.5 34.0	8×20 102.9 dependin 100.0 98.1 93.3 88.5 83.6 78.8 74.0 69.2 64.7 60.4 56.3 52.5 49.0 45.7 42.6 39.8 37.1 34.6	26.5 24.5 10×10 102.5 ng upon 100.0 98.2 93.3 88.3 83.4 78.5 73.6 68.8 64.1 59.7 55.6 51.7 44.8 41.8 38.9 36.2 33.7	24.8 10×15 103.0 collimate 100.6 98.3 93.6 88.8 84.0 79.2 74.4 69.8 65.2 60.9 53.1 49.5 46.2 43.1 40.3 37.6 35.1	24.0 10×20 103.3 or 100.0 98.3 93.6 88.9 84.2 79.5 74.7 70.1 65.7 61.4 57.4 57.4 58.7 50.9 41.0 38.3 35.8	24.8 15×15 103.6 100.0 98.4 93.9 89.3 84.7 80.1 75.4 70.8 66.5 62.3 58.4 54.7 51.2 44.9 42.0 39.3 36.8	25.4 15×20 104.1 100.0 98.4 93.9 89.4 84.9 80.4 75.8 71.4 67.2 63.1 59.2 55.6 52.1 48.8 45.8 43.0 40.3 37.8	26.2 20×20 104.6 100.0 98.4 94.0 89.6 85.2 80.8 76.4 72.1 68.0 64.0 60.2 56.6 53.2 50.0 47.0 44.2 41.5 39.0	

^{*}The first line gives the dose at the maximum for 100 r of primary.

RECTANGULAR FIELDS COBALT 60 FSD 100 CM RECTANGULAR FIELDS IN CM X CM

Depth in em	4×1	1×6	1×8	4×10	4×15	√×20	6×6	6×8	6×10	6×15	6×26
*	101.1	101.3	101.5	101.6	101.8	101.9	101.6	101.8	102.0	102.3	102.5
								101.6	102.0	102.5	102.5
0			to 50%	dependii			or				
0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	97.1	97.3	97.5	97.6	97.7	97.7	97.7	97.9	98.0	98.2	98.2
2	91.4	91.9	92.2	92.4	92.5	92.6	92.6	92.9	93.1	93.4	93.4
3 4	85.8	86.5	86.9	87.2	87.3	87.5	87.5	87.9	88.2 83.4	88.6	88.6
5	80.2	81.2	81.7	82.0	82.2	82.4	82.4 77.3	83.0	78.6	83.8 79.0	83.9 79.2
	74.8	76.0	76.6	76.9	77.2	77. 4		78.1			
6	69.7	70.9	71.6	71.9	72.3	72.5	72.4	73.2	73.8	74.3	74.5
7	64.8	66.0	66.7	67.1	67.5	67.7	67.6	68.4	69.0	69.6	69.9
8	60.1	61.3	62.0	62.4	62.9	63.1	62.9	63.8	64.4	65.1	65.4
9	55.7	56.9	57.6	58.0	58.5	58.8	58.4	59.4	60.0	60.7	61.1
10	51.5	52.7	53.4	53.8	54.4	54.7	54.2	55.2	55.8	56.6	57.0
11	47.7	48.8	49.5	49.9	50.5	50.8	50.3	51.3	51.9	52.7	53.2
12	44.1	45.2	45.9	46.3	46.9	47.2	46.7	47.7	48.2	49.1	49.6
13	40.8	41.9	42.6	43.0	43.6	43.9	43.3	44.3	44.9	45.8	46.3
14	37.8	38.9	39.5	40.0	40.6	40.9	40.2	41.2	41.8	42.7	43.2
15	35.0	36.1	36.7	37.2	37.8	38.1	37.4	38.3	38.9	3 9.9	40.3
	32.5	33.5	34.1	34.5	35.2	35.5	34.8	35.6	36.3	37.2	37.7
16	32.0				32.8	33.1	32.3	33.1	33.8	34.7	35.2
16 17	30.1	31.1	31.7	52.1	34.0						90.0
17	30.1		31.7 29.4	32 .1 29 .8			3 0.0	3 0.8	3 1.5	32.4	32.9
17 18	30.1 27.9	28.8	29.4	29.8	30.5	30.8	30.0 27.9				32.9 30.7
17	30.1						30.0 27.9 25.9	30.8 28.7 26.7	31.5 29.3 27.3	32.4 30.2 28.2	30.7
17 18 19 20 Depth	30.1 27.9 25.8 2 3 .8	28.8 26.7 24.7	29.4 27.3 25.3	29.8 27.7 25.7	30.5 28.4 26.4	\$0.8 28.7 26.7	27.9 25.9	28.7 26.7	29.3 27.3	30.2 28.2	30.7 28.7
17 18 19 20	30.1 27.9 25.8	28.8 26.7	29. 4 27.3	29.8 27.7	30.5 28.4	30.8 28.7	27.9	28.7	29.3	30.2	30.7
17 18 19 20 Depth	30.1 27.9 25.8 2 3 .8	28.8 26.7 24.7	29.4 27.3 25.3	29.8 27.7 25.7	30.5 28.4 26.4	\$0.8 28.7 26.7	27.9 25.9	28.7 26.7	29.3 27.3	30.2 28.2	30.7
17 18 19 20 Depth in cm	80.1 27.9 25.8 23.8 23.8 8×8 102.1 Surface	28.8 26.7 24.7 8×10 102.3 e dose 30	29.4 27.3 25.3 8×15 102.7 to 50%	29.8 27.7 25.7 8×20 103.0 depending	30.5 28.4 26.4 26.4 10×10 102.5 ng upon	30.8 28.7 26.7 26.7 10×15 103.0 collimat	27.9 25.9 10×20 103.4 or	28.7 26.7 15×15 103.7	29.3 27.3 15×20 104.1	30.2 28.2 20×20 104.6	30.7
17 18 19 20 Depth in cm *	8×8 102.1 Surfac 100.0	28.8 26.7 24.7 8×10 102.3 e dosc 30 100.0	29.4 27.3 25.3 8×15 102.7 0 to 50% 100.0	29.8 27.7 25.7 8×20 103.0 depending 100.0	30.5 28.4 26.4 26.4 10×10 102.5 ng upon 100.0	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0	27.9 25.9 10×20 103.4 or 100.0	28.7 26.7 15×15 103.7	29.3 27.3 15×20 104.1 100.0	30.2 28.2 20×20 104.6	30.7
17 18 19 20 Depth in cm * 0 0.5 1	8×8 102.1 Surface 100.0 98.1	28.8 26.7 24.7 8×10 102.8 e dose 30 100.0 98.3	29.4 27.3 25.3 8×15 102.7 0 to 50% 100.0 98.5	29.8 27.7 25.7 8×20 103.0 dependin 100.0 98.5	30.5 28.4 26.4 26.4 10×10 102.5 ng upon 100.0 98.6	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8	27.9 25.9 10×20 103.4 or 100.0 98.8	28.7 26.7 15×15 103.7 100.0 99.0	29.3 27.3 15×20 104.1 100.0 98.9	20×20 104.6 100.0 98.9	30.7
17 18 19 20 Depth in cm * 0 0.5 1	8×8 102.1 Surfac 100.0 98.1 93.3	28.8 26.7 24.7 8×10 102.3 e dose 30 100.0 98.3 93.6	29.4 27.3 25.3 8×15 102.7 1050% 100.0 98.5 93.9	29.8 27.7 25.7 8×20 103.0 dependi 100.0 98.5 93.9	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9	30.8 28.7 26.7 10×15 103.0 collimat 100.0 98.8 94.5	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3	28.7 26.7 15×15 103.7 100.0 99.0 94.6	29.3 27.3 15×20 104.1 100.0 98.9 94.6	30.2 28.2 20×20 104.6 100.0 98.9 94.7	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3	8×8 102.1 Surfac 100.0 98.1 93.3 88.5	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9	8×15 102.7 100.0 98.5 93.9 89.3	8×20 103.0 depending 100.0 98.5 93.9 89.3	30.5 28.4 26.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3	30.8 28.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8	28.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2	29.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4	8×8 102.1 Surface 100.0 98.1 93.3 88.5 83.7	28.8 26.7 24.7 8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 84.2	8×15 102.7 100.0 98.5 93.9 89.3 84.7	29.8 27.7 25.7 25.7 8×20 103.0 dependir 100.0 98.5 93.9 89.3 84.8	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7	30.8 28.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4	28.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9	29.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3	8×8 102.1 Surfac 100.0 98.1 93.3 88.5	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9	8×15 102.7 100.0 98.5 93.9 89.3	8×20 103.0 depending 100.0 98.5 93.9 89.3	30.5 28.4 26.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3	30.8 28.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8	28.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2	29.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surface 100.0 98.1 93.3 88.5 83.7 78.9	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 84.2 79.6 74.9	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6	8×20 103.0 dependin 100.0 98.5 93.9 89.3 84.8 80.3 75.8	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5	30.8 28.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6	28.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3	29.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7	20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5	8×8 102.1 Surface 100.0 98.1 93.3 88.5 83.7 78.9 74.2 69.5	8×10 102.3 e dosc 30 100.0 98.3 93.6 88.9 84.2 79.6 74.9 70.2	8×15 102.7 100.0 98.5 98.9 89.3 84.7 80.1 75.6 71.0	29.8 27.7 25.7 25.7 8×20 103.0 dependir 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.9 89.3 84.7 80.1 75.5 70.9	30.8 28.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2	28.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0	29.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8	8×8 102.1 Surface 100.0 98.1 93.3 88.5, 78.9 74.2 69.5 64.9	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 79.6 74.9 70.2 65.6	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5	8×20 103.0 dependid 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9	28.7 26.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5 69.3	20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9	8×8 102.1 Surfact 100.0 98.1 93.3 88.5 83.7 78.9 74.2 60.5	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 74.9 70.2 65.6 61.2	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5 62.1	8×20 103.0 dependir 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0	30.8 28.7 26.7 26.7 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7	28.7 26.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5 69.3 65.2	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8	8×8 102.1 Surface 100.0 98.1 93.3 88.5, 78.9 74.2 69.5 64.9	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 79.6 74.9 70.2 65.6	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5	8×20 103.0 dependid 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9	28.7 26.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5 69.3	20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surfact 100.0 98.1 93.3 88.5 83.7 78.9 74.2 69.5 64.9 60.5 56.3	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 79.6 74.9 70.2 65.6 61.2 57.0	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5 62.1 58.0	8×20 103.0 dependit 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6	30.5 28.4 26.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9	30.8 28.7 26.7 26.7 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7	28.7 26.7 26.7 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5 69.3 65.2 61.3 57.7	20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 62.3 58.7	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surfact 100.0 98.1 93.3 88.5 83.7 78.9 74.2 69.5 64.9 60.5 56.3	8×10 102.3 e dosc 30 100.0 98.3 93.6 88.9 84.2 79.6 74.9 70.2 65.6 61.2 57.0 53.1 49.5	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5 62.1 58.0 54.2 50.7	29.8 27.7 25.7 25.7 103.0 dependii 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 662.6 58.6 54.8 51.2	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 55.9	28.7 26.7 26.7 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1, 86.1, 87.7 73.5 65.2 61.3 57.7 54.3	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 62.3 58.7 55.3	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surface 100.0 98.1 93.3 88.5 83.7 78.9 74.2 69.5 64.9 60.5 56.3	28.8 26.7 24.7 8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 84.2 79.6 74.9 70.2 65.6 61.2 57.0 53.1 49.5 46.1	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5.1 58.0 54.2 50.7 47.3	8×20 103.0 dependin 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6 54.8 51.2 47.9	30.5 28.4 26.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3 47.0	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7 48.4	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 55.9 52.4 49.1	28.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4 50.2	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5 69.3 65.3 65.3 65.3 57.7 54.3 51.1	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 62.3 58.7 55.3 52.1	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surface 100.0 98.1 93.3 88.5 64.9 60.5 56.3 52.4 48.7 45.4 42.3	28.8 26.7 24.7 8×10 102.3 e dose 30 100.0 98.3 93.6 74.9 70.2 65.6 61.2 57.0 53.1 49.5 46.1 43.0	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5 62.1 58.0 54.2 50.7 47.3 44.2	8×20 103.0 dependin 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6 54.8 51.2 47.9 44.8	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3 47.0 43.9	30.8 28.7 26.7 26.7 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7 48.4 45.3	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 55.9 55.9 49.1 46.0	28.7 26.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4 50.2 47.1	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5 69.3 65.2 61.3 57.7 54.3 51.1 48.1	20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 62.3 58.7 55.3 52.1 49.1	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10	8×8 102.1 Surface 100.0 98.1 93.3 88.5 83.7 78.9 74.2 69.5 64.9 60.5 56.3	28.8 26.7 24.7 8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 84.2 79.6 74.9 70.2 65.6 61.2 57.0 53.1 49.5 46.1	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5.1 58.0 54.2 50.7 47.3	8×20 103.0 dependin 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6 54.8 51.2 47.9	30.5 28.4 26.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3 47.0	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7 48.4	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 55.9 52.4 49.1	28.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4 50.2	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7 73.5 69.3 65.3 65.3 65.3 57.7 54.3 51.1	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 62.3 58.7 55.3 52.1	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8×8 102.1 Surfac 100.0 98.1 93.3 88.5 83.7 78.9 74.2 69.5 64.9 60.5 56.3 52.4 48.7 45.4 42.3 39.4	8×10 102.3 e dose 30 100.0 98.3 93.6 88.9 84.2 79.6 74.9 70.2 65.6 61.2 57.0 53.1 49.5 46.1 43.0 40.1	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5 62.1 58.0 54.2 50.7 47.3 44.2 41.3 38.6	8×20 103.0 depending 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6 58.6 51.2 47.9 44.8 41.9 39.2	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3 47.0 43.9 41.0 38.3	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7 48.4 45.3 42.4 39.7	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 59.7 59.7 40.0 43.1 40.4	28.7 26.7 26.7 15×15 103.7 100.0 99.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4 50.2 47.1 44.2 41.5	29.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27	20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 62.3 58.7 55.3 52.1 49.1 46.2 43.5	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8×8 102.1 Surface 100.0 98.1 93.3 88.5 64.9 60.5 56.3 52.4 48.7 42.3 39.4 36.7 34.2	28.8 26.7 24.7 8×10 102.3 e dose 30 100.0 98.3 93.6 74.9 70.2 65.6 61.2 57.0 53.1 49.5 46.1 43.0 40.1 37.4 34.9	8×15 102.7 100.0 98.5 93.9 84.7 80.1 75.6 71.0 66.5 62.1 58.0 54.2 41.3 38.6 36.1	8×20 103.0 dependin 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6 54.8 51.2 47.9 44.8 41.9	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3 47.0 43.9 41.0 38.3 35.8	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7 48.4 45.3 42.4 39.7 37.2	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 55.9 52.9 44.1 46.0 43.1	28.7 26.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4 47.1 44.2 41.5 39.0	29.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 58.7 55.1 49.1 46.2 43.5 41.0	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8×8 102.1 Surfact 100.0 98.1 93.3 88.5 83.7 74.2 69.5 64.9 60.5 56.3 52.4 48.7 45.4 42.3 36.7 34.2 31.9	8×10 102.3 e dosc 30 100.0 98.3 93.6 65.6 61.2 57.0 53.1 49.5 46.1 43.0 40.1 37.4 34.9 32.6	8×15 102.7 100.0 98.5 93.9 89.3 84.7 80.1 75.6 71.0 66.5 62.1 58.0 54.2 50.7 47.3 38.6 36.1 33.8	8×20 103.0 dependin 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6 54.8 51.2 47.9 44.9 41.9	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3 47.0 43.9 41.0	30.8 28.7 26.7 10×15 103.0 collimat 100.0 98.8 94.3 89.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7 48.4 45.3 42.4 39.7 37.2 34.9	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 55.9 52.4 49.1 46.0 43.1 40.4 37.9 35.6	28.7 26.7 26.7 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4 50.2 47.1 44.2 41.5 39.0 36.7	29.3 27.3 27.3 15×20 104.1 100.0 98.9 94.6 90.3 86.1 81.9 77.7. 73.5 69.3 65.2 61.3 57.7 54.3 51.1 48.1 45.2 42.5 40.0 37.6	20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 62.3 58.7 55.3 52.1 49.1 46.2 43.5 41.0 38.6	30.7
17 18 19 20 Depth in cm * 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8×8 102.1 Surface 100.0 98.1 93.3 88.5 64.9 60.5 56.3 52.4 48.7 42.3 39.4 36.7 34.2	28.8 26.7 24.7 8×10 102.3 e dose 30 100.0 98.3 93.6 74.9 70.2 65.6 61.2 57.0 53.1 49.5 46.1 43.0 40.1 37.4 34.9	8×15 102.7 100.0 98.5 93.9 84.7 80.1 75.6 71.0 66.5 62.1 58.0 54.2 41.3 38.6 36.1	8×20 103.0 dependin 100.0 98.5 93.9 89.3 84.8 80.3 75.8 71.3 66.9 62.6 58.6 54.8 51.2 47.9 44.8 41.9	30.5 28.4 26.4 10×10 102.5 ng upon 100.0 98.6 93.9 89.3 84.7 80.1 75.5 70.9 66.4 62.0 57.8 53.9 50.3 47.0 43.9 41.0 38.3 35.8	30.8 28.7 26.7 26.7 10×15 103.0 collimat 100.0 98.8 94.8 85.3 80.8 76.3 71.8 67.4 63.1 59.0 55.2 51.7 48.4 45.3 42.4 39.7 37.2	27.9 25.9 10×20 103.4 or 100.0 98.8 94.3 89.8 85.4 81.0 76.6 72.2 67.9 63.7 59.7 55.9 52.9 44.1 46.0 43.1	28.7 26.7 26.7 15×15 103.7 100.0 99.0 94.6 90.2 85.9 81.6 77.3 73.0 68.7 64.5 60.6 56.9 53.4 47.1 44.2 41.5 39.0	29.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27	30.2 28.2 20×20 104.6 100.0 98.9 94.7 90.5 86.3 82.2 78.1 74.0 70.0 66.1 58.7 55.1 49.1 46.2 43.5 41.0	30.7

^{*}The first line gives the dose at the maximum for 100 r of primary.

Characteristics of some important (a, n) sources

Sources	Half-life	Maximum neutron energy	Average neutron energy	Yield	Remarks
Po ³¹⁰ -Li Po ³¹⁰ -Be RaDEF-Be Ra-Be Em ³¹¹ -Be Ac ³²⁷ -Be	138.40d 138.40d 19.4y 1622y 3.825d 24,400y 21.8y	Mev 1.32	Mev 0.48 4.2 4.5 - 3.9 - 4.5 4.6	n/sec×10 ⁻⁴ .05 .05 .2.5 .2.5 .15	Po-Be with a long half-life. Made by irradiat- ing radium in
Poss.Be RaBeF ₄	2.93y 1622y	10.71		2.53	reactor. Proposed std
Po ²¹⁰ -B	138.40d 1622y	B ¹⁰ 6.29, B ¹¹ 4.48, B ¹⁰ 8.58, B ¹¹		0.6 7	source. Relatively mono- energetic.
Posis.Na Am ²⁴¹ -Be	138.40d 138.40d 462y	7.25. 2.8 4.45	1.4	0.2	Suggested for sto-
Cm ³⁴³ -Be Mock fission b	162.5d 138.40d	10.87	1. 6	0.4	ichiometric std source.

Characteristics of some important (γ,n) sources

Sources	Half-life	Eγ	E.	Stand- ard yield •	Actual source yield b
Na ³⁴ +Be Na ³⁴ +D ₂ O Ga ⁷² +Be Y ⁸⁴ +Be In ¹⁸⁴ +Be Sb ¹³⁴ +Be La ¹⁸⁴ +Be RdTh+D ₂ O MsTh+Be MsTH+D ₄ O Ra+Be	14. 8h 14. 8h 14. 1h 87d 54m 60d 40d 1. 90y 6. 7y 6. 7y 1622y	2.76. 2.76. 1.87, 2.21, 2.51. 1.8, 2.8. 1.8, 2.1. 1.7. 2.50. 2.62 (ThO") 1.80, 2.62. 2.62 (ThO") 1.69, 1.75, 1.82, 2.09, 2.20, 2.42.	Mes 0.83. 0.22. (0.78). 0.158±0.005. 0.30. 0.024±0.003. 0.622. 0.197±0.010. 0.827±0.030. 0.197±0.010. 0.7 max.	13 27 5 10 0.82 19 0.3 9.5 3.5 9.5	1.6 • 1.2 • 1.2 1.3

^{*}This is the neutron yield x 10-4 for a 1-curie gamma source with 1 g of target material placed 1 cm away from the gamma source.

bloom/sec-curie.

NOTE: All photoneutron sources possess intense gamma-ray backgrounds of at least 103 gamma rays per neutron.

Characteristics of some important spontaneous fission neutron sources

Nuclide	Half-life (SF)	Half-life (\alpha decay)	Alphas per fission •	Neutrons per fission	Neutrons per g sec
U222 Pu226 U226 Pu226 Pu226	8×10 ¹³ y 3.5×10 ⁴ y 8.3×10 ¹³ y 4.9×10 ¹⁰ y 1.3×10 ¹¹ y	74y	(1.1×10 ¹² 6.5×10 ¹² , after aging, with 1.9 yr half-life 1.3×10 ⁶ 1.8×10 ⁶ 5.5×10 ⁹	1.9 2.0 2.1	3.1×10 ⁴ 2.3×10 ⁸ 7.0×10 ³
Pu ^{M2} Cm ^{M2} Cm ²⁴⁴ Cf ²⁴⁶ Cf ²⁴⁶	7.2×10 ¹⁶ y 7.2×10 ⁶ y 1.4×10 ⁷ y 66y 60d	3.8×10 ⁴ y 162.5d 18.4y 2.2y 60d	1.9×10 ⁴ 1.6×10 ⁷ 7.6×10 ⁴ 30. ~0.	2.3 2.3 2.6 3.5	1.8×10 ⁶ 1.0×10 ⁷ 2.6×10 ¹³

^{*}The number of alphas/fission is an inverse "figure of merit." A source with a low number of alphas per fission has relatively many fissions and the neutron spectrum is not likely to be contaminated with (a ,n) neutrons.

Data for tables from NBS Handbook No. 72.

 $^{^{\}bullet}$ Ms-Th and Rd-Th sources emit some neutrons through (α,n) reactions with light elements in the carrier and container walls.

PERSONNEL DECONTAMINATION

Method*	Surface	Action	Techníque	Advantages	Disadvantages
Soap and water	Skin and hands	Emulsifies and dissolves contam-inate.	Wash 2-3 minutes and monitor. Do not wash more than 3-4 times.	Readily available and effective for most radioactive contamination.	Continued washing will defat the skin. Indiscriminate washing of other than affected parts may spread contamination.
Soap and water	Hair	Same as above.	Wash several times. If contamination is not lowered to acceptable levels, shave the head and apply skin decontamination methods.		
Lava soap, soft brush, and water	Skin and hands	Emulsifies, dissolves, and erodes.	Use light pressure with heavy lather. Wash for 2 minutes, 3 times. Rinse and monitor. Use care not to scratch or erode the skin. Apply lanolin or hand cream to prevent chapping.	Same as above.	Continued washing will abrade the skin.
Tide or other detergent (plain)	Same as above.	Same as above.	Make into a paste. Use with additional water with a mild scrubbing action. Use care not to erode the skin.	Slightly more effective than washing with soap.	Will defat and abrade skin and must be used with care.
*Begin with the fir	first listed method and	1	then proceed step by step to the more	severe methods,	as necessary.

Method*	Surface	Action	Technique	Advantages	Disadvantages
Mixture of 50% Tide and 50% corn- meal	Skin and hands	Emulsifies, dissolves, and erodes.	Make into a paste. Use with addi- tional water with a mild scrubbing action. Use care not to erode the skin.	Slightly more effective than washing with soap.	Will defat and abrade skin and must be used with care.
5% water solution of a mixture of 30% Tide, 65% Cal- gon, 5% Carbose (carboxymethyl cellulose)	Same as above.	Same as above.	Use with water. Rub for a minute and rinse.	Same as above.	Same as above.
A preparation of 8% Carbose, 3% Tide, 1% Versene, and 88% water homogenized into a cream.	Same as above.	Same as above.	Use with additional water. Rub for 1 minute and wipe off. Follow with lanolin or hand cream.	Same as above.	Same as above.
Titanium dioxide paste. Prepare paste by mixing precipitated tita- nium dioxide (a very thick slurry, never permitted to dry) with a small amount of lanolin. If not successful, go on to next step.	Skin, hands, and extremities. Do not use near face or other body openings.	Same as above.	Work the paste into the affected area for 2 minutes. Rinse and wash with soap and warm water. Monitor.	Removes contami- nation lodged under scaly sur- face of skin. Good for heavy surface contami- nation of skin.	If left on too long will remove skin.
with the first listed method and	st listed method an	1 _	then proceed step by step to the more	severe methods,	as necessary.

Method*	Surface	Action	Technique	Advantages	Disadvantages
Mix equal volumes of a saturated solution of potassium permanganate and 0.2 N sulfuric acid. (Saturated solution of KMnO ₄ is 6.4 grams per 100 ml of H ₂ O.) Continue with next step.	Skin, hands, and extremities. Do not use near face or other body openings.	Dissolves contami- nant absorbed in the epidermis.	Pour over wet hands, rubbing the surface and using hand brush for not more than 2 minutes. Rinse with water.	Superior for skin contamination. May be used in conjunction with titanium oxide.	Will remove a layer of skin if in contact with the skin for more than 2 minutes.
Apply a freshly prepared 5% solution of sodium acid sulfite. (Solution made by dissolving 5 gm of NaHSO ₃ crystals in 100 ml distilled water.)	Same as above.	Removes the per- manganate stain.	Apply in same manner as above. Apply for not more than 2 minutes. The above procedure may be repeated. Apply lanolin or hand cream when completed.		Same as above.
Flushing	Eyes, ears, nose, and mouth	Physical removal by flushing.	ck the eye- far as pos- flush with mounts of If iso- rrigants ilable, ob- em without Apply to tinually n flush rge amounts	If used immedi- ately will remove contamination. May also be used for ears, nose, and throat.	When using for nose and mouth, contaminated individual should be warned not to swallow the rinses.
*Begin with the first listed method	st listed method and	then proceed step	by step to the more	severe methods,	as necessary.

Method*	Surface	Action	Technique	Advantages	Disadvantages
Flushing (Cont'd)			(Isotonic irri- gant [0.9% NaCl solution]: 9 grams NaCl in beaker, fill to 1000 cc with water.) Can be purchased from drug suppliers, etc. Further decontami- nation should be		
Flushing	Wound s	Physical removal by flushing.	done under medical supervision. Wash would with large amounts of water and spread edges to stimulate bleeding, if not profuse. If pro-	Quick and effi- cient if wound not severe.	May spread contamination to other areas of body if not done carefully.
			inse, stop bleed- ing first, clean edges of wound, bandage, and if any contamination remains, it may be removed by normal cleaning methods, as above.		
Sweating	Skin of hands and feet	Physical removal by sweating.	Place hand or foot cleansing action in plastic glove is from inside or booty. Tape out. Hand does shut. Place near not dry out. source of heat for 10-15 minutes or	Cleansing action is from inside out. Hand does not dry out.	If glove or booty is not removed shortly after profuse sweating starts and part washed with soap
4 *Begin with the first listed method	/ st listed method and	d then proceed step by	by step to the more	step to the more severe methods, as necessary.	s necessary.

AREA AND MATERIAL DECONTAMINATION

Method*	Surface	Action	Technique	Advantages	Disadvantages
Vacuum cleaning	Dry surfaces	Removes contami- Use conventional nated dust by suc- vacuum technique tion.		Good on dry, porous All dust must be surfaces. Avoids filtered out of water reactions.	All dust must be filtered out of exhaust. Machine
			filter.		is contaminated.
Water	All nonporous sur-	Dissolves and	es		Drainage must be
	faces (metal,	erodes.	Hose with high-	ment may be uti-	controlled. Not
	painted, plastic,		pressure water at	lized. Allows	suitable for po-
	etc.).		an optimum dis-	operation to be	rous materials.
			_		Oiled surfaces
			feet. Spray ver-	a distance. Con-	cannot be decon-
			tical surfaces at	tamination may be	taminated. Not
			_	reduced by 50%.	applicable on dry
			dence of 30° to	Water equipment	contaminated sur-
			40°; work from top may be used for	may be used for	faces (use vacu-
			to bottom to avoid	to bottom to avoid solutions of other um); not appli-	um); not appli-
				decontaminating	cable on porour
			Work upwind to	agents.	surfaces such as
			avoid spray.		wood, concrete,
Ponta the finat	at linted method and	1 -1 -1		-	

AREA AND MATERIAL DECONTAMINATION -- Continued

Method*	Surface	Action	Technique	Advantages	Disadvantages
Water (Cont'd)			Determine cleaning rate experimentally, if possible; otherwise, use a rate of 4 square feet per minute.		canvas, etc. Spray will be contami- nated.
	All surfaces	Dissolves and erodes.	For small surfaces Blot up liquid and handwipe with wa- ter and appropriate commercial de-	Extremely effective if done immediately after spill and on nonporous surfaces.	Of little value in the decontamina-tion of large areas, longstanding contaminants and porous surfaces.
Steam	Nonporous surfaces (especially pain- ted or oiled sur- faces).	Dissolves and erodes.	Work from top to bottom and from upwind. Clean surface at a rate of 4 square feet per minute. The cleaning efficiency of steam will be greatly increased by using detergents.	Contamination may be reduced approx-imately 90% on painted surfaces.	Steam subject to same limitations as water. Spray hazard makes the wearing of waterproof outfits necessary.
Detergents	Nonporous surfaces (metal, painted, glass, plastic, etc.).	Emulsifies contaminant and increases wetting power of water and cleaning efficiency of steam.	Rub surface 1 min- ute with a rag moistened with de- tergent solution then wipe with dry ination. Contam- rag; use clean surface of the rag duced by 90%. for each applica- tion. Use a power rotary brush with	E 0 1	May require personal contact with surface. May not be efficient on longstanding contamination.

S*Begin with the first listed method and then proceed step by step to the more severe methods, as necessary.

AREA AND MATERIAL DECONTAMINATION -- Continued

Disadvantages		tion for 5 to 30 minutes. Little penetrating power of small value on weathered surfaces.	s necessary.
Advantages	Holds contamina-	Contamination may be reduced by 75% in 4 minutes on unweathered sur- faces. Easily stored; carbonates and citrates are nontoxic, noncor- rosive.	severe methods, as
Technique	pressure feed for more efficient cleaning. Apply solution from a distance with a pressure proportioner. Do not allow solution to drip onto other surfaces. Mist application is all that is necessary.	solution should contain 3% (by weight) of agent. Spray surface with solution. Keep surface moist 30 minutes by spraying with solution periodically. After 30 minutes, flush material off with water. Complexing agents may be used on vertical and overhead surfaces by adding chemical foam (sodium carbonate or aluminum sulfate).	by step to the more
Action	Forms soluble com-	plexes with contaminated material.	then proceed step
Surface	Nonporous surfaces	(especially un- weathered sur- faces; i.e., no rust or calcareous growth).	first listed method and
Method*	Detergents (Cont'd) Complexing agents		*Begin with the firs

AREA AND MATERIAL DECONTAMINATION -- Continued

Method*	Surface	Action	Technique	Advantages	Disadvantages
Organic solvents	Nonporous surfaces (greasy or waxed surfaces, paint or plastic finishes, etc.).	Dissolves organic materials (oil, paint, etc.).	Immerse entire unit in solvent or apply by wiping procedure (see Detergents).	Quick dissolving action. Recovery of sovlent possible by distillation.	Requires good ventilation and fire precautions. Toxic to personnel. Material bulky.
Inorganic acids	Metal surfaces (especially with porous deposits; i.e., rust or cal- careous growth); circulatory pipe systems.	Dissolves porous deposits.	Use dip-bath pro- cedure for movable on metal and po- items. Acid should rous deposits. be kept at a con- centration of 1 to may be moderated 2 normal (9 to 18% by addition of hydrochloric, 3 to corrosion inhibi- 6% sulfuric acid). tors to solution. Leave on weathered surfaces for 1 hour. Flush sur- face with water, scrub with a wa- ter-detergent sol- ution, and rinse. Leave in pipe cir- culatory system 2 to 4 hours; flush with plain water, a water-detergent solution, then again with plain	Corrosive action on metal and po- rous deposits. Corrosive action may be moderated by addition of corrosion inhibi- tors to solution.	Personal hazard. Wear goggles, rubber boots, gloves, and aprons. Good ventilation required because of toxicity and explosive gases. Acid mixtures should not be heated. Possibilty of excessive corrosion if used without inhibitors. Sulfuric acid not effective on calcareous deposits.
Acid mixtures: hydrochloric, sulfuric, acetic, citric acids, acetates, citrates citrates citrates citrates	Nonporous surfaces (especially with porous deposits); circulatory pipe systems.		eposits. ganic acids. A reduced by 90% in may require typical mixture consist of 0.1 gal. hydrochloric acid. 0.2 lb sodi- um acetate and l ic acid solution. ic acids. then proceed step by step to the more severe methods, as necessary.	Contamination may reduced by 90% in 1 hour (unweathered surfaces). More easily handled than inorgantic acid solution.	Weathered surfaces may require pro- longed treatment. Same safety pre- cautions as re- quired for inorgan- ic acids.

AREA AND MATERIAL DECONTAMINATION--Continued

Method*	Surface	Action	Technique	Advantages	Disadvantages
Acid mixtures (Cont'd)			gal. water		
Caustics: lye (sodium hydroxide) calcium hydroxide potassium hydroxide	Painted surfaces (horizontal).	Softens paint (harsh method).	Allow paint-remover solution to remain on surface until paint is softened to the point where it may be washed off with water. Remove remaining paint with long-handled scrapers. Typical paint remover solution: 10 gal. water, 4 lb lye, 6 lb boiler compound, 0.75 lb cornstant.	Minimum contact with contaminated surfaces. Easily stored.	Personal hazard (will cause burns). Reaction slow; thus, it is not efficient on vertical or overhead surfaces. Should not be used on aluminum or magnesium.
Trisodium phosphate	Painted surfaces (vertical, over- head).	Softens paint (mild method).	Apply hot 10% so- Contamination may lution by rubbing be reduced to tol and wiping pro- erance in one or cedure (see Deter- two applications. gent).	Contamination may be reduced to tolerance in one or two applications.	Destructive effect on paint. Should not be used on aluminum or mag- nesium.
Abrasion	Nonporous surfaces, Removes surface.	Removes surface.	Use conventional procedures, such as sanding, filing, and chipping; keep surface damp to avoid dust hazard,	conventional Contamination may be reduced to as sanding, filing, low a level as dechipping; keep sired. face damp to addust hazard.	Impracticable for porous surfaces because of penetration by moisture.
	onporus surface	∞ I	Keep sand wet to lessen spread of contamination.	Practical for large surface areas.	Contamination spread over area must be removed.
*begin with the first	st listed method and		then proceed step by step to the more severe methods,	severe methods, as	as necessary.

AREA AND MATERIAL DECONTAMINATION -- Continued

Method*	Surface	Action	Technique	Advantages	Disadvantages
Sandblasting (Cont'd)			Collect used abrasive or flush away with water.		Contaminated dust is personnel hazard.
Vacuum blasting	Porous and non- porous surfaces.	Removes surface; traps and controls contaminated waste.	Removes surface; Hold tool flush to Contaminated waste Contamination of traps and controls surface to prevent ready for disposal equipment. Contaminated escape of contam method.	Contaminated waste ready for disposal. Safest abrasion method.	Contamination of equipment.
*Begin with the first listed method and	st listed method and	d then proceed step	then proceed step by step to the more severe methods, as necessary.	severe methods, as	s necessary.

RULES OF THUMB

Alpha Particles

- 1. It requires an alpha particle of at least 7.5 MeV to penetrate the protective layer of the skin, 0.07 mm thick.
- 2. With 2π geometry, the surface of a thick source of tuballoy will give about 2,400 alpha cpm/cm²; plutonium will give about 70,000 alpha cpm/ μ g; 16.2 g of 239 Pu has an activity of 1 Ci.

Beta Particles

- 1. When working with ¹⁹⁸Au, experience has shown that under certain conditions, the beta dose will be five times the gamma value. Therefore, only ¹/₆ of the total dose will be recorded by gamma dosimeters.
- 2. It requires a beta particle of at least 70 keV to penetrate the protective layer of the skin, 0.07 mm thick.
- 3. The range (R) of beta particles in g/cm^3 (thickness in cm multiplied by the density in g/cm^3) is approximately equal to the maximum energy (E) in MeV divided by 2 (i.e., $R \cong E/2$).
- 4. The range of beta particles in air is about 12 ft per MeV; for example, a 3 MeV beta has a range of about 36 ft in air.
- 5. A chamber wall thickness of 30 mg/cm² will reduce a flux of 1 MeV (max.) betas by 30% and a flux of 0.4 MeV betas by a factor of 4 or 5.
- The intensity of bremsstrahlung increases approximately with the energy of the beta particle and about the square of the atomic number of the absorbing material.
- 7. When betas of 1 to 2 MeV pass through light materials such as water, aluminum, or glass, less than 1% of their energy is dissipated as bremsstrahlung.
- 8. The bremsstrahlung from 1 Ci ³²P aqueous solution in a glass bottle is about 1 mR/hr at 1 meter.
- 9. When the beta particles from a 1 Ci source of ⁹⁰Sr-⁹⁰Y are absorbed, the bremsstrahlung hazard is approximately equal to that presented by the gamma from 12 mg of radium. The average energy of the bremsstrahlung is about 300 keV.
- 10. For a point source of beta radiation (neglecting self- and air-absorption) of strength Ci curies, the dose rate at 1 ft is approximately equal to 300 Ci rads/hr. The variation with energy is small over a wide range.
- 11. Beta-ray surface dose rates with 7 mg/cm2 filter:

Source		mrads/hr
U slug		. 233
UO ₂ (brown oxide)		. 207
UF4 (green salt)		. 179
UO2 (NO3)2.6H2O (yellow uranyl nitrate hexahydrate)		. 111
UO ₃ (orange oxide)		. 204
U_3O_8 (black oxide)		. 203
$U_{2}F_{2}$ (cliptite or uranyl fluoride)	•	. 176
$Na_2U_2O_7$ (soda salt or sodium diuranate)		. 167

Gamma Rays

- The air-scattered radiation (sky-shine) from a 100 Ci ⁶⁰Co source place 1 ft behind a 4-ft-high shield is about 100 mrads/hr at 6 ft from the outside of the shield.
- 2. Within $\pm 20\%$ for point source gamma emitters with energies between 0.07 and 4 MeV, the exposure rate (R/hr) at 1 ft is 6CE, where C is the number of curies and E the energy in MeV.

Neutrons

1. An approximate HVL for 1-MeV neutrons is 1.26 in. (3.2 cm) of paraffin; 2.72 in. (6.93 cm) for 5-MeV neutrons.

<u>Miscellaneous</u>

- 1. The activity of any radionuclide is reduced to less than 1% after 7 half-lives (i.e., $2^{-7} = 0.8\%$).
- 2. For material with a half-life greater than six days, the change in activity in 24 hours will be less than 10%.
- 3. For ⁹⁰Sr-⁹⁰Y in equilibrium, 5,000 cpm is equal to 1 mrem/hr when using a beta-gamma probe with a 30 mg/cm² tube.
- 4. There is 0.64 mm3 of radon gas in transient equilibrium with 1 Ci of radium.
- 5. The exposure rate from fission products at any time (t) can be represented by: R/unit time = $I \cdot t^{-1 \cdot 2}$, where I is the exposure rate at unit time, and t is in the same time units.

Taken from: Los Alamos Handbook of Radiation Monitoring, LA-1835 (3rd ed.); Health Physics Handbook - General Dynamics, OSP-379 (April 1963); and AERE, HP/L23.

		Maximum	Max	dimum permi	ssible concent	rations
Radionuclide and type of decay	Organ of reference (critical organ in boldface)	permissible burden in total body		hour week	For 168 h	our week**
·		q(µc)	(MPC) _w	(MPC) _α μc/cc	(MPC) _w μc/cc	(MPC) _a µc/cc
1H³(HTO or H¾O)(β⁻) (Sol)	Body Tissue Total Body	10 ⁸ 2×10 ⁸	0.1 0.2	5×10-6 8×10-6	0.03 0.05	2×10 ⁻⁶ 3×10 ⁻⁶
(H_2^3) (Immersion)	Skin			_ 2×10 ⁻⁸		4×10-4
$_6\mathrm{C}^{14}(\mathrm{CO}_2)(oldsymbol{eta}^-)$ (Sol) (Immersion)	Bone	400	0.02 0.03 0.04	4×10-6 5×10-6 6×10-6	8×10 ⁻³ 0.01 0.01	10-6 2×10-6 2×10-6
,				5×10-5		. 10-5
$_{15}P^{32}~(eta^{-})$ (Sol)	Total Body GI (LLI) Liver Brain	30	$ \begin{array}{c c} 5 \times 10^{-4} \\ 3 \times 10^{-3} \\ 3 \times 10^{-3} \\ 5 \times 10^{-3} \\ 0.02 \end{array} $	$ \begin{array}{c cccc} 7 \times 10^{-8} \\ 4 \times 10^{-7} \\ 6 \times 10^{-7} \\ 6 \times 10^{-7} \end{array} $	2×10 ⁻⁴ 9×10 ⁻⁴ 9×10 ⁻⁴ 2×10 ⁻³	$ \begin{array}{c} 2 \times 10^{-8} \\ 10^{-7} \\ 2 \times 10^{-7} \\ 2 \times 10^{-7} \end{array} $
(Insol)	I (I nad		7×10-4	$ \begin{array}{c c} 3 \times 10^{-6} \\ 8 \times 10^{-8} \\ 10^{-7} \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} 10^{-6} \\ 3 \times 10^{-8} \\ 4 \times 10^{-8} \end{array} $
$_{20}{ m Ca}^{45}~(eta^-)$ (Sol)	Bone	30 200	3×10^{-4} 2×10^{-3}	3×10 ⁻⁸ 3×10 ⁻⁷	9×10 ⁻⁵ 7×10 ⁻⁴	10 ⁻⁸ 9×10 ⁻⁸
(Insol)	LungGI (LLI)	l	0.01 5×10-3	$\begin{array}{c} 3 \times 10^{-6} \\ 10^{-7} \\ 9 \times 10^{-7} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{vmatrix} 10^{-6} \\ 4 \times 10^{-8} \\ 3 \times 10^{-7} \end{vmatrix} $
$_{24}\mathrm{Cr}^{51}$ $(\epsilon,~\gamma)$ (Sol)	GI (LLI) Total Body Lung Prostate Thyroid Kidney Lung CI (LLI)	800 10^{3} 2×10^{3} 4×10^{3} 8×10^{3}	0.05 0.6 1 2 3 6	10 ⁻⁵ 10 ⁻⁵ 2×10 ⁻⁵ 3×10 ⁻⁵ 6×10 ⁻⁵ 10 ⁻⁴ 2×10 ⁻⁶ 8×10 ⁻⁶	0.02 0.2 0.4 0.5 1 2	4×10 ⁻⁶ 4×10 ⁻⁶ 8×10 ⁻⁶ 10 ⁻⁵ 2×10 ⁻⁵ 4×10 ⁻⁵ 8×10 ⁻⁷ 3×10 ⁻⁶
$_{27}{ m Co}^{60}~(eta^-,~m{\gamma})$	(GI (LLI)		10-3	3×10-7	5×10-4	10-7
(Sol)	Total Body Pancreas Liver Spleen Kidney Total Body Pancreas Total Body Pancreas Pancreas	200 l	4×10 ⁻³ 0. 02 0. 03 0. 05 0. 07	$\begin{array}{c} 4 \times 10^{-7} \\ 2 \times 10^{-6} \\ 10^{-6} \\ 4 \times 10^{-6} \\ 6 \times 10^{-6} \end{array}$	10 ⁻³ 7×10 ⁻³ 9×10 ⁻³ 0. 02 0. 03	$ \begin{array}{c cccc} $
(Insol)	GI (LLI)		10-3	9×10 ⁻⁶ 2×10 ⁻⁷	3×10-4	3×10 ⁻⁶ 6×10 ⁻⁸
$_{30}\mathrm{Zn^{65}}(eta^{+},\;\epsilon,\;\gamma)$ (Sol)	Total Body Prostate Liver Kidney GI (LLI) Pancreas	60 70 80 100	3×10^{-3} 4×10^{-8} 4×10^{-8} 4×10^{-8} 6×10^{-3} 6×10^{-3} 7×10^{-3}	10 ⁻⁷ 10 ⁻⁷ 10 ⁻⁷ 2×10 ⁻⁷ 10 ⁻⁶ 3×10 ⁻⁷	10 ⁻³ 10 ⁻³ 10 ⁻³ 2×10 ⁻³ 2×10 ⁻³ 3×10 ⁻³	4×10^{-8} 4×10^{-8} 5×10^{-8} 7×10^{-8} 4×10^{-7} 9×10^{-8}
(Insol)	Muscle_ Ovary_ Testis Bone_ Lung GI (LLI)	200 300 400 700	0.01 0.01 0.02 0.04 5×10 ⁻³	4×10^{-7} 5×10^{-7} 6×10^{-7} 10^{-6} 6×10^{-8} 9×10^{-7}	$ \begin{array}{c} 4 \times 10^{-3} \\ 4 \times 10^{-3} \\ 6 \times 10^{-3} \\ 0.01 \end{array} $	10^{-7} 2×10^{-7} 2×10^{-7} 2×10^{-7} 4×10^{-7} 2×10^{-8} 3×10^{-7}
$_{33}\mathrm{As^{76}}\ (\beta^{-},\ \gamma)$ (Sol)	GI (LLI) Total Body Kidney	20 20	6×10-4 0.4 0.6	10 ⁻⁷ 5×10 ⁻⁶ 8×10 ⁻⁶	2×10 ⁻⁴ 0.1 0.2	4×10^{-8} 2×10^{-6} 3×10^{-6}
(Insol)	Liver GI (LLI) Lung		1 6×10-4	10 ⁻⁵ 10 ⁻⁷ 6×10 ⁻⁷	0.4 2×10-4	5×10^{-6} 3×10^{-8} 2×10^{-7}

^{*}The abbreviations GI, S, SI, ULl, and LLI refer to gastrointestinal tract, stomach, small intestines, upper large intestine, and lower large intestine, respectively.

**It will be noted that the MPC values for the 168-hour week are not always precisely the same multiples of the MPC for the 40-hour week. Part of this is caused by rounding off the calculated values to one digit, but in some instances it is due to technical differences discussed in the ICRP report. Because of the uncertainties present in much of the biological data and because of individual variations, the differences are not considered significant. The MPC values for the 40-hour week are to be considered as basic for occupational exposure, and the values for the 168-hour week are basic for continuous exposure as in the case of the population at large.

,		Maximum	Maxi	mum permiss	sible concentr	ations
Radionuclide and type of decay	Organ of reference (critical organ in boldface)	permissible burden in total body	For 40 h	our week	For 168 h	our week**
		q(µc)	(MPC) w µc/cc	(MPC) a µc/cc	(MPC) w µc/cc	(MPC) a µc/cc
₃₈ Sr ⁸⁰ (β ⁻) (S	Bone GI (LLI) Total Body	40	3×10 ⁻⁴ 10 ⁻³ 2×10 ⁻³	3×10 ⁻⁸ 3×10 ⁻⁷ 2×10 ⁻⁷	10-4 4×10-4 7×10-4	10 ⁻⁸ 9×10 ⁻⁸ 6×10 ⁻⁸
(Ins	(GI (LLI)		8×10-4	4×10 ⁻⁸	3×10-4	10 ⁻⁸ 5×10 ⁻⁸
₃₈ Sr ⁶⁰ (β ⁻) (S	GI (LLI)	20	4×10-6 10-5 10-3	3×10 ⁻¹⁰ 9×10 ⁻¹⁰ 3×10 ⁻⁷ 5×10 ⁻⁹	10 ⁻⁶ 4×10 ⁻⁶ 5×10 ⁻⁴	10 ⁻¹⁰ 3×10 ⁻¹⁰ 10 ⁻⁷ 2×10 ⁻⁹
(Ins	GI (LLI)		10-8	2×10-7	4×10-4	6×10-8
$_{40}{ m Zr^{95}}~(eta^-,~\gamma,~{ m e^-})$ (S	ol) (GI (LLI) Total Body Bone Kidney Liver Spleen	20 30 30 40	2×10 ⁻³ 3 4 4 6 7	$\begin{array}{c c} 4 \times 10^{-7} \\ 10^{-7} \\ 2 \times 10^{-7} \\ 2 \times 10^{-7} \\ 3 \times 10^{-7} \\ 3 \times 10^{-7} \end{array}$	6×10 ⁻⁴ 1 2 2 2 2	$ \begin{array}{c c} 10^{-7} \\ 4 \times 10^{-8} \\ 6 \times 10^{-8} \\ 6 \times 10^{-8} \\ 9 \times 10^{-8} \\ 10^{-7} \end{array} $
(Ins	/ T 22 m et	.	2×10-3	3×10^{-8} 3×10^{-7}	6×10-4	10 ⁻⁸ 10 ⁻⁷
41Nb ⁹⁵ (β ⁻ , γ) (S	(GI (LLI)	40 60 60 80	3×10 ⁻³ 10 20 20 20 20	$ \begin{vmatrix} 6 \times 10^{-7} \\ 5 \times 10^{-7} \\ 7 \times 10^{-7} \\ 8 \times 10^{-7} \\ 9 \times 10^{-7} \end{vmatrix} $	10 ⁻³ 4 6 7	2×10 ⁻⁷ 2×10 ⁻⁷ 3×10 ⁻⁷ 3×10 ⁻⁷ 3×10 ⁻⁷
(Ins	(Spleen	. 80	3×10 ⁻³	$ \begin{array}{c c} 10^{-6} \\ 10^{-7} \\ 5 \times 10^{-7} \end{array} $	7 10 ⁻³	3×10^{-7} 3×10^{-8} 2×10^{-7}
$_{44}\mathrm{Ru^{106}}~(\beta^-,~\gamma)$ (S	(GI (LLI) Kidney Bone Total Body	3 10	4×10 ⁻⁴ 0.01 0.04 0.06	8×10 ⁻⁸ 10 ⁻⁷ 5×10 ⁻⁷ 7×10 ⁻⁷	10 ⁻⁴ 4×10 ⁻³ 0.01 0.02	3×10 ⁻⁸ 5×10 ⁻⁸ 2×10 ⁻⁷ 3×10 ⁻⁷
(Ins	d) Lung GI (LLI)		3×10-4	6×10 ⁻⁹ 6×10 ⁻⁸	10-4	2×10 ⁻⁹ 2×10 ⁻⁸
$_{53}$ I 131 (β^-, γ, e^-) (S	GI (LLI)	50	6×10 ⁻⁸ 5×10 ⁻⁸ 0.03 2×10 ⁻⁸	9×10 ⁻⁹ 8×10 ⁻⁷ 7×10 ⁻⁶ 3×10 ⁻⁷	2×10 ⁻⁵ 2×10 ⁻³ 0.01 6×10 ⁻⁴	3×10 ⁻⁹ 3×10 ⁻⁷ 2×10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁷
$_{55}\mathrm{Cs^{137}}~(\beta^-,~\gamma,~\mathrm{e^-})$ (S	(Total Body Liver Spleen Muscle Bone Kidney Lung GI (SI)	30 40 50 50 100 100 300	4×10 ⁻⁴ 5×10 ⁻⁴ 6×10 ⁻⁴ 7×10 ⁻⁴ 7×10 ⁻³ 10 ⁻³ 5×10 ⁻³ 0.02	3×10 ⁻⁷ 6×10 ⁻⁸ 8×10 ⁻⁸ 9×10 ⁻⁸ 10 ⁻⁷ 2×10 ⁻⁷ 2×10 ⁻⁷ 6×10 ⁻⁷ 5×10 ⁻⁶ 10 ⁻⁸	2×10 ⁻⁴ 2×10 ⁻⁴ 2×10 ⁻⁴ 2×10 ⁻⁴ 5×10 ⁻⁴ 5×10 ⁻⁴ 2×10 ⁻⁸ 8×10 ⁻⁸	2×10 ⁻⁸ 3×10 ⁻⁸ 3×10 ⁻⁸ 4×10 ⁻⁸ 7×10 ⁻⁸ 8×10 ⁻⁸ 2×10 ⁻⁷ 2×10 ⁻⁶ 5×10 ⁻⁹
(Ins	GI (LLI)		10-8	2×10-7	4×10-4	8×10 ⁻⁸
	(Gf (LLI) Bone Liver Kidney Total Body	- 5 - 6 - 10	3×10-4 0.2 0.3 0.5 0.7	8×10 ⁻⁸ 10 ⁻⁸ 10 ⁻⁸ 2×10 ⁻⁸ 3×10 ⁻⁸ 6×10 ⁻⁹	10 ⁻⁴ 0.08 0.1 0.2 0.3	3×10 ⁻⁸ 3×10 ⁻⁹ 4×10 ⁻⁹ 7×10 ⁻⁹ 10 ⁻⁸ 2×10 ⁻⁹
(Ins	GI (LLI)		3×10-4	6×10-8	10-4	2×10-8
$_{61}\mathrm{Pm}^{147}(\pmb{\alpha},\;\pmb{\beta}^{-})$ (S	Gi (LLI) Bone (Kidney Total Body Liver	200 300	6×10 ⁻³ 1 4 7	10 ⁻⁶ 6×10 ⁻⁸ 2×10 ⁻⁷ 3×10 ⁻⁷ 4×10 ⁻⁷	2×10 ⁻³ 0.5 2 2 2 3	5×10 ⁻⁷ 2×10 ⁻⁸ 7×10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁷
(Ins	(Tarana		6×10-3	10 ⁻⁷ 10 ⁻⁶	2×10-8	3×10 ⁻⁸ 4×10 ⁻⁷

Radionuclide and type of decay		Organ of reference (critical organ in boldface)	Maximum permissible burden in total body	Maximum permissible concentrations			
				For 40 hour week		For 168 hour week**	
			q(μc)	(MPC) w µc/cc	(MPC) a µc/cc	(MPC) w µc/cc	(MPC) _α μc/cc
r_3 Ta ¹⁸² (β^-, γ)		(GI (LLI)		10-3	3×10 ⁻⁷	4×10-4	9×10 ⁻⁸
		Liver	7	0.9	4×10 ⁻⁸	0.3	10-8
	(Sol)	Kidney Total Body	20 20	2 2	8×10-8	0.7 0.7	3×10^{-8} 3×10^{-8}
	, ,	Spleen	30	4	9×10 ⁻⁸ 10 ⁻⁷	1	5×10 ⁻⁸
		Bone	50	6	3×10-7	2	9×10^{-8}
	(Incol)	Lung			2×10 ⁻⁸		7×10-9
	(Insol)	(GI (LLI)		10-3	2×10 ⁻⁷	4×10-4	7×10 ⁻⁸
$_{7}\mathrm{Ir}^{192}$ (β^{-}, γ)		(G1 (LL1)		10 -3	3×10-7	4×10-4	9×10-8
, , , ,		Kidney	6	4×10^{-3}	10-7	10-3	4×10-8
	(Sol)	Kidney Spleen Liver Total Body	7	4×10^{-3}	10-7	10-3	5×10-8
		Liver	8	5×10^{-3}	2×10 ⁻⁷	2×10^{-3}	6×10-8
		Lung	20	0.01	4×10^{-7} 3×10^{-8}	4×10 ⁻³	10-7
	(Insol)	GI (LLI)		10-3	2×10 ⁻⁷	4×10-4	$\begin{array}{c} 9 \times 10^{-9} \\ 6 \times 10^{-8} \end{array}$
$_{9}\mathrm{Au^{198}}$ (β^{-}, γ)		(GI (LLI)		2×10 ⁻³	3×10 ⁻⁷	5×10-4	10-7
	(Sol)	Kidney		0.07	3×10-6	0.02	9×10-7
	(1001)	Total Body Spleen	30 60	$0.1 \\ 0.2$	4×10 ⁻⁶ 8×10 ⁻⁶	0.04	2×10-6
		Liver	80	0.2	10-5	0.07	3×10-6 4×10-6
	(T1)	GI (LLI)		10-3	2×10-7	5×10-4	8×10-8
	(Insol)	Lung			6×10 ⁻⁷		2×10-7
$_{16}\mathrm{Rn}^{222}\dagger(lpha,\;oldsymbol{eta},\;oldsymbol{\gamma})$		Lung			3×10 ⁻⁸		10-8
D ma ()		(Bone	0.1	4×10 ⁻⁷	3×10-11	10-7	10-11
$_{88}\mathrm{Ra}^{226}~(lpha,~eta^-,~m{\gamma})$	(Sol)	Total Body	0.2	6×10-7	5×10-11	2×10-7	2×10-11
	(202)	Total Body GI (LLI)		10-3	3×10-7	5×10-4	10-7
	(Insol)	[5×10-11		2×10-11
	(111501)	GI (LLI)		9×10-4	2×10^{-7}	3×10-4	6×10⁻⁵
$_{2}\mathrm{U}^{235}$ $(\alpha,\beta^{-},\gamma)$		[GI (LLI)		8×10-4	2×10 ⁻⁷	3×10-4	6×10-8
	(Sol)	Kidney	0.03	0.01	5×10^{-10}	4×10 ⁻³	2×10 ⁻¹⁰
	(201)	Bone	0.06	0.01	6×10^{-10}	} 5×10⁻³	2×10 ⁻¹⁰
		Total Body		0.04	2×10-9 10-10	0.01	6×10 ⁻¹⁰
	(Insol)	GI (LLI)		8×10-4	10-7	3×10-4	4×10^{-11} 5×10^{-8}
$_{2}\mathrm{U}^{238}~(\alpha,~\gamma,~\mathrm{e}^{-})$		GI (LLI)		10-3	2×10 ⁻⁷	4×10-4	8×10 ⁻⁸
(-, ,, - ,	(0.1)	Kidney	5×10-8	2×10-3	7×10^{-11}	6×10-4	3×10-11
	(Sol)	Bone	0.06	0.01	6×10-10	5×10-8	2×10-10
		Total Body	0.5	0.04	2×10-9	0.01	6×10-10
	(Insol)	Lung GI (LLI)		10-3	$10^{-10} 2 \times 10^{-7}$	4×10-4	5×10 ⁻¹¹ 6×10 ⁻⁸
		, , , , , , , , , , , , , , , , , , , ,				-/	57.20
$_4\mathrm{Pu}^{239}$ (α, γ)		/Bone	0.04	10-4	2×10 ⁻¹²	5×10~5	6×10-13
	,	Liver	0.4	5×10-4	7×10^{-12}	2×10-4	2×10^{-12}
	(Sol)	Kidney	0.5	7×10-4	9×10^{-12}	2×10-4	3×10-12
		GI (LLI)		8×10~4	2×10-7	3×10-4	6×10-8
		(Total Body	0.4	10-8	10 ⁻¹¹	3×10-4	5×10 ⁻¹²
	(Insol)	GI (LLI)		8×10-4	$\begin{array}{c} 4 \times 10^{-11} \\ 2 \times 10^{-7} \end{array}$	3×10-4	5×10 ⁻⁸
		\/		-/\-	-/\-0		3/110

†The daughter isotopes of Rn²⁰ and Rn²² are assumed present to the extent they occur in unfiltered air. For all other isotopes the daughter elements are not considered as part of the intake and if present must be considered on the basis of the rules for mixtures.

Maximum permissible concentration of unidentified radionuclides in water, $(MPCU)_w$ values*, for continuous occupational exposure

	μc/cm³ of water**
If no one of the radionuclides Sr^{90} , I^{126} , I^{129} , I^{131} , Pb^{210} , Po^{210} , At^{211} , Ra^{223} , Ra^{224} , Ra^{226} , Ra^{228} , Ac^{227} , Th^{230} , Pa^{231} , Th^{232} , and Th -nat is present, then the $(MPCU)_w$ is	3×10 ⁻⁵
If no one of the radionuclides Sr^{90} , I^{129} , Pb^{210} , Po^{210} , Ra^{223} , Ra^{228} , Ra^{228} , Pa^{231} , and Th-nat is present, then the $(MPCU)_w$ is	2×10 ⁻⁵
If no one of the radionuclides Sr^{90} , I^{129} , Pb^{210} , Ra^{228} , and Ra^{228} is present, then the $(MPCU)_w$ is	7×10 ⁻⁶
If neither Ra 226 nor Ra 228 is present, then the (MPCU) $_w$ is	10-6
If no analysis of the water is made, then the $(MPCU)_w$ is	10-7

*Each (MPCU)_w value is the smallest value of (MPC)_w in table 1 for radionuclides other than those listed opposite the value. Thus these (MPCU)_w values are permissible levels for continuous occupational exposure (168 hr/wk) for any radionuclide or mixture of radionuclides where the indicated isotopes are not present (i.e., where the concentration of the radionuclide in water is small compared with the (MPC)_w value for this radionuclide). The (MPCU)_w may be much smaller than the more exact maximum permissible concentration of the material, but the determination of this (MPC)_w requires identification of the radionuclides present and the concentration of each.

Maximum permissible concentration of unidentified radionuclides in air, (MPCU)_a values*, for continuous occupational exposure

Limitations	μc/cm³ of air**
If there are no α -emitting radionuclides and if no one of the β -emitting radionuclides Sr ⁹⁰ , I ¹²⁹ , Pb ²¹⁰ , Ac ²²⁷ , Ra ²²⁸ , Pa ²³⁰ , Pu ²⁴¹ , and Bk ²⁴⁹ is present, then the (MPCU) _a is	10-9
If there are no α -emitting radionuclides and if no one of the β -emitting radionuclides Pb ²¹⁰ , Ac ²²⁷ , Ra ²²⁸ , and Pu ²⁴¹ is present, then the (MPCU) _a is	10-10
If there are no α -emitting radionuclides and if the β -emitting radionuclide Ac^{227} is not present, then the $(MPCU)_{\alpha}$ is	10-11
If no one of the radionuclides Ac^{227} , Th^{230} , Pa^{231} , Th^{232} , Th -nat, Pu^{238} , Pu^{239} , Pu^{240} , Pu^{242} , and Cf^{249} is present, then the $(MPCU)_{\alpha}$ is	10-12
If no one of the radionuclides Pa ²³¹ , Th-nat, Pu ²³⁹ , Pu ²⁴⁰ , Pu ²⁴² , and Cf^{249} is present, then the $(MPCU)_{\alpha}$ is	7×10-13
If no analysis of the air is made, then the $(MPCU)_a$ is	4×10 ⁻¹³

^{*}Each (MPCU)_a value is the smallest value of (MPC)_a in table 1 for radionuclides other than those listed opposite the value. Thus these (MPCU)_a values are permissible levels for continuous occupational exposure (168 hr/wk) for any radionuclide or mixture of radionuclides where the indicated isotopes are not present (i.e., where the concentration of the radionuclide in air is small compared with the (MPC)_a value for this radionuclide). The (MPCU)_a value may be much smaller than the more exact maximum permissible concentration of the material, but the determination of this (MPC)_a requires identification of the radionuclides present and the concentration of each.

^{**}Use one-tenth of these values for interim application in the neighborhood of a controlled exposure area.

^{**}Use one-tenth of these values for interim application in the neighborhood of a controlled exposure area.

^{*}These radionuclides were selected from National Bureau of Standards Handbook 69 (for sale by U. S. Government Printing Office, Washington 25, D. C.). This publication lists (for all radionuclides) the recommendations of the National Committee on Radiation Protection and Measurements for Maximum Permissible Body Burdens and Maximum Permissible Concentrations in Air and Water for Occupational Exposure. The handbook should be consulted for MPC and MPBB values of other nuclides or for information on derivation and limitations of these values.

RADIATION PROTECTION GUIDES

	Type of Exposure	Condition	Dose (rem)
Radia	tion worker:		
(a)	Whole body, head and trunk, active blood-forming organs, gonads, or lens of eye	Accumulated dose	5 times number of years beyond age 18 3
(b)	Skin of whole body and thyroid	Year 13 weeks	30 10
(c)	Hands and forearms, feet and ankles	Year 13 weeks	75 25
(d)	Bone	Body burden	0.1 µCi of ²²⁶ Ra or its biological equivalent
(e)	Other organs	Year 13 weeks	15 5
Popul.	ation:		
(a)	Individual	Year	0.5 (whole body)
(b)	Average	30 years	5 (gonads)

NOTE: See FRC Report No. 1, May 1960, for details.

QUALITY FACTOR vs. LINEAR ENERGY TRANSFER

LET (keV/micrometer in water)	QF
3.5 or less	1
3.5-7.0	1-2
7.0-23	2-5
23-53	5-10
53-175	10-20

QUALITY FACTOR VALUES

Radiation	QF
Gamma rays from radium in equilibrium (0.5 mm platinum filter X Rays Beta rays and electrons; > 0.03 MeV Beta rays and electrons; < 0.03 MeV Thermal neutrons Fast neutrons Protons Alpha rays Heavy ions	1 1 1.7 3 10 10 10 20

STANDARD MAN

The information on pages 212, 213, and 214 is from data supplied by Dr. Isabel H. Tipton, University of Tennessee, Knoxville.

The data on pages 215, 216, and 217 is taken from sources too numerous to reference. Inquiries regarding specific details should be addressed to the Radiological Health Handbook Committee.

NOTE: Numbers may differ from ICRP Committee II Report. Those using this information on Standard Man should be aware of the efforts of the ICRP Subcommittee on Standard Man. Reports of this Committee should be noted and pen and ink changes made on pages 212 through 217, as necessary.

WEIGHTS OF ORGANS AND TISSUES OF STANDARD MAN

Tissue or Organ	Mass (grams)	Total Body (%)		
Adipose tissue Subcutaneous* Other separable* Interstitial Yellow marrow (added with skeleton)	15000 7500 5000 800 1700	21 11 7.1 1.1 2.4		
Adrenals (2)*	14	0.02		
Aorta* Contents (blood)*	100 190	0.14 0.27		
Blood Plasma Erythrocytes	5500 3200 2300	7.8 4.6 3.2		
Blood vessels* (not including aorta and pulmonary) Contents (blood)*	200 2500	0.29 3.6		
Cartilage Skeletal cartilage Non-skeletal cartilage*	2000 1700 300	2.9 2.4 0.43		
Dense connective tissue Tendons and ligaments* Other connective tissue	4000 2000 2000	5.7 2.9 2.9		
Eyes (2)* Lenses (2)	0.5	0.02		
Gall bladder* Contents (bile)*	10 63	0.01 0.09		
G.I. tract* Esophagus Stomach Intestine Small Upper large Lower large Contents of G.I. tract*	1200 50 150 1000 500 250 250	1.7 0.07 0.21 1.4 0.71 0.36 0.36		
(food plus digestive fluids) Hair*	1000	0.03		
Heart* Contents (blood)*	300 390	0.03 0.50 0.56		
Kidneys (2)*	310	0.44		
Larynx*	15	0.02		
Liver*	1800	2.6		
Lungs (2)* Parenchyma Pulmonary blood	1000 580 480	0.83 0.61		
Lymph nodes*	250	0.36		

WEIGHT OF ORGANS AND TISSUES OF STANDARD MAN--Continued

Tissue or Organ	Mass (grams)	Total Body (%)		
Miscellaneous* (by difference) Soft tissue (nasopharynx, etc.) Fluids (synovial, pleural, etc.)	590 240 350	0.84 0.34 0.50		
Muscle (skeletal)*	28000	40.0		
Nails*	10	0.01		
Nervous system - central Brain* Spinal cord* Contents - cerebrospinal fluid*	1400 30 120	2.0 0.04 0.17		
Pancreas*	100	0.14		
Parathyroids (4)*	0.12			
Pineal*	0.2			
Pituitary*	0.6			
Prostate*	16	0.023		
Salivary glands (6)*	85	0.12		
Skeleton* Bone Cortical Trabecular Red marrow Yellow marrow Cartilage Blood	10000 5000 4000 1000 1300 1700 1700 300	14 7.2 5.7 1.4 1.9 2.4 2.4 0.43		
Skin* Epidermis Dermis Hypodermis (see adipose tissue)	4900 500 4400 7500	7.0 0.71 6.3		
Spleen*	180	0.26		
Teeth*	46	0.065		
Testes (2)*	60	0.085		
Thymus*	20	0.028		
Thyroid*	16	0.023		
Tongue	70	0.10		
Tonsils (2)*	4	0.006		
Trachea*	15	0.021		
Ureters (2)*	16	0.023		
Urethra*	2	0.003		
Urinary bladder* Contents (urine)*	45 102	0.064 0.14		
Total Body	70000	100		

^{*}Sum = total body (including the second column figures under "Mass" and "Total Body").

STANDARD MAN: TOTAL BODY CONTENT FOR SOME ELEMENTS

Element	Amount (grams)	Percent of Total Body	Element	Amount (grams)	Percent of Total Body
0xygen	43000	61	Bromine	0.20	0.00029
Carbon	16000	23	Lead	0.12	0.00017
Hydrogen	7000	10	Copper	0.072	0.00010
Nitrogen	1800	2.6	Aluminum	0.061	0.00009
Calcium	1000	1.4	Cadmium	0.050	0.00007
Phosphorus	720	1.0	Boron	<0.048	0.00007
Sulfur	140	0.20	Barium	0.022	0.00003
Potassium	140	0.20	Tin	<0.017	0.00002
Sodium	100	0.14	Manganese	0.012	0.00002
Chlorine	95	0.12	Nickel	0.010	0.00001
Magnesium	19	0.027	Gold	<0.010	0.00001
Silicon	18	0.026	Molybdenum	<0.0093	0.00001
Iron	4.2	0.006	Chromium	<0.0066	0.000009
Fluorine	2.6	0.0037	Cesium	0.0015	0.000002
Zinc	2.3	0.0033	Cobalt	0.0015	0.000002
Rubidium	0.32	0.00046	Uranium	0.0007	0.000001
Strontium	0.32	0.00046	Beryllium	0.000036	
			Radium	3.1x10 ⁻¹¹	

SPECIFICATIONS FOR STANDARD MAN

	Adult Man	Adult Woman	Child 10 years	Infant 1 year	Newborn
Weight (kg)	70	58			3.4
Length (cm)	170	160			50
Surface Area (cm²)	18000	16000			2200
Specific Gravity	1.07	1.04			
Total Body Water (ml/kgW) Extracellular Water Intracellular	600 260 340	500 200 300	 	 	
Total Blood Volume (m1) Red Cell Volume (m1) Plasma Volume (m1)	5200 2200 3050	3900 1350 2500	 	 	
Total Blood Weight (g) Red Cell Weight (g) Plasma Weight (g)	5500 2400 3100	4100 1500 2600		 	
Total Adipose Tissue (kg) Subcutaneous Sparable Yellow Marrow Interstitial	15 7.5 5.0 1.7 0.8	19 13 4 1.4 0.6	 	 	
Total Connective Tissue (g) Cartilage Tendons and Fascia Other	5100 2500 850 1700	4100 2000 700 1400	 	 	
Total Fat (kg) Nonessential Essential	13.5 12 1.5	15 13.8 1.2	 	 	
Hair (g)	20	300			
Nails (g)	3	3			
Skeletal Muscle (kg)	28	17			
Total Skin (g) Epidermis Dermis	4900 500 4400	3500 400 3100	 	 	
Hypodermis	7500	13000			
Resting Metabolic Rate (cal/min-kg)	17	16	25	35	
Oxygen Inhaled (g)	920	640			
Carbon Dioxide Exhaled (g)	1000	700			
Total Lung Capacity (liters) Functional Residual Vital Dead Space	5.6 2.2 4.3 0.160	4.4 1.8 3.3 0.130	 	 	
Minute Volume (liters/min) Resting Light Activity	7.5 20	6.0 19	4.8 13	1.5 4.2	0.5 1.5

SPECIFICATIONS FOR STANDARD MAN--Continued

	Adult Man	Adult Woman	Child 10 years	Infant 1 year	Newborn
Total Air Breathed (liters)	22800	21120	14784	4700	780
8 hr. working (light)	9600	9120	6240	3500	90
8 hr. nonoccupational	9600	9120	6240	(10 hr)	(1 hr)
8 hr. resting	3600	2880	2304	1200	690
				(14 hr)	(23 hr)
Dietary Intake (g)	i			1	
Protein	95	66			
Carbohydrate	390	270			
Fat	120	85			
Water in Diet	1000	700			
Water in Fluid	1700	1200			
Water in Oxidation	300	200			
Elements	1 ,,				
Carbon	300	210	200		
Hydrog e n Nitrogen	350 15	245 10	230 10		
Oxygen	2600	1800	1700		
oxygen	2000	1800	1700		
Milk Consumption (ml/day)	300	200	~470	~1000	
Fecal Components (g)	ł				
Weight	135		85	24	
Water	105		66	19	
Solids	30		19	5	
Ash	17		6	1	
Fats	5		4	3	
Nitrogen Other Substances	1.5	::	8	0.3	
Elements	0.5	·) °	0.7	
Carbon	6.7	l	4.2	1.2	
Hydrogen	13		8.6	2.5	
Nitrogen	1.5		1.0	0.3	
Oxygen	98		62	17	
Urine (g)		ĺ			
Volume (ml)	1400		1000	450	
Specific Gravity	1.001-			1.002-	
	1.030			1.019	
Solids	60		47	19	19
Urea	22				
"Sugars"	1		,		
Carbonates	2				
Elements	1 , .	·	١.,	1 .	
Nitrogen Hydrogen	15 160		11 110	5	
Oxygen	1300		970	50 420	
Carbon	5		3/0	0.5	
-					
			í		

SPECIFICATIONS FOR STANDARD MAN--Continued

	Adult Man	Adult Woman	Child 10 years	Infant 1 year	Newborn
Water Balance (ml/day)					
Total Gains	3000	2100	2000		
Fluid Intake	1950	1400	1400		
Milk	300	200	450		
Tap Water	150	100	200		
Others	1500	1100	750		
In Food	700	450	400		
By Oxidation in Food	350	250	200		
Total Losses (ml/day)	3000	2100	2000		
Urine	1400	1000	1000		
Feces	100	80	70		
Insensible Loss	850	600	580		
Sweat	650	420	350		

SECTION IV

ELEMENTS IN "TABLE OF ISOTOPES"

(The numbers in parentheses refer to the Decay Scheme pages)

Element	Sym.	Z	Page	Element	Sym.	Z	P	age
Actinium	Ac	89	365	Mercury	Hg	80	347	(404)
Aluminum	A1	13	237	Molybdenum	Mo	42	272	(394)
Americium	Am	95	373	Neodymium	Nd	60	310	
Antimony	SЪ	51	290	Neon	Ne	10	235	
Argon	Ar	18		Neptunium	Np	93		
Arsenic	As	33	256	Neutron	n	0		
Astatine	Αt	85		Nickel	Νí	28		(389)
Barium	Ва	56	303 (400)	Niobium	Nb	41		(393)
Berkelium	Bk	97	376	Nitrogen	N	7		
Beryllium	Вe	4		Nobelium	No	102		
Bismuth	Вi	83		Osmium	0s	76		
Boron	В	5		Oxygen	0	8		
Bromine	Br	35		Palladium	Pd	46		
Cadmium	Cd	48		Phosphorus	P	15		(383)
Calcium	Са	20		Platinum	Pt	78		44.5.5
Californium	Cf	98		Plutonium	Pu	94		· · · · · · · · · · · · · · · · · · ·
Carbon	С	6	7	Polonium	Po	84		(406)
Cerium	Ce	58		Potassium	K	19		(384)
Cesium	Cs	55		Praseodymium	Pr	59		(402)
Chlorine	C1	17		Promethium	Pm	61		((00)
Chromium	Cr	24		Protactinium	Pa	91		(408)
Cobalt	Co	27		Radium	Ra	88		(406)
Copper	Cu	29		Radon	Rn	86		(406)
Curium	Cm D	96		Rhenium Rhodium	Re Rh	75 45		
Dysprosium	Dy	66		Rubidium	Rh	37		(201)
Einsteinium Erbium	Es Er	99		Ruthenium	Ru			(391)
Europium	Eu	68 63	-	Samarium	Sm	44 62		(395)
Fermium	Fm	100		Scandium	Sc	21		
Fluorine	F	9		Selenium	Se	34		
Francium	Fr	87		Silicon	Si	14		
Gadolinium	Gd	64		Silver	Ag	47		
Gallium	Ga	31		Sodium	Na	11		(382)
Germanium	Ge	32		Strontium	Sr	38		(392)
Gold	Au	79		Sulfur	S	16		(384)
Hafnium	Hf	72		Tantalum	Ta	73		(/
Helium	He	2	_	Technetium	Tc	43		
Holmium	Но	67		Tellurium	Te	52		
Hydrogen	H		231 (382)	Terbium	ТЬ	65		
Indium	In	49		Thallium	T1	81	350	
Iodine	I	53		Thorium	Th	90	366	(408)
Iridium	Ir	77		Thulium	Tm	69	326	
Iron	Fe	26		Tin	Sn	50	288	
Krypton	Kr	36	261 (391)	Titanium	Tí	22	245	
Kurchatovium*	Ku	104	380	Uranium	U	92	369	(407)
Lanthanum	La	57	306 (400)	Vanadium	V	23	245	
Lawrencium	Lr	103	380	Wolfram†	W	74		
Lead	PЪ	82		Xenon	Хe	54		(398)
Lithium	Li	3		Ytterbium	Ϋ́b	70		
Lutecium	Lu	71		Yttrium	Y	39		(392)
Magnesium	Mg	12		Zinc	Zn	30		(390)
Manganese	Mn	25		Zirconium	Zr	40	269	(393)
Mendelevium	Md	101	379	11				

^{*} Suggested name.
† Also called tungsten.

Table of Isotopes

The material in this section is taken from the book, "Table of Isotopes," by C. M. Lederer, J. M. Hollander, and I. Perlman, 6th edition, published by John Wiley and Sons, Inc., New York, 1967.

Table I is an exact reproduction of Table I of the above publication. The bibliography referred to is not reproduced here.

Table II, as presented here, consists of specially selected decay schemes.

Permission to reproduce this material was given to the U.S. Department of Health, Education, and Welfare by the authors and the publishers, John Wiley and Sons, Inc. This permission is gratefully acknowledged. Further reproduction without permission of the authors and/or publishers is prohibited.

TABLE I. RADIOISOTOPE DATA

This table displays all radioactive and stable nuclei arranged according to atomic number with increasing mass number for each element. The criterion for the selection of data on each radioactive isotope has been that of identifying it in terms of its rate and mode of decay, principal radiations, and how it is prepared. The data are arranged in six columns, each of which receives comment below.

Note on references. References to the original publications are coded according to the first author and the year of publication. Example: the symbol AagP57 permits the appropriate journal reference to be found readily in the alphabetical listing in the bibliography. If the reader is already familiar with the work, he will recognize this symbol as referring to a 1957 paper of P. Aagard and co-workers.

Column 1—Isotope. The symbols here give the isotopic assignments in usual form. Stable or long-lived naturally occurring isotopes are indicated by underlining. The superscript m following the mass number refers to a metastable, or isomeric, state which has a sufficiently long half-life to be investigated independently from its ground state. Likewise, the designations m_1 and m_2 refer to several metastable states of a nucleus. When it is not established which of several isomers is the ground state, each isomer is referred to by the same symbol without the m; for example, Eu¹⁵⁰ (12.6 h) and Eu¹⁵⁰ (≈ 5 y).

Generally, isomeric states are included in Table I if their half-lives exceed ≈1 s; exceptions are made for a few chemically or genetically identified isomers of somewhat shorter half-life. The half-lives of many short-lived excited states have been measured because of their importance to nuclear structure. They are not listed in Table I as isomeric states but can be found in Table II, under the listing of the ground state of the appropriate isotope.

The historical names for the naturally occurring activities Th²³², U²³⁵, U²³⁸, and their descendents are given in Column 1 beneath the isotopic assignment.

Column 2—Half-life. An attempt has been made to list the most accurate value first, usually inferred from the stated precision. Unless otherwise stated, the value listed is the total half-life, which is the entity measured when the decay is followed. When a nucleus has more than one mode of decay, the percentage of each mode is given in Column 3.

An exception is made for those heavy nuclei that have measurable spontaneous-fission rates. The appropriate spontaneous-fission half-life is listed in Column 2 and designated by the symbol $t_{1/2}(SF)$. In a number of cases no radioactivity has been observed, although sought, and the lower limit of the half-life is listed for the mode of decay looked for $(\beta \equiv \beta \text{ decay}, \beta \beta \equiv \text{ simultaneous emission of two } \beta \text{ particles, EC} \equiv \text{ electron capture, } \alpha \equiv \alpha \text{ decay}).$

If there is no special designation after the listed half-life, it may be assumed that the determination was made by direct decay measurement. (For the very short lifetimes the timing is done electronically rather than mechanically.) For indirect half-life determinations, the methods are described by the following symbols:

sp act (+ mass spect) Determination of disintegration rate of a sample containing a known weight of the active substance (mass spectographic analysis of the sample to correct for other isotopes present).

genet Decay of parent substance, followed by the periodic removal of a decay product which can be measured. (genet = genetic relation).

yield Measurement of radioactivity from a sample containing a number of atoms calculated according to the expected yield of the reaction by which it was produced.

est In a few instances (a emitters) the half-lives are estimated from the energies of the measured radiations.

delay coinc Several isotopes are short-lived products of longer lived parents. Those whose half-lives are in the millisecond range or shorter were measured by recording the time-interval distribution between the emissions from the parent substance and the daughter product.

Column 3—Type of decay. Because many classes of data are included in this column, the entry denoting type of decay is preceded by the special symbol for radiation, . When the mode of decay is enclosed in square brackets, that mode is inferred or assumed, not directly measured. When independent modes of decay have been measured, the branching ratios are entered as percentages. Symbols used are

- β Negative β -particle (negatron) emission
- β^+ Positive β -particle (positron) emission
- EC Orbital electron capture
- a Alpha-particle emission
- IT Isomeric transition (decay from an excited metastable state to a lower state)
- SF Spontaneous fission. Listings are made here only if the branching is about 1% or more. For others the

- partial half-lives for spontaneous fission are entered in Column 2.
- n Neutron emission from excited states promptly following β decay to those levels. Entry is made in conjunction with the β emitter.
- p Proton emission from excited states promptly following β decay to those levels. Entry is made in conjunction with the β emitter.

Wherever experimenters have searched for and failed to find a particular mode of decay, the indication is, for example, "no β^+ ." Experimental limits are given but no limits predicted from theory. Limits of detection in cases in which *no* radioactivity has been observed are listed in Column 2 in terms of a lower limit on the half-life.

Among the α emitters in the heavy element region closed decay cycles may almost always be employed to determine whether a nucleus is β stable without resort to specific experimental evidence. Those that are known to be β stable are designated by the entry β stable (cons energy) to indicate that the principle of conservation of energy underlies the calculations.

Percent abundance. The isotopic abundances listed are on an "atom percent" basis and refer to the elements as they exist in the earth's crust. Some of the light elements have variations in composition outside the accuracy of determination. For these elements ranges are given with references to the publications in which the variations are discussed. Particular values are also given for some specific sources of the specimens analyzed.

Isotopic mass. The atomic masses of all species measured by mass spectrometry or calculated from reaction energies are entered in the form of the mass excess, $\triangle(\equiv M-A)$; the unified mass scale ($\triangle(C^{12})=0$) is employed. It will be noted that these mass excess values are in units of million electron volts. Most of the data were taken from the compilation of Mattauch, Theile, and Wapstra (MTW), which should be consulted for the accuracy attached to them. The experimental decay energies of radioactive species on which many of their masses are based may be found as Q values on the decay schemes in Table II.

Cross sections. It is not possible to list all known reaction cross sections in a table such as this, but values are given for the neutron-capture reaction (σ_c) and for neutron-induced fission (σ_t) in units of 10^{-24} cm² (barns). Most of the cross sections shown are taken from a compilation by D. T. Goldman and M. D. Goldberg (GoldmDT64) and refer to neutrons with velocity 2200 meters/sec. The reader is cautioned to note that many nuclei have strong resonances in the epithermal region, and because "thermal" reactors contain epithermal neutrons in the irradiation positions the effective cross sections for certain nuclei can be larger than those indicated here.

Our symbol σ_c refers to that part of the capture reaction in which fission does not result. Unless otherwise stated, σ_c applies to the (n, γ) reaction. For some light nuclei the principal reaction with thermal neutrons may be (n, p) or some other reaction. Wherever such a reaction is referred to, it is so indicated.

Column 4-class; identification; genetic relationships. Class. The degree of certainty of each isotopic assignment is indicated by a letter according to the following code:

- A Element and mass number certain
- B Element certain and mass number probable
- C Element probable and mass number certain or probable
- D Element certain but mass number not well established
- E Element probable and mass number not well established
- F Insufficient evidence
- G Probably in error.

These "ratings" should not be read as levels of confidence in the experiments but rather as an indication of the limitations of the experiments as they relate isotopic assignments to the radioactive properties discerned. In some instances a simple cross bombardment (production of an isotope in two or more ways) results in an unambiguous assignment. In others much more elaborate experiments are insufficient. Among the factors that can limit the certainty of an assignment based on its means of production are targets of mixed isotopic composition, low cross sections, the possibility of isomerism, similarity of properties to other isotopes, and absence of knowledge of neighboring isotopes.

Identification. The means by which the isotopic assignments were established are tabulated next. In general, several references are combined, and among them the first refers to the discovery of the isotope (except for classical natural radioactivities). Indication of the experimental methods used in making the various assignments may be had from the following symbols:

chem Chemical separations establishing the chemical identity (atomic number) of the isotope.

genet Established decay relationship (by chemical or other means) with another isotope whose mass assignment is known.

excit Refers broadly to energy considerations in the production of the isotope, some of which are

- excitation-function or yield experiments to establish the nuclear reaction which produced the isotope;
- limitation of products formed by limiting the energy of bombarding particles;
- (3) making use of a calculated Q value;
- (4) in a few instances use of fission-yield data to limit mass assignments.

cross bomb Arrival at an assignment by producing the isotope in different ways.

n-capt Key evidence supplied by production with slow neutrons from which it is usually inferred that the (n, γ) reaction was observed.

sep isotopes The use of target elements enriched or depleted in a particular isotope.

mass spect Mass number determined by mass spectrometry.

decay charac Identification of predicted decay properties such as decay energy or energy-level pattern.

genet energy levels Energy levels of daughter nucleus agree with those from decay of another isotope whose isotopic assignment and mode of decay are known or with levels observed in nuclear reactions.

atomic level spacing Atomic number of decay product established by measuring the characteristic energy differences between internal-conversion electron lines from a particular γ transition converted in different shells.

critical abs Identification of the atomic number of the decay product by critical absorption of X-rays accompanying the decay process.

Genetic relationships. Below the designation of how the isotope was identified are listed specifically those genetic (or parent-daughter) relations established by chemical or physical separation and radiochemical characterization of the daughter atoms. Among other things, this list also gives the reader some warning that radiations from decay products may be present with those from the parent.

Column 5-Major radiations. The purpose of this list is to acquaint the reader at a glance with the principal radiations associated with each isotope. The radiations shown will often be sufficient to identify the isotope. Because it is the purpose here to delineate what is actually seen when a particular isotope is encountered, the X-rays and annihilation radiation $(0.511-\text{MeV } \gamma \text{ rays from the annihilation of positrons},$ designated by the symbol $\gamma \pm$), are indicated if they are prominent in the electromagnetic spectrum. If essentially all the decays proceed by positron emission, the notation 0.511 (200%, $\gamma \pm$) will appear. (Several per cent of the positrons annihilate in flight, which means that a corresponding number of photons will not have 0.511 MeV energy.) The notation "L X-rays" is used only when K X-rays are absent or very weak. Similarly, conversion electrons are listed if they are prominent in the electron spectrum. Auger electrons (electrons emitted in the de-excitation of atomic levels) are not listed explicitly; they will always accompany the emission of X-rays. Continuous β^- or β^+ spectra are usually represented by the endpoint of the highest energy beta group followed by the notation "max." When the highest energy group is of low intensity, so that a spectrometer of low resolving power (such as a scintillator) would also detect the presence of a continuous spectrum with a lower endpoint energy, this is also indicated. Thus the notation " β - 1.176 max (7%), 0.514 max" means that there is a continuous spectrum with endpoint 1.176 MeV and 7% intensity, but the major portion of the β - spectrum (which may be composed of one or more beta groups) has an endpoint energy of 0.514 MeV. Decay products can often give rise to radiations that soon become prominent, and this is indicated by the notation "daughter radiations from . . ." so that the reader will look up the radiations that arise from these sources. The data in this column are derived from the references listed in Table II. Quantities enclosed in square brackets are calculated or inferred, not measured.

The term "major radiations," as used here, requires some explanation. In each of the three general categories of radiation, α particles, β particles and electrons, and γ rays and X-rays, we have listed the most prominent radiations, even though they may be of relatively low intensity. For example, with an α emitter may be listed a γ ray of only $10^{-5}\%$ intensity relative to the α intensity if that γ ray is the most intense in its energy range. Conversion electrons are listed according to the actual energies of the electron lines and not in terms of the transitions that give rise to the lines.

The intensities of radiations when expressed as percentages without other qualifications refer to percentages of the total decay events. Another way of expressing relative intensities is also sometimes employed. A number following the dagger(†) symbol is the relative intensity for the particular mode of decay beside which the † appears.

The terms "doublet" and "complex" are used to indicate γ rays which would be unresolved or incompletely resolved by instruments of moderately low resolving power such as scintillators. It is *not* indicated when an electron line is complex. Because of conversion in different atomic shells and subshells, many of the electron lines listed in Column 5 are complex.

The reader is referred to Table II for a more detailed account of radiations accompanying the decay of each isotope and for references to the original literature.

Column 6-principal means of production. The methods for producing each isotope selected for inclusion here are those that have given the highest yield and those that permit greatest isotopic purity. These listings will serve principally as references to the original literature in which important aspects of the preparations such as experimental conditions, yields, and purity of product are discussed.

The methods fall into three main categories. For ordinary nuclear reactions in which a target isotope is bombarded with charged particles or neutrons the usual system of abbreviations is employed. For example, to make Pu^{237} , the reaction Np^{237} (d, 2n) appears;

this means that Np^{237} is the target, deuterons (d) are the projectiles, and two neutrons (2n) are emitted. When the target material is not isotopically pure, the experimenter must be concerned with radioactive substances produced from other components of the target. A second category of production consists of the separation of the isotope in question from a radioactive par-

ent. Such an isotope is indicated as the daughter of another. Finally, with the advent of very high fluxes of neutrons it has become possible to prepare isotopes by the successive capture of neutrons (with intervening β^- decay in some cases). Such preparations have been designated by "multiple n-capt from -," where the dash refers to the starting material.

TABLE II. DETAILED NUCLEAR LEVEL PROPERTIES

This section gives the type of information on nuclear states and transitions between these states familiar to nuclear spectroscopists. The tabulations are concerned with measurements; the diagrams are interpretations in the form of the familiar decay schemes and energy levels.

The general policy adopted for the entries made on the decay schemes is that they be based on direct experimental information. Spin and parity assignments based wholly, or in large part, on the expectations from nuclear models have been avoided. Unobserved transitions that should be present have been omitted. A few exceptions to these conventions will be found; for example, an obvious assignment of a state as a member of an otherwise well-characterized rotational band may be entered.

Similarly, information that can be calculated on the basis of a model has not been entered; for example, intensities of competing γ rays. Some useful numbers that do not depend on models do appear; for example, log ft values for β decay and hindrance factors for α decay. In some cases we have shown calculated values for electron capture branching or β^+ branching when only one has been measured. The calculated mode appears in square brackets. In general, brackets enclose information that may be inferred or calculated without recourse to detailed models.

The bulk of the information contained here (except for the lightest elements) comes from the study of radioactive decay processes. Increasingly, however, information is arriving from direct "in-beam" experiments involving inelastic and elastic scattering, Coulomb excitation, and nuclear reactions generally. The problem was how much of this information to include in the present compilation. Rather arbitrarily it was decided to include only those levels at energies below the decay energy of the observed neighboring isobars.

A. TABULATED DATA

Designation of state and its half-life. The isotopic designation appears at the heading for each entry with the total (measured) half-life for the ground state in parentheses. When separate entries are made for metastable (isomeric) states, it is the half-life of that state

that is entered. Stable or long-lived naturally occurring isotopes are indicated by underlining, as in Table I.

Spins and moments. The line immediately below the designation of the isotope gives the spin and nuclear moments of the ground state. Most of these values are taken from the recent compilation by I. Lindgren (Lindg164). A number of moments have been measured for excited states and are given where the particular state is listed. The spins and parities of excited states deduced from detailed examination of decay processes and similar other information will be found on the decay schemes and not among these tabulated data.

All magnetic dipole moments have been corrected for the diamagnetic effect. Unless otherwise stated, the spectroscopic electric quadrupole moments have *not* been corrected for polarization of the atomic electron shells (Sternheimer effect). The use of "±" with the magnetic dipole and electric quadrupole moments indicates that the signs are unknown.

The symbols used to designate spins and moments are the following:

- I Mechanical or spin moment in units of K.
- μ Magnetic dipole moment in units of nuclear magnetons

$eK/2M_nc$

with the proton magnetic moment positive in sign.

- Electric quadrupole moment in units of 10⁻²⁴ cm² with usual convention of sign for prolate (+) and oblate (-) charge symmetry.
- Ω Magnetic octupole moment in units of nuclear magnetons × 10⁻³⁴ cm².

Experimental methods are described as follows:

atomic spect Hyperfine structure of optical spectra (includes both line and band spectra).

atomic beam Atomic or molecular beam magnetic resonance (includes both the determination of hyperfine structure and the direct determination of moments by double resonance or other methods.

NMR Nuclear magnetic resonance.

ESR Electron spin resonance (includes electron-nuclear double resonance).

quad res Quadrupole resonance.

microwave Microwave absorption.

rotation $\gamma\gamma(\theta)$ Rotation of angular distribution pattern in a magnetic or electric field.

nucl alignment Static (low-temperature) nuclear orientation detected by anisotropy of the nuclear radiations. nucl induction Dynamic (resonance) nuclear orientation detected by anisotropy of the nuclear radiations.

Mössbauer Mössbauer effect.
opt pump Optical pumping.
opt double res Optical double resonance.

Radiations emitted. The radiations are separated according to type: β^- , β^+ , γ , α , p, n, SF. The emission of protons (p) and neutrons (n), and in a few cases α particles, occurs not from the parent substance but follows promptly a β -decay event. The relationship is shown on the decay scheme. The energies of the radiations are shown in boldfaced characters.

 β groups. When there is more than one β group, they are numbered with subscripts so that corresponding entries from different authors may be compared directly. The intensities followed by the % symbol are absolute percentages of the total decay and should add to 100. In some instances in which branched decay occurs, or in which it is not certain that all of the β groups have been identified, intensities have been reported as relative values for the groups identified. Such entries are symbolized with a number preceded by a dagger (†). In cases of branched decay the fraction going by each mode will be found on the decay scheme and in Table I. The symbols used to describe the experimental methods for determining β energy and intensity are as follows:

mag spect Magnetic deflection (magnetic spectrometer or a counter employing a magnetic field).

scint spect Pulse-height analysis with a solid or liquid scintillation detector.

semicond spect Pulse-height analysis with a semiconductor detector.

ion ch Pulse-height analysis with an ionization chamber or proportional counter.

abs Absorption methods.

cl ch Cloud chamber with magnetic deflection.

 $\beta\gamma$ coinc β - and γ -coincidence measurement with some form of spectrometer on one or both sides.

 γ rays. When there is branched decay and it is known which γ rays accompany each mode, this is stated. The γ rays are often numbered for convenience in comparing entries from different authors. The energies (listed in boldfaced characters) pertain to transition energies, even though conversion electrons may have been measured. They are listed in ascending order of energy, irrespective of how they may fit into the decay scheme.

A concise system for indicating intensities of radiations involved in γ -ray transitions is difficult to arrive at because most experiments are not directed toward absolute determination. The reader is urged to give particular attention to the following description of the symbols employed:

The absolute scale of intensities adopted considers all primary decay events as 100%. An entry such as γ_3 0.067 (γ 7%) means that the transition of 0.067 MeV, designated γ_3 has seven unconverted photons for each 100 decay events of the parent. The symbol γ preceding 7% emphasizes that it is the *photon* of transition γ_3 under consideration. The same form of symbolism may be used for conversion electrons, which for the K and L_I lines might read: γ_3 0.067 (K 0.8%) and γ_3 0.067 (L_I 0.4%). When conversion coefficients are known, we have not used a separate symbol for photons and electrons but rather have symbolized the definition; for example, γ_3 0.067 (γ 7%, e_K/γ 0.11); or γ_3 0.067 (γ 7%, e_K/γ 0.11); or γ_3 0.067 (γ 7%, e_K/γ 0.11, K/L_I 2) to show also a particular subshell conversion ratio.

The symbol \dagger is used to signal that the numbers which follow in the same entry express relative intensities. (An entry begins with a line indented to the left and ends with a reference or references.) In many cases we have renormalized the intensity scale used in the original paper to give more convenient numbers or to facilitate comparison of different measurements. A series of γ rays may appear as follows: γ_1 0.669 (\dagger_{γ} 9), γ_2 0.962 (\dagger_{γ} 7), γ_3 1.42 (\dagger_{γ} 0.9). This means that the ratios of γ -ray (photon)intensities $\gamma_1/\gamma_2/\gamma_3$ have the values 9/7/0.9. If a conversion coefficient is known, it is generally entered in the parentheses in which the relative intensity of the γ ray appears.

Relative intensities of conversion electrons, if on the same scale as the γ rays, are also entered with the appropriate dagger sign; for example, \dagger_K . When γ rays and conversion electrons are not normalized to each other, a double dagger (\ddagger) is used for one of them. For example, γ_3 ($\dagger_{\gamma}7$), γ_4 ($\dagger_{\gamma}1$), γ_5 ($\dagger_{\kappa}10$), γ_6 ($\dagger_{\kappa}5$) means that γ_3 is seven times as intense as γ_4 and γ_5 is twice as intense as γ_6 but implies no relation between the γ_6 -electron and γ_6 -ray intensities.

With deference to compactness, the methods by which the γ -ray transition energies and intensities of radiations were determined have been grouped before the author reference or references. Those familiar with data and methods of nuclear spectroscopy will usually known how the indicated methods were employed. Certain coincidence methods used to establish sequences of events necessary for deriving the decay schemes are also called to the attention of the reader. Specific coincidence results are omitted from the data except when the coincidence relations implied are not shown on the decay scheme. The symbols employed have the following meanings:

mag spect conv Measurement of internal conversion electrons with a magnetic spectrometer or spectrograph.

mag spect Measurement of secondary (photo-, Compton) electrons as above.

scint spect Pulse-height analysis with a solid or liquid scintillation detector.

scint spect conv Pulse-height analysis (conversion electron) with a solid or liquid scintillation detector.

sum scint spect Measurement of scintillation spectrum at close geometry to emphasize sums of coincident y rays.

3 cryst pair spect Pulse-height analysis employing a 3crystal pair spectrometer with scintillation detectors.

semicond spect Pulse-height analysis with a semiconductor detector.

semicond spect conv Pulse-height analysis (conversion electron) with a semiconductor detector.

γγ sum coinc Measurement of the coincidence spectrum of two γ rays whose total energy is a fixed sum.

cryst spect Measurement by diffraction with a bent crystal spectrometer.

coinc Study involving coincidences or absence of coincidences ($\gamma\gamma$, $\beta\gamma$, γe^- , $a\gamma$, etc.) with counters and, in some cases, spectrometers.

 $\gamma \gamma^{\pm}$ coinc Coincidence measurement between a γ -ray and annihilation radiation (γ^{\pm}). Comparable symbols are used for the measurement of other radiations in coincidence with annihilation photons.

coinc abs Coincidence study using absorption techniques. abs Absorption of γ rays.

abs conv Absorption of conversion electrons.

abs sec Absorption of secondary electrons.

cl ch recoil Observation of secondary electrons in a cloud chamber with magnetic field.

pair spect Magnetic analysis of positron-electron pairs produced in a thin radiator by γ rays.

pair spect conv Magnetic analysis of positron-electron pairs produced by internal pair conversion.

Be (γ, n) , D (γ, n) , D (γ, p) Measurement of neutron or proton energies from these reactions.

A few rather specialized symbols are used occasionally with the γ -ray data: e^z stands for pair conversion, e_K^+ for conversion by emission of a positron with simultaneous transfer of an electron into a vacant K orbit. $\dagger \gamma \gamma / \dagger \gamma$ is the ratio of two-quantum to single-quantum emission.

a particles. Energies of a groups are given in boldfaced characters, and in addition the group is designated by subscript according to the energy of the state (in kiloelectron volts) to which the α group leads, when known. For example, α_0 refers to the transition to the ground state and α_{51} to a state at 51 keV. All α energies are based on the Rytz standard, α_0 (Po²¹⁰) = 5.305 MeV (RytA61a, RytA61, RytA60). This involves an upward adjustment of about 0.11% for most values from the Berkeley laboratory, as well as for all other values quoted before about 1961. For pure α emitters intensities of the various groups are on an absolute scale and are designated by the % sign. Intensities of a groups, when there is branched decay, are designated with a † sign. In these cases the intensities are normalized to a total α -particle intensity of 100.

The methods for measuring energies and intensities are as follows:

mag spect Magnetic deflection with photographic or counter detection.

semicond spect Pulse-height analysis with a semiconductor detector.

ion ch Pulse-height analysis with an ionization chamber or proportional counter.

 $\alpha \gamma$ coinc Coincidences between α particles and γ rays of selected energy. Usually α -particle energies measured with semiconductor counters (similar entries are made for coincidences with conversion electrons).

range emuls Measurement of the length of an α -particle track in a photographic emulsion.

"Delayed" particles (p, n, α) . In some cases these particles are emitted promptly from an excited state of a nucleus following β decay to that state. In certain light elements β decay leads to excited states in which α particles are unbound and are emitted promptly. Entries are made under the nucleus that emits the β particles. An exception is made in the case of "long range α -particles" from the excited levels of Po²¹² and Po²¹⁴ following Bi²¹² and Bi²¹⁴ β - decay. These α groups are listed with the α data of the respective polonium isotopes under the heading "long range α 's."

The methods of measuring the "delayed" protons are similar to those used for α particles. For neutrons the following are employed:

p-recoil ion chamber Determination of neutron energies by measurement of the energies of elastically scattered protons in an ionization chamber.

time of fl Measurement of time-of-flight of neutrons in coincidence with β particles.

recoil scint spect Measurement of scattered protons with a scintillation detector.

Energies quoted for all particle radiations are those of the emitted particles with no correction for the energy of the recoil nucleus.

Angular distributions. Following the listing of radiations for each isotope is a list of references to measurements of angular distributions between these radiations, denoted by the symbols $\beta\gamma$ (θ), $\alpha\gamma$ (θ), $\gamma\gamma$ (θ) (includes gamma-gamma, gamma-conversion electron, and conversion-conversion correlations), and so on. References to polarization measurements, for example, $\gamma\gamma_{polariz}$ (θ), $\beta\gamma_{polariz}$ (θ), are also given.

Measured electron capture shell ratios and electron capture/ β ratios are next listed for those nuclei that decay by electron capture (and positron emission).

The last listing for each isotope gives the half-lives and moments of excited states of that isotope. (When long-lived isomers of an isotope are listed as a separate entry half-lives and moments for short-lived levels are listed along with the data for the ground state.) The means by which excited level moments were determined are included in the discussion under

spins and moments. Methods of determining half-lives are denoted as follows:

delay coinc Measurement of the time distribution interval between emissions of radiations which excite and deexcite a level.

nucl res fluor Determination of a γ -ray half-life from the resonant scattering cross section.

Coulomb excit Determination of a γ -ray half-life from Coulomb excitation cross section.

Doppler broadening Determination of the half-life of a γ ray emitted from a moving nucleus by measuring the broadening or shifting of the γ -ray line due to the Doppler effect.

nuclear recoil Determination of the half-life of a radiation emitted from a moving nucleus by measuring the distance the nucleus moves before emitting the radiation (includes electrostatic method for determining the distance the recoil nucleus traveled).

hf deflection Determination of the delay between two conversion electron transitions by accelerating one or both of the electrons in a high-frequency electric field and measuring the resulting energy shifts, detecting the two radiations in coincidence (see BlauA59, GerhT56a).

electron scattering Determination of a γ -ray half-life from the cross section for inelastic scattering of electrons (Coulomb excitation with electrons).

A few entries in Table II, which represent selection, normalization, and averaging of data from numerous papers on the same subject, have been designated "compiled from (references) . . . by LHP." As implied by the reference, we are responsible for any abuse of the original data.

B. DECAY SCHEMES

Note on references. It is not possible to place on each decay scheme references to all of the publications that contributed data. The few references entered are to those publications that either provided the decay scheme in the form shown or supplemented an established series of levels and transitions with some new ones. The reference NDS stands for Nuclear Data Sheets issued by Nuclear Data Group, Oak Ridge National Laboratory. No mention is made in the references that we have done some editing and piecing together of data in almost all of the decay schemes shown. In particular, information that the original authors considered uncertain has been eliminated to give clarity to the remainder.

Scope of information. Each figure pertains to the energy levels for a particular mass number. For β -decay processes all data fit into the scheme in a natural way because the mass number does not change. Energy levels populated by α decay will, of course, be connected with the α emitter which has a mass number

four units higher. If the α emitter is also β unstable, the decay data pertinent to that mode will be found on the diagram for the appropriate mass number.

Energy levels excited by nuclear scattering, stripping, or nuclear reactions generally are not dealt with comprehensively in this compilation. In the first place, a rather arbitrary cut-off was made in confining our attention to states that lie at energies that could be reached by β decay of the isobars. The rationale (such as it is) lies in emphasizing radioactive decay data in this compilation but also in the presently valid generalization that high-lying states have not had the same type of theoretical scrutiny as the states closer to the ground state. (This generalization must be applied to a somewhat elastic energy scale which expands toward lighter elements.) An omission more important than the energy cut-off is an explanation of how these states were excited and de-excited and the relevance to the spins and/or parities assigned. In view of the rapid evolution of the means and methods for doing nuclear spectroscopy by means of nuclear reactions, the incorporation of such data into "decay schemes" is rapidly becoming mandatory if they are to serve the needs of nuclear spectroscopists.

Levels excited by nuclear reactions. The limitations in the entry of these levels have been mentioned in the preceding discussion. Such states may be found in the level diagrams by noting that we have omitted γ rays which de-excite these levels, even though it is often the y transitions that establish the position and nature of the states. In the present format this obvious deficiency is compensated by the relatively greater ease of seeing the data on radioactivity that still predominate. The inset of references on each decay scheme contains those in which the full details of the population and interpretation of these levels will be found, and in many cases the groupings of certain states with their spins and parities will permit the knowledgeable reader to determine how the assignments were made without consulting the original work.

Ground states. Ground states are indicated by a heavy line immediately above the isotopic assignment (in large characters). A somewhat lighter line is used to indicate those isomeric states for which there is a separate entry in Tables I and II. Those ground states that are radioactive have their half-lives indicated near the line; the abbreviation for a unit of time makes unnecessary their placement in some standard position. An isotope that undergoes branched decay generally has the percent of branching shown for each mode, but other decay information is given only for the mode or modes pertinent to the mass number under consideration.

Energy levels in general. The horizontal lines that represent energy levels have the energies of excitation entered above them in boldfaced characters near the right-hand extremity. Energies are in units of million electron volts. The spins and parities are in similar characters and similarly placed on the left. We have not entered other descriptive quantum numbers even when they have been well established, but members of different rotational bands (for nuclei in the major regions of nuclear deformation) are slightly displaced horizontally. Assignments appearing within parentheses are consistent with available information but not determined uniquely. Sometimes when only two choices are possible both are entered. Uncertain levels and transitions are indicated by dashed lines.

Half-lives of excited states are entered at either end of the level or, in a few cases, on the level, in large characters. The abbreviations have the following meanings: ms = 10^{-3} sec, μ s = 10^{-6} sec, ns = 10^{-9} sec, ps = 10^{-12} sec.

Beta-decay processes. Q values for β -decay modes are entered where convenient below the isotopic symbol. Those for β decay are designated Q_{β} , whereas for both positron decay and orbital electron capture they are given as Q_{EC} . The latter designation eliminates the ambiguity as to whether two electron masses have been added to the endpoint energy of the positron spectrum. Thus all Q values have their exact definition as the energy difference between the ground states of parent and daughter systems. Values given without other designation are based on decay data. Q values followed by the abbreviation calc were calculated from (a) masses established in a variety of ways, (b) closed decay cycles or decay-reaction cycles, or (c) ratios of electron capture from different shells for EC decay or EC/ β ⁺ ratios. Those values followed by the symbol est were estimated from theoretical considerations of α or β systematics.

The intensities of β^- , β^+ , and electron-capture groups indicated near the arrows showing the transitions are given as percentages of total transitions (%) or as relative intensities (†). To the right of the intensities are shown the log ft values (*italic* characters). Tie lines to the transition arrows are used for clarity. β branchings given are not necessarily directly measured. In fact, in a majority of cases they are inferred from γ -ray and conversion-electron data.

In some cases close-lying states are populated by β groups that cannot be resolved; the arrow then terminates at a bracket spanning these levels. An arrow that terminates away from all levels indicates that information is not available on the primary states populated.

Alpha decay. Q values represent the total α -decay energy which includes the recoil energy. The symbols calc and est have the same meaning as they have when applied to β decay.

The decay scheme for an α emitter of mass A+4 is given along with the level diagram for mass A which includes the α daughter. The α -emitting parent is

shown on this diagram as a line above its isotopic assignment (in smaller characters than those used for the mass A isotopes); α transitions are indicated by double-line arrows. The intensities are given as percentages of the total a-decay events. Adjacent to the intensity values are "hindrance factors" (italic characters). Because the meaning of this term may not be widely known, it is explained here. By means of a single normalizing lifetime the half-life for the groundstate transition of any even-even a emitter may be calculated rather accurately by using simple one-body α -decay theory. The hindrance factor for such a transition is defined as unity. Almost all other transitions have half-lives longer than those given by this calculation. The factor by which the actual half-life exceeds that calculated is termed the "hindrance factor." All hindrance factors given on the decay schemes were calculated by Helen Michel (MicH66) from the onebody spin-independent equations of Preston (PresM47); the reader is referred to these papers for details. They serve a function similar to that of the log ft value for β decay in that further demands are placed on the theory to explain the relative retardation from some adopted standard.

Gamma-ray transitions. Special note should be taken of the system employed for indicating intensities of y-ray transitions (vertical lines). Because the array of energy levels will be populated differently by the different radioactive modes that feed them, it is cumbersome to give intensities on a single diagram which relate to decay events of each parent substance. The intensities shown (numbers printed diagonally in light characters) are relative values for the y-ray (photon) de-excitation of the particular level above which they appear and sum to ≈100 for each level. Occasionally such numbers are calculated from conversion-electron intensities, which is then indicated by placing them in parentheses. Absolute photon intensities of some γ rays in nuclei that can be fed only by one radioactive parent are given to the left of the transition arrow with a % sign. Intensities of γ rays and conversion electrons expressed in other ways will be found in conjunction with the parent substance in the tabular data accompanying the decay schemes. Multipolarities of the transitions are entered on the vertical to the left of the transition arrow or above the arrow, following the energy.

The energies of the γ transitions are given in bold-faced characters beside the intensities or immediately above the arrows when no intensity data are listed. Energies of the first excited state to ground-state transition are omitted. An asterisk following the energy of a γ ray signifies that coincidence work (usually) has shown the existence of more than one γ ray of approximately the same energy. Consequently, the reader should search for other γ rays of that energy in the level diagram.

Table I

Radioisotope data

Half-life – type of decay – isotopic abundance – atomic mass – neutron cross-section (capture and fission) – class (assignment rating) – means of identification – genetic relationships – major radiations – means of production

Isotope Z A	Half-life	Type of decay (♣♠); % abundance; Mass excess (△■M-A), MeV (C ¹² =0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
o ^{n i}	11.7 m (SosA59, SosA58, SosA59a, ProkY62) 12.8 m (RobsJ51) 12 m (HameM56a) others (SneA50)	ၞ β (ChadJ35, SneA50) Δ 8.0714 (MTW)	A recoil nuclei, conservation of momentum (ChadJ2) observation of (n, a) reaction (FeaN32, HarkW33) parent H ¹ (SneA50, RobsJ50)	β 0.78 max	fission, H ³ (d, a), Be ⁹ (a, n), H ² (d, He ³) Be ⁹ (Y, n) (photons from electron generator)
1H1		 99.9852 (Lake Michigan water); 99.9842 to 99.9877 (other sources (BegF59a) 99.9849 to 99.9861 (KirI51) Δ 7.2890 (MTW) σ_c 0.332 (GoldmDT64) 			
H ²		<pre>% 0.0148 (Lake Michigan water); 0.0123 to 0.0158 (other sources) (BegF59a) 0.0139 to 0.0151 (KirI51) Δ 13.1359 (MTW) σ_c 0.0005 (GoldmDT64)</pre>			
H ³	12.262 y genet (JonWM55) 12.46 y genet (JenkG50) 12.6 y (PopM58) others (JonWM51, NoviA47, AlvL39, AlvL40, HugD48a, ONeaR40, CornR41)	β (AlvL39, AlvL40) Δ 14.9500 (MTW) σ _c <6.7 x 10 ⁻⁶ (GoldmDT64) (absorption not possible)	A chem, sep isotopes, excit (AlvL39, AlvL40)	ρ 0.0186 max average β energy: 0.0057 calorimetric (PilW61) 0.0055 calorimetric (PopM58) others (GregD58) γ	Li ⁶ (n, a) (ONeaR40)
2He ³		 76 1.3 x 10⁻⁴ (atmosphere) 1.7 x 10⁻⁵ (wells) (AldL46, CoonJ49) Δ 14.9313 (MTW) σ (n, p) 5330 (GoldmDT64) 			H ³ (β¯)
He ⁴		% ≈100 Δ 2.4248 (MTW) σ _c (total absorption) 0 (GoldmDT64)			
He ⁶	0.797 s (BieJ62) 0.799 s (KiiR54) 0.85 s (BornG62, VeeN56) 0.83 s (Herrm W58, AlleJS59) 0.86 s (MalmS62) 0.82 s (HolmJ49) others (SomH46, RusB55, BattM 53, VenG52, ShelR52a, PolA37, DewJ52)		A chem (BjeT36, BjeT36a) cross bomb, excit, chem (SomH46)	β 3.508 max Y no Y	Be ⁹ (n, a) (RusB55, BjeT36, PolA37, SomH46, KnoW48, PerezV50) Li ⁷ (Y, p) (ShelR52a)
He ⁸	0.122 s (PosA65a) 0.03 s (NefB63a)	♀ β 100%, n 12% (PosA65a) Δ 31.7 (CerJ66a)	B chem, excit, cross bomb (PosA65)	β [9.7 max] γ 0.98 (88%) daughter radiations from Li ⁸	protons on C, O (PosA65a)
3 ^{Li6}		 7.42 (OmuI58, HigM55, OrdK55) 7.29-7.42 (CamAE55) Δ 14.088 (MTW) σ (n, α) 953 (GoldmDT64) 			
<u>1.i.</u> 7		 % 92.58 (OmuI58, HigM55, OrdK55) 92.58-92.71 (CamAE55) Δ 14.907 (MTW) σ_c 0.037 (GoldmDT64) 			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△ªM-A), MeV (C¹=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
3 ^{Li8}	0.841 s (KliR54) 0.83 s (RalW51) 0.88 s (BayD37, OglW47, ConnD59) 0.87 s (BretF53) 0.85 s (ShelR52a) others (HugD47a, WinnM54, BunbD53, NefB53a)	Υ β ⁻ , 2α (LewisW37) Δ 20.946 (MTW)	A excit (CranH35a) n-capt, sep isotopes, genet (HugD47a)	β 13 max a 1.6 (broad peak, with 2.90 level of Be ⁸)	Li ⁷ (n, Y) (ImhW59) Li ⁷ (d, p) (CranH35a, DelL35, FowW37, BayD37, LewisW37, HornW50, YafL50)
Li ⁹	0.176 s (Dos165) 0.168 s (GardW51, ReaD53) 0.170 s (HoltR52) others (AlbuD63a, NefB63a, SchoR65, ShelR52a, BendP55)	φ β, n, [2a] (GardW51, HoltR52) Δ 24.97 (MTW)	A excit, cross bomb (GardW51) genet energy levels (AlbuD63a)	β 13.61 max n 0.76 a [0.05 (with ground state of Be ⁸)]	Be ⁹ (n,p) (AlbuD63a) Be ⁹ (d,2p) (GardW51, SchoR65)
4Be ⁶	≈0.4 s (TyrH54)	★ (TyrH54) △ 18.37 (MTW)	G excit (TyrH54) nucleus is particle-unstable (AjzF59)		protons on Li, Be (TyrH54)
Be ⁷	53.6 d (KraJJ53a) 52.9 d (SegE49a) 53.1 d (EnglJ65) 53.0 d (RobeJ59, BouR56, BouR47) 53.5 d (WriH57)	Υ EC (Rum L38) Δ 15.769 (MTW) σ (n,p) 54,000 (Goldm DT 64)	A chem, cross bomb, excit (Rum L38)	Y 0.477 (10.3%)	Li ⁶ (d,n) (RumL38, RobeR38, ZloI42) B ¹⁰ (p,a) (RobeR38, MaiH39) C ¹² (He ³ , 2a) (EnglJ65)
Be ⁹		% 100 (NierA37a) Δ 11.351 (MTW) σ _c 0.009 (GoldmDT64)			
Be ¹⁰	2.5 x 10 ⁶ y sp act + mass spect (MMilE47) 2.9 x 10 ⁶ y yield (HugD47)	β (MMilE46) Δ 12.607 (MTW)	A chem (MMilE46) chem, mass spect (PierAK46)	β 0.555 max Y no Y	Be ⁹ (n, Y) (HugD47, AlbuD50, BellP50c) Be ⁹ (d, p) (MMilE46, LeviJ47)
Be ¹¹	13.6 s (WilkD59, NefB63a, AlbuD58c) 14.1 s (NurM58a)	φ β (AlbuD58c, WilkD59) Δ 20.18 (MTW)	A excit, genet energy levels (AlbuD58c, WilkD59)	β 11.5 max Y 2.14 (32%), 4.67 (2.1%), 5.85 (2.4%), 6.79 (4.4%), 7.99 (1.7%)	B ¹¹ (n,p) (WilkD59, AlbuD58c)
Be ¹²	0.0114 s (PosA65)	Υ [β¯], n (PosA65) Δ 25 (PosA65, MTW)	C cross bomb (PosA65)		protons on O ¹⁸ , N ¹⁵ , F ¹⁹ , Na ²³ , Al ²⁷ , O ¹⁶ (PosA65)
5B ⁸	0.77 s (MattE64) 0.78 s (DunnK58) others (ShelR52a)		A excit, cross bomb (AlvL50)	β [†] [14.0 max] a [1.6 (broad peak, with 2.90 level of Be ⁸) Y [0.511 (200%, Y [±])]	Li ⁶ (He ³ , n) (DunnK58, MattE64)
B ¹⁰		76 19.6-19.8 (NewD59) 19.58 (ShiuV55) 18.45-18.98 (ThodH48) 19.3 (BentP58) 20.0 (LehW59) Δ 12.052 (MTW) σ (n, α) 3837 (GoldmDT64)			
<u>B</u> ¹¹		% 80.2-80.4 (NewD59) 80.42 (ShiuV55) 80.0 (LehW59) 81.7 (BentP58) 81.02-81.55 (ThodH48) Δ 8.6677 (MTW) σ _c 0.005 (GoldmDT64)			
B ¹²	0.0203 s (FishT63, SchaA61) 0.0202 s (PeteRW63) 0.0189 s (KreW59) others (NorE56, BretP53, JelJ48a, BrolJ51, CookB56, CookB57)	p − (CranH35) β 100%, 3a 1.5% AlbuD63, CookCW57, CookCW58) Δ 13.370 (MTW)	A excit (CranH35, FowW36)	β 13.37 max Y 4.43 (1.3%) a 0.195 (1.5%), broad distribution to ≈3 MeV	B ¹¹ (d,p) (GranH35, FowW36, BrolJ51)

Isot Z	tope A	Half-life	Type of decay (★); % abundance; Mass excess (△≅M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
5 ^E	313	0.0186 s (MarqA62)	β (MarqA62) no n, lim 0.3% (PosA65) Δ 16.562 (MTW)	В	excit (HubbE53, NorE56) excit, genet energy levels (MarqA62)	Ι.	13.44 max 3.68 (7%)	B ¹¹ (t,p) (MarqA62)
60	9	0.127 s (HardJ65a)	☆ [p ⁺], p, [2a] (HardJ65a) Δ 29.0 (CerJ66)	В	excit, cross bomb (HardJ65a)	ľ	8.2 (60%), 1.1 (40%), both peaks broad [0.05, 1.6 (broad peak, with 2.90 level of Be ⁸)]	B ¹⁰ (p, 2n) (HardJ65a) B ¹¹ (p, 3n) (HardJ65a)
	10	19.48 s (EarL62) 19.3 s (BartiF63) 19.1 s (SherrR49)	* β* (SherrR49) Δ 15.66 (MTW)	A	chem, sep isotopes (SherrR48, SherrR49)		1.87 max 0.511 (200%, Y [±]), 0.717 (100%), 1.023 (1.7%)	B ¹⁰ (p,n) (SherrR48, SherrR49)
	,11	20.34 m (KavT64) 20.4 m (FolK62, SmiJ41) 20.5 m (SolA41, PerlmM48, ChrisD50) 20.1 m (ArnS58) 20.3 m (MartiW52) others (KunD53, PoolM52, SiegK44a, DicksJ51, PatJ65)	☆ β ⁺ 99+%, EC(K) 0.19% (ScoJ57a) △ 10.648 (MTW)	A	excit (CranH34) chem, excit (BarkW39)		0.97 max 0.511 (200%, Y [±])	B ¹¹ (p,n) (BarkW39) B ¹⁰ (p, Y) (CranH34a, BarkW39) B ¹⁰ (d,n) (CocJ35, YosD35, FowW36) N ¹⁴ (p,a) (BarkW39)
2	.12		% 98.892 (limestone CO ₂) (NierA 50) Δ ≡0 σ _C 0.0034 (GoldmDT64)					
<u>c</u>	,13		% 1.108 (limestone CO ₂) (NierA50) Δ 3.125 (MTW) σ _c 0.0009 (GoldmDT64)					
c	,14	5730 y (GodH62) 5745 y (HugE64, MannWB61) 5680 y (Olsf62) 5568 y (LibW55) (all values by sp act) others (WatD61, EngeA50, JonWM49, MillWW50, ManoG51, HawR49, ReidA46, HawR48, NorL48, YafL48a, CaswR54)	* β (KameM40) Δ 3.0198 (MTW)	A	chem, cross bomb, excit (RubeS41)		0.156 max_ average β energy: 0.045 calorimetric (JenkG52) no Y	N ¹⁴ (n,p) (RubeS41, LibW55)
	,15	2.5 s (NelJB64) 2.25 s (DouR56) 2.4 s (HudE50a)	β⁻ (HudE50) Δ 9.873 (MTW)	A	excit, sep isotopes (HudE50) genet energy levels (WarbE65)	١.	9.82 max (32%), 4.51 max (68%) 5.299 (68%)	C ¹⁴ (d, p) (HudE50, HudE50a, AlbuD59a)
	,16	0.74 s (HinS6la)	Υ [β], n (HinS61a) Δ 13.69 (MTW)	С	excit, decay charac (HinS61a)			C ¹⁴ (t,p) (HinS6la)
7 ^N	112	0.01095 s (FishT63) 0.0110 s (PeteRW63) 0.0125 s (AlvL49a)	# β ⁺ , 3a (AlvL50) β ⁺ 100%, 3a 3.0% (MayT62, GlasN63) Δ 17.36 (MTW)	A	excit, sep isotopes (AlvL49a) genet energy levels (MayT62, WilkD63a, GlasN63, PeteRW63)	Ŷ	16.4 max 0.511 (200%, Y [±]), 4.43 (2.4%) 0.195 (3%), broad distribution to ≈3 MeV	C ¹² (p,n) (AlvL49a, AlvL50) B ¹⁰ (He ³ ,n) (PeteRW63)
N	13	9.96 m (EbrT65, ArnS58, DaniH58, DaniH57b) 10.05 m (FoiK62, BormM65, ChurJ53) 10.08 m (WilkD55) 9,93 m (WardAG39a)	φ β ⁺ (CranH34) Δ 5.345 (MTW)	A	excit (CuriI34, CranH34)		1.20 max 0.511 (200%, Y [±])	B ¹⁰ (a,n) (CuriI34, ElliC35, RideL37a) C ¹² (d,n) (CranH34, HafL35, YosD35, FowW36, CocJ35) C ¹³ (p,n) (AdaRE50) C ¹² (p,Y) (HafL35, CocJ35)
N	14		% 99.635 (NierA50) Δ 2.8637 (MTW) σ (n, p) 1.81 (GoldmDT64)		·			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
7 ^{N15}		% 0.365 (NierA50) Δ 0.100 (MTW) σ _c 2.4 x 10 ⁻⁵ (GoldmDT64)			
N ¹⁶	7.14 s (BieJ64) 7.35 s (ElliJ59, BleE47) 7.16 s (GrayP65a) 7.31 s (MalmS62) 7.22 s (PinI62) others (MartiHC54, NelJB64, SomH46, CrePA65)	* β (LivM34a, FermE34) a 0.0006% (SegR61, SegR61b) a 0.0012% (KauW61) 0.0003% (AlbuD61) Δ 5.685 (MTW)	A excit (LivM34a, FermE34)	β 10.40 max (26%), 4.27 max Y 2.75 (1%), 6.13 (69%), 7.11 (5%) a 1.7	N ¹⁵ (d, p) (AlbuD59a, FowW36) O ¹⁶ (n, p) (ChanW37, BleE47) F ¹⁹ (n, a) (LivM34a, FermE34, NahM36, PolA37) N ¹⁵ (n, Y) (PinI62)
N ¹⁷	4.16 s (DosI65) 4.14 s (KnaK48) 4.15 s (StepW51)	Υ β ⁻ , n (KnaK48) Δ 7.87 (MTW)	A chem, cross bomb (AlvL49, KnaK48, ChupW48)	β 8.68 max (1.6%), 7.81 max (2.6%), 4.1 max (95%) Y 0.87 (3%), 2.19 (0.5%) n 0.40 (45%), 1.21 (45%), 1.81 (5%)	N ¹⁵ (t,p) (SilM64) C ¹⁴ (a,p) (StepW51) O ¹⁷ (n,p) (CharR49)
N ¹⁸	0.63 s (ChasL64)	φ β (ChasL64) Δ 13.1 (ChasL64, MTW)	A sep isotopes, genet energy levels (ChasL64)	β 9.4 max Y 0.82 (59%), 1.65 (59%), 1.98 (100%), 2.47 (41%)	O ¹⁸ (n,p) (ChasL64)
8 ^O 13	0.0087 s (MPheR65a)	* [β ⁺], p (MPheR65a) Δ 23.1 (CerJ66)	C excit, genet energy levels (MPheR65a, BartoR63)	p 6.40 († 100), 6.97 († 24)	N ¹⁴ (p, 2n) (MPheR65a)
o ¹⁴	70.91 s (HendD61) 71.0 s (BardR62) 71.3 s (FrickG63) others (BardR60, GerhJ54, SherrR49, BromD57a, KuaH64a)	* β ⁺ (SherrR49) Δ 8.0080 (MTW)	A chem, excit (SherrR49) genet energy levels (SherrR53)	β [±] 4.12 max (0.6%), 1.811 max (99%) Y 0.511 (200%, Y [±]), 2.312 (99%)	N ¹⁴ (p,n) (SherrR49)
o ¹⁵	123 s (NelJW63) 124 s (PenJ57, KliR54, FolK62) 125 s (CsiJ63a) others (PerezV49, BashS55, KisO57, MMilE35a, BotW39, DuncD51, VasiSS63a)	2.860 (MI W)	A chem, excit (LivM34, MMilE35a) excit (FowW36, KinL39a)	β [±] 1.74 max Y 0.511 (200%, Y [±])	N ¹⁴ (d,n) (LivM34, MMilE35a, FowW36, BrowH50) N ¹⁴ (p, Y) (DubL38, DuncD51) O ¹⁶ (He ³ ,a) (WarbE65) C ¹² (a,n) (KinL39a, VasiSS63a)
<u>o¹⁶</u>		% 99.759 (air O ₂) (NierA50) O ¹⁶ /O ¹⁸ variation ≤4% (ThodH49, KameM46) Δ -4.7366 (MTW) σ _c 0.00018 (GoldmDT64)			
017		% 0.037 (air O ₂) (NierA50) Δ -0.808 (MTW) σ (n, α) 0.24 (GoldmDT64)			
<u>Q¹⁸</u>		% 0.204 (air O ₂) (NierA50) Δ -0.7824 (MTW) σ _c 0.00021 (GoldmDT64)			
o ¹⁹	29.1 s (MalmS62) 27.2 s (BormM65) 29.4 s (FulH44) 27.0 s (BleE47a)	φ β (MarsJ43) Δ 3.333 (MTW)	A excit (NahM36) n-capt (MarsJ43)	β 4.60 max γ 0.197 (97%), 1.37 (59%)	O ¹⁸ (n, Y) (MareJ43, SerL47b, SerL46) O ¹⁸ (d, p) (AlbuD59a)
o ²⁰	14 s (SchaG60)		B sep isotopes, excit, genet (SchaG60) parent F ²⁰ (SchaG60)	β [2.75 max] γ 1.06 (100%) daughter radiations from F ²⁰	O ¹⁸ (t, p) (SchaG60)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
9 ^{F 17}	66.6 s (ArnS58) 66 s (KoesL54, WonC54a) others (WarrJ54, NewH35, PerezV50b, HorsR52, PerlmM48, DubL38, HestR58, VasiSS62c)	Φ β ⁺ (NewH35) Δ 1.952 (MTW)	EUL COALL	β [‡] 1.74 max Υ 0.511 (200%, Υ [±])	O ¹⁶ (d, n) (NewH35, FowW36, PerezV50b) N ¹⁴ (a, n) (WerL34, ElliC34a, RideL37a)
F ¹⁸	109.7 m (MahJ64) 109.9 m (EbrT65) others (BendW58, CarlC59, BegK63, Hofm164, BlasJ49, PerlmM48, KriR41, JarN55, BormM65, HubeO43, DubL38, SneA37a)	 p⁺ 97%, EC 3% (DreR56) Δ 0.872 (MTW) 	I show continued once outsite I	β [±] 0.635 max Υ Ο X-rays, 0.511 (194%, Υ [±])	O ¹⁸ (p,n) (DubL38) O ¹⁶ (t, n) (MahJ64) O ¹⁶ (He ³ , p) (MahJ64) F ¹⁹ (n, 2n) (BormM65) F ¹⁹ (d, t) (KriR41) Ne ²⁰ (d, α) (SncA37a)
F ¹⁹		% 100 (AstF20) Δ -1.486 (MTW) σ _c 0.010 (GoldmDT64)			1 ,
F ²⁰	11.56 s (MalmS62) 11.4 s (GliS63) 11.2 s (SchaG60) 10.7 s (SnoS50) others (CranH35a, VasiSS59)	 φ β (CranH35a) Δ -0.012 (MTW) 	N-134341	β 5.41 max Υ 1.63 (100%)	F ¹⁹ (n, Y) (SerIA7b, GliS63, NahM36) F ¹⁹ (d, p) (CranH35a, FowW36, SnoS50, JelJ50, NemY50)
F ²¹	4.35 s (ForJ65) 4.6 s (KieP63) 5 s (CamE52)	φ β (KieP63) Δ -0.05 (MTW)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	β 5.4 max Y 0.350 († 100), 1.38 († 13)	O ¹⁸ (a,p) (ForJ65) F ¹⁹ (t,p) (KieP63, HorvP64, HinS62, SilM61a)
F ²²	4.0 s (VauF65a)	* β (VauF65a) Δ 4 (VauF65a, MTW)	lovels (Nov.E45-)	B 11 max Y 1.28 (100%), 2.06 (67%)	Ne ²² (n, p) (VauF65a)
10 ^{Ne¹⁷}	0.10 s (MPheR64)	# [β ⁺], p (MPheR64, BartoR63) Δ 33.9 (MPheR64, MTW)	B excit, genet energy levels (MPheR64, BartoR63)	p 4.59	F ¹⁹ (p, 3n) (MPheR64)
Ne ¹⁷	0.69 s (DAurJ64)	‡ [β [†]], p (DAurJ64)	G cross bomb (DAurJ64) activity not observed (EstR66)		
Ne ¹⁸	1.5 s (ButlJW61a, FrickG63) 1.6 s (GowJ54) others (EccD61)	Υ β ⁺ (GowJ54) Δ 5.319 (MTW)		3 ¹ 3.42 max Y 0.511 (200%, Y [±]), 1.04 (7%)	F ¹⁹ (p, 2n) (GowJ54) O ¹⁶ (He ³ , n) (FrickG63)
Ne ¹⁹	17.4 s (EarL62, AlleJS59) 17.7 s (PenJ57) 18.5 s (SchrC52) 18.6 s (BlasJ51b) 18.3 s (AlfWP57) 18.2 s (SherrR49) others (WhiM39, NahM54c, WallR60, VasiSS64)	φ β [†] (WhiM39) Δ 1.752 (MTW)	A cross bomb, excit (WhiM39)	3 [±] 2.22 max Y 0.511 (200%, Y [±])	F ¹⁹ (p,n) (WhiM39, BlasJ5lb, SchrG52)
<u>Ne 20</u>		 90.92 (NierA50a) variations in Ne²⁰/Ne²¹ and Ne²⁰/Ne²² (WetC54) Δ -7.042 (MTW) 			
Ne ²¹		% 0.257 (NierA50a) Δ -5.730 (MTW)			
Ne ²²		 8.82 (NierA50a) Δ -8.025 (MTW) σ_c 0.04 (GoldmDT64) 			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
10 ^{Ne²³}	37.6 s (PenJ57) 37.5 s (AlleJS59, BurmRL59) 38.0 s (NurM58) 40.2 s (BrowH50a) others (HubeO44, RidlB58, AmaE35, BjeT37)	φ ρ (PolE40) Δ -5.148 (MTW)	A excit (AmaE35) chem (BjeT37, PolA37)	β 4.38 max γ 0.439 (33%), 1.64 (0.9%)	Ne ²² (n, Y) (LancH65) Ne ²² (d, p) (PolE40, BrowH50a, PerezV50a) Na ²³ (n, p) (AmaE35, NahM36, PolA37, BjeT37, CarlT63)
Ne ²⁴	3.38 m (DroB56)	* β (DroB56) Δ -5.95 (MTW)	B chem, genet (DroB56) ancestor Na ²⁴ , parent Na ²⁴ m (DroB56)	β 1.99 max Y 0.472 (100%, with Na ^{24m}), 0.88 (8%) daughter radiations from Na ²⁴	Ne ²² (t, p) (DroB56)
11 ^{Na²⁰}	0.39 s (MacfR 64a, BirgA52a) 0.23 s (ShelR51) 0.25 s (AlvL50)	Υ ρ ⁺ , a (AlvL50, ShelR51) Δ 7.0 (PehR65b)	A excit (AlvL50) excit, cross bomb (MacfR64a) daughter Mg ²⁰ (MacfR64a)	β ⁺ [11.4 max] γ [0.511 (200%, γ [±]), 1.63] α 2.14 († 100), 2.49 († 5), 4.44 († 21)	Ne ²⁰ (p,n) (AlvL50) C ¹² (B ¹⁰ , 2n), C ¹² (B ¹¹ , 3n) (MacfR64a)
Na ²¹	23.0 s (ArnS58) 21.6 s (WallR60) 22.8 s (SchrG52) 23 s (CreEC40c)	Υ β ⁺ (PolE40) Δ −2.19 (MTW)	A excit (CreEC40c)	β [±] 2.52 max Y 0.350 (2.3%), 0.511 (200%, Y [±])	Mg ²⁴ (p, α) (BradHu48) Ne ²⁰ (p, Y) (BrosK47) Ne ²⁰ (d, n) (PolE40)
Na ²²	2.62 y (WyaE61) 2.58 y (MerW57) 2.60 y (LasL49) others (SahN39)	* ρ [†] 90.6%, EC 9.4% (WilliA64) ρ [†] 90%, EC 10% (KoniJ58c, SherrR54) ρ [†] 89%, EC 11% (AlleR55, KreW54a, HageH57) Δ -5.182 (MTW)	A chem, excit (FrisO35)	β ⁺ 1.820 max (0.05%), 0.545 max Y Ne X-rays, 0.511 (180%, Y [±]), 1.275 (100%)	F ¹⁹ (a,n) (FrisO35, LasL37, MagC37) Mg ²⁴ (d,a) (LasL37, AlbuD49)
<u>Na²³</u>		$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Na ²⁴	14.96 h (Cam P58) 14.95 h (WolfG60) 15.05 h (WyaE61, JozE61, MonaJ62) 14.97 h (LocE53) 15.06 h (SreJ51) 15.10 h (CobJ50) 15.04 h (SolA50) 14.90 h (TobJ55) others (PouA59, LovG60, SinW51, WilsR49, ForS52, WriH57)	φ β (LawE35) Δ -8.418 (MTW)	A chem, excit (FermE34, LawE35) descendant Ne ²⁴ (DroB56)	β 4.17 max (0.003%), 1.389 max (100%) Y 1.369 (100%), 2.754 (100%)	Na ²³ (n, Y) (AmaE35, SerL47b)
Na ^{24m}	0.0203 s (AlexKF63) 0.0199 s (SchaA61) others (GlagV61, AlexKF60, CamE59, GlagV59, DroB56)	★ IT, β (DroB56) Δ -7.945 (LHP, MTW)	A genet (DroB56) n-capt (FetP62a) daughter Ne ²⁴ (DroB56)	β 6 max Y 0.472	daughter Ne ²⁴ (DroB56) Na ²³ (n, Y) (CamE59, AlexKF60) Na ²³ (d, p) (SchaA61)
Na ²⁵	60 s (RieW44, IweJ55, NahM56) 61 s (HubeO44) 62 s (PerlmM48, BaldG46) 58 s (BleE47a)	★ β (HubeO43b) Δ -9.36 (MTW)	A excit (HubeO43b) genet energy levels (MaeD55)	β 3.83 max Y 0.39 (14%), 0.58 (14%), 0.98 (15%), 1.61 (6%)	Mg ²⁵ (n, p) (HubeO43b, BleE47a)
Na ²⁶	1.04 s (NurM58) 1.03 s (RobiE61)	Υ β (NurM 58) Δ -7.7 (MTW)	B excit (NurM 58) genet energy levels (RobiE61)	β 6.7 max Y 1.82 (100%)	Mg ²⁶ (n,p) (NurM58, RobiE61)
12 ^{Mg²⁰}	0.6 s (MacfR64a)	 	C genet (MaciR64a) parent Na ²⁰ (MaciR64a)		Ne ²⁰ on Al ²⁷ (MacfR64a)
Mg ²¹	0.121 s (MPheR65)	# [β [†]], p (MPheR65, BartoR63) Δ 10.9 (MPheR65, MTW)	C excit, cross bomb (MPheR65, BartoR63)	p 3.3, 3.8, 4.58, 6.14	Na ²³ (p, 3n) (MPheR65)

Isotope Z A	Half-life	Type of decay (♣♠); % abundance; Mass excess (△■M-A), MeV (C ¹¹ =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
12 ^{Mg²²} (or Al ²³)	0.13 s (TyrH54)	☆ △ -0.38 (CerJ66a)	ı	excit (TyrH54)			protons on Mg (TyrH54)
Mg ²³	12.1 s (MihM58) 11.9 s (WallR60, HubeO43) 12.3 s (BolF51) 11.6 s (WhiM39) 11 s (HunS54)	φ ρ ⁺ (WhiM39) Δ −5.472 (MTW)		excit, cross bomb (WhiM39)	1.	3.03 max 0.44 (9%), 0.511 (200%, Y [±])	Na ²³ (p, n) (WhiM39, DubL40a)
Mg ²⁴		% 78.60 (WhiJ48) 78.8 (WhiF56) Δ -13.933 (MTW) σ (total absorption) 0.03 (GoldmDT64)					
Mg ²⁵		% 10.11 (WhiJ48) 10.2 (WhiF56) Δ -13.191 (MTW) σ (total absorption) 0.3 (GoldmDT64)					
Mg ²⁶		% 11.29 (WhiJ48) 11.1 (WhiF56) Δ -16.214 (MTW) σ _c 0.027 (GoldmDT64)					
Mg ²⁷	9.46 m (PouA59) 9.51 m (DaniH53) 9.45 m (SargB53) 9.39 m (LocE53) 9.5 m (ElliJ59, BonaG64) 9.6 m (EklS43, ForS52, SalS65) others (CriE39, HendM35)	φ ρ (HendM35) Δ -14.583 (MTW) σ _c <0.030 (GoldmDT64)		chem, excit (AmaE35, HendM35)	1.	1.75 max 0.18 (0.7%), 0.84 (70%), 1.013 (30%)	Mg ²⁶ (n, Y) (AmaE35, SerL47b)
Mg ²⁸	21.2 h (LindnM53) 21.3 h (SheIR53) 21.8 h (IweJ53) 22.1 h (JonJW53) 20.8 h (MarqL53) 21.4 h (WapA53c)	φ β (LindnM53, ShelR53) Δ -15.02 (MTW)		chem, genet (LindnM53, ShelR53) parent Al ²⁸ (LindnM53, ShelR53)	1	0.46 max 0.030 0.031 (96%), 0.40 (30%), 0.95 (30%), 1.35 (70%) daughter radiations from Al ²⁸	Mg ²⁶ (t, p) (IweJ53, MidR64b) Mg ²⁶ (a, 2p) (WapA53c, ShelR53, ShelR54)
13 ^{A1²³} (or Mg ²²)	0.13 s (TyrH54)	☆ △ -0.38 (CerJ66a)	1	excit (TyrH54)			protons on Mg (TyrH54)
A1 ²⁴	2.10 s (GlasN53) 2.0 s (BrecS54) 2.3 s (BirgA52)	β^{+} 100%, $\alpha \approx 10^{-2}$ % (GlasN55) $\Delta = 0.1$ (MTW)		excit, decay charac (BirgA52)	Y	8.5 max 0.511 (200%, Y [±]), 1.368, 2.754, 4.2, 5.3, 7.1	Mg ²⁴ (p,π) (BirgA52, BrecS54, GlasN53)
A1 ²⁵	7.24 s (MullT58a) 7.1 s (ArnS58) 7.3 s (WallR60, BradHu48) 7.6 s (HunS54a, ChurJ53)	‡ ρ ⁺ (BradHu48) Δ −8.93 (MTW)	1	excit, sep isotopes (BradHu48)		3.24 max 0.511 (200%, Y [±])	Mg ²⁴ (p, Y) (HunS54a, ArnS58, MullT56a) Mg ²⁵ (p, n) (BradHu48)
A1 ²⁶	7.4 x 10 ⁵ y sp act + mass spect (RigR58) 8 x 10 ⁵ y sp act + mass spect (FishP58) others (RigR57)	φ β 85%, EC 15% (RigR59) Δ -12.211 (MTW)		chem, decay charac (SimaJ54) chem, cross bomb, mass spect (RigR58)	Ι'	1.17 max Mg X-rays, 0.511 (170%, Y [±]), 1.12 (4%), 1.81 (100%)	Mg ²⁶ (p,n) (HandT55a) Mg ²⁵ (d,n) (RigR59, FergJ58) Si ²⁸ (d,a) (LauM55)
Al ²⁶ m	6.37 s (FreeJ65, FreeJ62a) 6.28 s (MullT58a) 6.74 s (MihM58) 6.5 s (KatzL51a, HaeR54, ArnS58) 6.7 s (HunS54a, ChurJ53) others (FricK663, WhiM39, AllaH48, PerlmM48, WafH48)			excit (FrisO34) cross bomb (HubeO43, BradHu48)	β [†] Y	3.21 max 0.511 (200%, Y [±])	Na ²³ (a,n) (FrisO34, MagC37)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≡M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
13 ^{A1²⁷}		% 100 (BaiK50, WhiF56) Δ -17.196 (MTW) σ _c 0.235 (GoldmDT64)			
A1 ²⁸	2.31 m (ElliJ59, MalmS62) 2.27 m (BarthR53b) 2.30 m (EklS43) others (CohAV56, SzaA48, IweJ53, FlorJ62)	φ β (MMilE35) Δ -16.855 (MTW)	A chem, excit (Curil34b, Curil34a, FermE34) chem, cross bomb (AmaE35) daughter Mg 28 (LindnM53, ShelR53)	β ⁻ 2.85 max γ 1.780 (100%)	Al ²⁷ (n, Y) (AmaE35, SerL47b, OrsA49, HumV51, MotH52a) daughter Mg ²⁸ (LindnM53, ShelR53)
Al ²⁹	6.6 m (SeiL49) 6.7 m (BetH39) 6.4 m (HendW39) others (MeyA37, IweJ53)	Υ β [−] (BetH39) Δ −18.22 (MTW)	A excit, cross bomb (BetH39)	β 2.40 max Y 1.28 (94%), 2.43 (6%)	Mg ²⁶ (a, p) (ElliC36, BetH39, HendW39, SeiL49)
A1 ³⁰	3.3 s (RobiE61b) 3 s (PeeE63)	Υ β (RobiE61b) Δ -17.2 (MTW)	C excit, genet energy levels (RobiE61b)	β 5.0 max Υ [1.27 (46%)], 2.23 (61%), 3.51 (39%)	Si ³⁰ (n, p) (RobiE61b, PeeE63)
A1 ³⁰	72 s (PeeE63)	¥ IT (?) (PeeE63)	C chem, sep isotopes (PeeE63)	Y 2.23, 3.51	Si ³⁰ (n, p) (PeeE63)
14 ^{Si²⁵}	0.23 s (MPheR65)	Υ [β ⁺], p (BartoR63, MPheR56) Δ 4.0 (MPheR65, MTW)	C excit, cross bomb (BartoR63, MPheR65)	p 3.34, 4.08, 4.68, 5.39	Al ²⁷ (p, 3n) (MPheR65)
Si ²⁶	2.1 s (FrickG63, RobiE60) 1.7 s (TyrH54)	φ β (RobiE60, FrickG63) Δ -7.13 (MTW)	C excit (RobiE60)	β ⁺ 3.83 max γ 0.511 (200%, γ [±]), 0.82 (34%) daughter radiations from Al ²⁶ m	Mg ²⁴ (He ³ ,n) (RobiE60, FrickG63)
Si ²⁷	4.14 s (MihM58, Kus157) 4.22 s (Bub165) 4.45 s (SumR53) 4.1 s (WallR60, HunS54, VasiSJ60a) others (ElliD41a, WafH48, BolF51)	β [†] (MCreR40) Δ −12.386 (MTW)	A excit (KueG39)	β ⁺ 3.85 max γ 0.511 (200%, γ [±])	Al ²⁷ (p, n) (KueG39, MCreR40, BarkW40a, CassJ51)
<u>Şi²⁸</u>		% 92.18 (ReynJH53) 92.27 (BaiK50) Δ -21.490 (MTW) σ (total absorption) 0.08 (GoldmDT64)			
<u>Şi²⁹</u>		 % 4.71 (ReynJH53) 4.68 (BaiK50) Δ -21.894 (MTW) σ (total absorption) 0.3 (GoldmDT64) 			
<u>şi³⁰</u>		% 3.12 (ReynJH53) 3.05 (BaiK50) Δ -24.439 (MTW) σ _C 0.11 (GoldmDT64)			
Si ³¹	2.62 h (CicJ38, WenA51, DVriL52) 2.65 h (MotH52) 2.59 h (LusE50) others (NewH37, AlleW40, ForS52)	Υ β (NewH35a) Δ -22.96 (MTW)	A n-capt (AmaE35) chem, excit (NewH35a)	β 1.48 max Y 1.26 (0.07%)	Si ³⁰ (n, Y) (Ama E35, SerL47b)
Si ³²	≈650 y yield (GeiD62) ≈710 y yield (LindnM53) others (TurA53, RoyL57)	β (LindnM53) Δ -24.08 (BrodR64, MTW)	A chem, genet (LindnM53, TurA54, BrodR64) parent P ³² (LindnM53, TurA54, BrodR64)	β 0.21 max Y no Y daughter radiations from P ³²	Si ³⁰ (t,p) (GeiD62) protons on Cl (LindnM53, BrodR64)
15 ^{P²⁸}	0.28 s (GlasN55) 0.29 s (BrecS54) 0.27 s (TyrH54)	 β⁺, no a (GlasN55, GlasN53, BrecS54) Δ -7.7 (MTW) 	B excit, decay charac (GlasN53, BrecS54)	β [†] 11.0 max Y 0.511 (200%, Y [±]), 1.780 (75%), 2.6, 4.44 (10%), 4.9, 6.1, 6.7, 7.0, 7.6 (5%)	Si ²⁸ (p, n) (GlasN55, BrecS54, TyrH54)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△∃M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
15 ^{P²⁹}	4.45 s (RoderH55, RoderH53) 4.2 s (WallR60) 4.6s (WhiM41)	1 1	β ⁺ (WhiM41) -16.95 (MTW)	A	excit (WhiM41) genet energy levels (RoderH55)		3.95 max 0.511 (200%, Y [±]), 1.28 (0.8%), 2.43 (0.2%)	Si ²⁸ (d, n) (RoderH55)
P30	2.50 m (MDonW63) 2.49 m (EbTT65) 2.51 m (Arn558) 2.55 m (KoesL54) others (RideL37a, VasiS562c, FrickG63, BaskK52, CicJ38)	1 3	β [†] (CuriI34) -20.20 (MTW)	A	excit (CuriI34, FrisO34)		3.24 max 0.511 (200%, Y [±]), 2.23 (0.5%)	Al ²⁷ (a, n) (FrisO34, Curil34, RideL37a) S ³² (d, a) (VasiSS62c, SagR36) Si ²⁹ (p, Y) (BotW39, BaldG46, PerlmM48)
<u>p³¹</u>		Δ	100 (AstF20, KerL54) -24.438 (MTW) 0.19 (GoldmDT64)					
P ³²	14.28 d (MaraP61) 14.22 d (AndeO57) 14.30 d (CacB38, BayJ50) 14.58 d (RobeJ59) 14.60 d (SinW51) 14.50 d (LocE53) 14.35 d (KlemE48) others (MuldD40)		β (LymE37) -24.303 (MTW)	A	chem, n-capt (AmaE35) daughter Si ³² (LindnM53, TurA54, BrodR64)	β-	1.710 max average β energy: 0.69 calorimetric (ShimN56a, HovV62) 0.70 ion ch (CaswR52, BrabJ53)	P ³¹ (n, Y) (SerL47b) S ³⁴ (d, a) (SagR36) S ³² (n, p) (AmaE35)
P ³³	24.4 d (NicR54) 25.2 d (FogI60) 24.8 d (JensE52) 25 d (WestT52, ShelR51a)		β (JensE52, ShelR51a) -26.335 (MTW)	A	chem, cross bomb (ShelR51a)	1"	0.248 max no Y	S ³³ (n, p) (ShelR51a, JensE52, WestT52, NicR54, FogI60) Cl ³⁷ (Y, a) (ShelR51a)
P ³⁴	12.4 s (BleE46) 12.7 s (CorkJ40a) 12.5 s (ScaR58)	١ .	β¯ (ZunW45) -24.8 (MTW)	В	excit (CorkJ40a) chem, excit, cross bomb (BleE46)	1.	5.1 max 2.13 (25%), 4.0 (0.2%)	C1 ³⁷ (n, a) (ZunW45, HubeO45, BleE46, ScaR58) S ³⁴ (n, p) (CorkJ40a, ZunW45, BleE46)
16 ^{S 29}	0.19 s (HardJ64)	1	[β ⁺], p (HardJ64) -2.9 (HardJ64, MTW)	С	excit, cross bomb (HardJ64)	р	3.73, 5.40	P ³¹ (p,3n) (HardJ64)
s ³⁰	1.4 s (FrickG63, RobiE61a)	1.	β ⁺ (RobiE61a) -14.09 (MTW)	С	excit, genet energy levels (RobiE61a)	β ⁺ Y	5.09 max (20%), 4.42 max (80%) 0.511 (200%, Y [±]), 0.687 (80%) daughter radiations from P ³⁰	Si ²⁸ (He ³ ,n) (RobiE6la FrickG63)
s ³¹	2.72 s (MihM58) 2.66 s (HaeR52) 2.61 s (LindeKH60) 2.6 s (WallR60, NelJW63, MElhJ49) 2.4 s (HunS54) others (ElliD41a, WhiM41, BolF51, VasiSS63)	1	p ⁺ (WhiM41) -1 8 .99 (MTW)	A	excit, cross bomb (WhiM41, ElliD41a)		4.42 max 0.511 (200%, Y [±]), 1.27 (1.1%)	p ³¹ (p,n) (WhiM41) Si ²⁸ (a,n) (ElliD41, ElliD41a, KinL40)
<u>s³²</u>			95.0 (BradP56) 95.018 (meteoritic sulfur) (MacnJ50a) terrestrial S ³² /S ³⁴ variation ≤5% (TudA50) S ³² /S ³⁴ variation (KulJ56)					
22			-26.013 (MTW)					
<u>s³³</u>			0.760 (BradP56) 0.750 (meteoritic sulfur) (MacnJ50a) -26.583 (MTW)					
<u>s³⁴</u>		Δ	4.22 (BradP56) 4.215 (meteoritic sulfur) (MacnJ50a) -29.934 (MTW) 0.27 (GoldmDT64)					

Isotope Z A	Half-life	Type of decay (**); % abundance; Mass exce (Δ=M-A), MeV (C'=0 Thermal neutron cross section (σ), barns		Major radiations: approximate energies (MeV) and intensities	Principal means of production
16 ^S 35	87.9 d (FlyK65a) 86.4 d (CoopRs9) 87.2 d (SelH58) 89 d (WyaE61, CaliJ59) 87 d (HendR43) 88 d (LeviH40, KameM41) others (SerL47b, CoolR39, MauW49, RudG52)	p (Libw39) Δ -28.847 (MTW)	A chem, excit (AndeEB36a) chem, cross bomb, excit (KameM41) sep isotopes (KameM42)	β 0.167 max average β energy: 0.0488 calorimetric (ConnR57, HovV64)	S ³⁴ (n, Y) (SerL47b) Cl ³⁷ (d, a) (KameM41
<u>s³⁶</u>		% 0.014 (BradP56) 0.017 (meteoritic sulfur) (MacnJ50a) Δ -30.66 (MTW) σ _c 0.14 (GoldmDT64)			
s ³⁷	5.07 m (ElliJ59) 5.04 m (BleE46) others (ScaR58)	β (ZunW45) Δ -27.0 (MTW)	B chem, excit, cross bomb (ZunW45, BleE46)	β 4.7 max (10%), 1.6 max (90%) Y 3.09 (90%)	S ³⁶ (n, Y) Cl ³⁷ (n, p) (BleE46, ZunW45, ScaR58)
s ³⁸	2.87 h (NetD58)	φ (NetD58) Δ -26.8 (MTW)	B chem, genet (NetD58) parent Cl ³⁸ , not parent Cl ^{38m} (NetD58)	β 3.0 max (5%), 1.1 max 1.88 (95%) daughter radiations from Cl ³⁸	C1 ³⁷ (a, 3p) (NetD58)
17 ^{C1³²}	0.306 s (GlasN53) 0.32 s (BrecS54) 0.28 s (TyrH54) others (LeiO56)	Υ β ⁺ , α ≈0.01% (GlasN5 Δ -12.8 (MTW)	B excit, genet energy levels (GlasN53, GlasN55, TyrH54)	β [±] 9.9 max Y 0.511 (200%, Y [±]), 2.24 (70%), 4.29 (7%), 4.77 (14%)	S ³² (p,n) (GlasN53)
C1 ³³	2.53 s (MullT58a) 2.9 s (WallR60) 2.4 s (WhiM41) 2.8 s (HoaJ40, SchelA48) others (VasiSS62c, BolF51, TyrH54)	φ ⁺ (WhiM41) Δ -21.01 (MTW)	A excit (HoaJ40, WhiM41)	β ⁺ 4.55 max Y 0.511 (200%, Y [±]), 2.9 (0.3%)	S ³² (d,n) (HoaJ40, SchelA48) S ³³ (p,n) (WhiM41)
C1 ³⁴	1.56 s (FreeJ65, JaneJ61) 1.61 s (MihM58) 1.53 s (KliR54) others (StaNP53, ArbW53a, ScaR58)	p ⁺ (StahP53a, ArbW5 Δ -24.45 (MTW)	A genet (ArbW53, StahP53a) excit (FreeJ65) daughter Cl ^{34m} (ArbW53a)	β ⁺ 4.46 max Y 0.511 (200%, Y [±])	daughter Cl ^{34m} (ArbW53a) P ³¹ (a,n) (JaneJ61)
Cl ^{34m}	31.99 m (EbrT65) 32.40 m (GreeD56) 32.5 m (HinN52a) 33.2 m (WafH48) 33.0 m (PerlmM48) others (ScaR58, TohT60, SagR36, BranH38)	p [†] ≈50%, IT ≈50% (ArbW53, StahP53a Δ -24.31 (LHP, MTW)	A chem, excit (FrisO34, SagR36) parent Cl ³⁴ (ArbW53a)	β ⁺ 2.48 max e ⁻ 0.142 Y C1 X-rays, 0.145 (45%), 0.511 (100%, γ [±]), 1.17 (12%), 2.12 (38%), 3.30 (12%) daughter radiations from C1 ³⁴	P ³¹ (a,n) (FrisO34, RideL37a, BranH38
<u>C1³⁵</u>		% 75.53 (BoydA55) 75.79 (ShieW62) 75.4 (NierA36) Cl ³⁵ /Cl ³⁷ variation <0.2% (OweH55) Δ -29.015 (MTW) σ _c 44 (GoldmDT64)			
C1 ³⁶	3.08 x 10 ⁵ y sp act + mass spect (BarthR55) 2.6 x 10 ⁵ y sp act, yield (WriH57) 4.4 x 10 ⁵ y sp act (WuC49)	φ 98.1%, EC 1.9%, β 0.0012% (DreR5: DouP62a) β 0.002% (BereD62a) Δ -29.520 (MTW) σ 100 (GoldmDT64)	A chem, n-capt (GrahD41)	β 0.714 max Y S X-rays, 0.511 (0.003%, Y*)	C1 ³⁵ (n, Y) (GrahD41, SerL47b)
<u>C1³⁷</u>	(Wull-49) others (SerL47b)	% 24.47 (BoydA55) 24.6 (NierA36) 24.20 (Shiew62) Cl. 3 ⁵ /Cl. 3 ⁷ variation <0.2% (OweH55) Δ -31.765 (MTW) σ _C 0.4 (to Cl. 3 ⁸) 0.005 (to Cl. 3 ⁸ m)			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
17 ^{C1³⁸}	37.29 m (CobJ50) 37.1 m (MonaJ62) others (VVooS36, HoleN46, HurD37, MacqP55, CurrS40a, SlaH45, MacqP54a)	φ β (KuriF36) Δ -29.80 (MTW)	A chem, n-capt (AmaE35) chem, sep isotopes (KenJ40) daughter S ³⁸ (NetD58)	β 4.91 max Y 1.60 (38%), 2.170 (47%)	Cl ³⁷ (n, Y) (AmaE35, KenJ40, SerL47b, AkaH41)
C1 ^{38m}	0.74 s (KieP62b) 1.0 s (SchaG54)	☆ IT (KieP62b) △ -29.13 (LHP, MTW)	C n-capt, sep isotopes (SchaG54)	Y 0.66 (100%) e 0.66	Cl ³⁷ (n, Y) (KieP62b, SchaG54)
c1 ³⁹	55.5 m (HasR49) others (RudG52, MillDR48a)		A chem (MillDR48a) chem, excit (HasR49)	β 3.45 max (7%), 2.18 max (8%), 1.91 max γ 0.246 (44%), 1.27 (50%), 1.52 (42%)	Ar ⁴⁰ (a, ap) (PenJ56) Ar ⁴⁰ (y, p) (HasR49, HasR50)
C1 ⁴⁰	1.4 m (MoriH56)	β [−] (MoriH56) Δ −27.5 (MTW)	B chem, genet energy levels (MoriH56)	β 7.5 max Y 1.46 († 100), 2.83 († 100), 3.10, 5.8	Ar ⁴⁰ (n, p) (GrayP65, MoriH56)
18 ^{Ar³³}	0.18 s (ReeP64, HardJ65)	 [★] [β[†]], p (ReeP64, HardJ65) Δ -9.5 (ReeP64, MTW) 	C excit, decay charac (ReeP64)	р 3.16	Cl ³⁵ (p, 3n) (HardJ65) S ³² (He ³ , 2n) (ReeP64)
Ar ³⁵	1.83 s (KisO56, AlleJS59) 1.76 s (NelJW63) 1.88 s (ElliD41) 1.84 s (SchelA48) 1.8 s (WallR60)	 φ⁺ (ElliD41, WhiM41) Δ -23.05 (MTW) 	A excit (WhiM41, KinL40)	β ⁺ 4.94 max γ 0.511 (200%, γ [±]), 1.22 (5%), 1.76 (2%)	S ³² (a,n) (KinL40, SchelA48) Cl ³⁵ (p,n) (WhiM41)
<u>Ar³⁶</u>		% 0.337 (NierA50) Ar ³⁶ /Ar ³⁸ variations (WetG54, FleW53) Δ -30.232 (MTW) σ _C 6 (GoldmDT64)			
Ar ³⁷	35.1 d (StoeR65) 34.3 d (KisR59) 35.0 d (MiskJ52, PerlmM53) 34.1 d (WeimP44) 32 d (AndeC53)	☆ EC (WeimP44, RodebG52) Δ -30.951 (MTW)	A chem, cross bomb (WeimP41)	Y Cl X-rays, continuous bremsstrahlung to 0.81 (weak)	$C1^{37}(p, n), C1^{37}(d, 2n), S^{34}(a, n), K^{39}(d, a), C1^{37}(d, 2n), Ca^{40}(n, a), (WeimP44, WeimP41) Ar^{36}(n, y)$
Ar38		% 0.063 (NierA50) Ar ³⁶ /Ar ³⁸ variations (WetG54, FleW53) Δ -34.718 (MTW) σ _c 0.8 (GoldmDT64)			
Ar ³⁹	269 y sp act (StoeR65) ≈265 y sp act (ZelH52)	☆ β (BrosA50) Δ -33.24 (MTW)	B chem, excit (ZelH52)	β 0.565 max Υ no Υ	neutrons on KCl (ZelH52) Ar ³⁸ (n, Y) (KatcS52)
<u>Ar</u> 40		% 99.600 (NierA50) Δ -35.038 (MTW) σ _C 0.61 (GoldmDT64)			
Ar ⁴¹	1.83 h (HalgW51, PauH64, KatcS52, SneA36) 1.82 h (BleE46b) 1.85 h (SchwaA56)	φ β (SneA36) Δ -33.061 (PauH64,	A chem, excit (SneA36) mass spect (AndeG54)	β 2.49 max (0.8%), 1.198 max 1.293 (99%)	Ar ⁴⁰ (n, Y) (SneA36)
Ar ⁴²	33 y sp act (StoeR65) others (Hon M64, KatcS52)	Υ [β¯] (KatcS52) Δ −34.42 (MTW)	B chem, genet (KatcS52) parent K ⁴² (KatcS52)	[daughter radiations from K ⁴²]	$ \begin{array}{c} Ar^{40}(n, Y)Ar^{41}(n, Y)Ar^{4} \\ (KatcS52) \\ Ar^{40}(t, p) \ (JarN61) \end{array} $
19 ^{K³⁷}	1.23 s (SchweF58) 1.25 s (KavR64a) others (SunC58, WallR60, BolF51, LangmR48, TyrH54)	 p⁺ (BolF51) Δ -24.79 (KavR64a, MTW) 	C excit (LangmR48)	β ⁺ 5.14 max Y 0.511 (200%, Y [±]), 2.79 (2.0%)	Ca ⁴⁰ (p, a) (WallR60, SunC58, SchweF58, KavR64a)

Isotope Z A	Half-life		Type of decay (🍲); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
19 ^{K38}	7.71 m (EbrT65) 7.67 m (BormM65) 7.7 m (HorD37, RideL37a, GreeD56) others (RamsM47, PerlmM48, SalG63, PhiE65a)		β [†] (HurD37) -28.79 (MTW)	A	chem, cross bomb (HurD37, HendW37)	Ι.	2.68 max 0.511 (200%, Y [±]), 2.170 (100%)	Cl ³⁵ (a, n) (HurD37, RideL37a, HendW37, RamsM47) Ca ⁴⁰ (d, a) (HurD37)
K ^{38m}	0.95 s (JaneJ61, StahP53b) 0.94 s (LindKH60, KliR54) 0.97 s (MihM58)		β [†] (StahP53, StahP53b) no IT (GoldmD62) -28.66 (LHP, MTW)	С	excit (StahP53, StahP53b, KliR54)		5.0 max 0.511 (200, Y [±])	Cl ³⁵ (a, n) (LindKH60, JaneJ61) K ³⁹ (Y, n) (StahP53b, KliR54, GoldmD62) Ca ⁴⁰ (d, a) (JaneJ63, MicS65, HasY59)
<u>к³⁹</u>		Δ	93.22 (KenB60) 93.08 (NierA50) others (WhiF56, ReuC56, ReuC52, CookK43) -33.803 (MTW) 2.0 (GoldmDT64)					
K ⁴⁰	$t_{1/2}$ 1.26 x 10 9 y assuming $t_{1/2}$ (β) = 1.42 x 10 9 y and $\beta^{-}(\beta^{-}_{1} + EC) = 0.89$ $t_{1/2}$ (β^{-}_{1}) sp act: 1.415 x 10 9 y (LeuH65a) 1.42 x 10 9 y (GleL61) 1.37 x 10 9 y (BrinGA65, KonoS55) 1.45 x 10 9 y (MNaiA56) 1.47 x 10 9 y (KellWH59) 1.48 x 10 9 y (FleD62) 1.35 x 10 9 y (SutA55) others (WetG56, SawG50, HouF50, SmaB50, GooML51a, GrafT48, FloyJ49, StouR49, SpierF50, FauWR50, DelC51, MNaiA55) sp act of 1.460 Y: (WetG57, BackeG55a, BurcP53, AhrL48, SutA55, FauWR50, HouF50, SawG49, SpierF50) sp act of EC(K): (HelJ54)	% △ _σ _c	β 89%, EC 11%,		chem (ThomJ05, CamN06) chem, mass spect (SmyW37)	β ⁺	1.314 max 0.483 max Ar X-rays, 1.460 (11%)	
K ⁴¹		Δ	6.77 (KenB60) 6.91 (NierA50) -35.552 (MTW) 1.2 (GoldmDT64)					
к ⁴²	12.36 h (MerJ62) 12.52 h (BurcP53) 12.4 h (SiegK47c, KahB53, MackJ59, HurD37) 12.5 h (WriH57, MonaJ62, SinW51)	1	8— (KuriF36) -35.02 (MTW)	A	chem, n-capt (AmaE35) chem, cross bomb (HevG35, HevG36) mass spect (AndeG54) daughter Ar ⁴² (KatcS52)	١.	3.52 max 0.31 (0.2%), 1.524 (18%)	K ⁴¹ (n, Y) (AmaE35, HurD37, SerL47b)
к ⁴³	22.4 h (OveR49, AndeG54) 22.0 h (LindqT54)		β ⁻ (OveR49) -36.58 (MTW)	A	chem, excit (OveR49) mass spect (AndeG54)	ľ	1.82 max (1%), 1.2 max (3%) 0.83 max 0.220 (3%), 0.373 (85%), 0.39 (18%, doublet), 0.59 (13%), 0.619 (81%), 1.01 (2%)	Ar ⁴⁰ (a,p) (LasN64, OveR49, BencN59)
K ⁴⁴	22.0 m (CohB54, HilleP61) 22.3 m (SugiyK60) others (WalkH37a, WalkH40b)	1	β (WalkH37a) -36.3 (HilleP61, MTW)	A	chem, excit (WalkH37a) chem, sep isotopes, cross bomb (CohB54) mass spect (AndeG54)	Ι.	5.2 max 1.156 (61%), 1.74 (8%), 2.1 (37%, complex), 2.6 (7%), 3.7 (4%)	Ca ⁴⁴ (n, p) (CohB54, WalkH37a, WalkH40b, HilleP61, SugiyK60)
к ⁴⁵	16.3 m (ChacK65) 20 m (MoriH64) 34 m (AndeG54)	1	β ⁻ (MoriH64) -36.6 (MTW)	В	chem, genet energy levels (MoriH64) mass spect (AndeG54)	1.	4.0 max, 2.1 max 0.175 (strong), 0.50, 0.95 (complex?), 1.23, 1.71 (strong), 1.90, 2.10, 2.35, 2.60, 3.1	Ca ⁴⁸ (d, an) (MoriH64)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≅M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities	Principal means of production
19 ^{K47}	17.5 s (KuroT64)	φ β (KuroT64) Δ -36.3 (MTW)	B chem, sep isotopes, excit (Kuro T 64) (176), 4.1 max (176), 4.1 max (176), 2.0 (84%), 2.6 (15%)	Ca ⁴⁸ (Y, p) (KuroT64)
20 ^{Ca³⁷}	0.173 s (HardJ64a) 0.170 s (ReeP64)	# [β [†]], p (HardJ64a, ReeP64) Δ -13.3 (ReeP64, MTW)	C excit, decay charac (ReeP64, p 3.10 HardJ64a)	K ³⁹ (p, 3n) (HardJ64a) Ca ⁴⁰ (p, d2n) (HardJ64a) Ar ³⁶ (He ³ , 2n) (ReeP64)
Ca 38	0.66 s (CliJ57)	φ β ⁺ (CliJ57) Δ -22 (MTW)	C excit, decay charac (CliJ57) Y 0.511 [200%, Y^{\pm}], 3.5 [daughter radiations from K^{38m}]	Ca ⁴⁰ (Y, 2n) (CliJ57)
Ca ³⁹	0.87 s (LindKH60) 0.86 s (MihM58) 0.88 s (KisO58) 0.90 s (KisR54) others (WallR60, SumR53, BraaR53, HubeO43, BagJ64)	* β [†] (HubeO43) Δ -27.30 (MTW)	B excit (HubeO43, MElhJ49) β [±] 5.49 max Y 0.511 (200%, Y [±])	K ³⁹ (p,n) (KisO58, WallR60) Ca ⁴⁰ (Y,n) (MihM58, WafH48, HubeO43, MElhJ49, KliR54)
Ca ⁴⁰		% 96.97 (NierA38a) Δ -34.848 (MTW) σ (total absorption) 0.23 (GoldmDT64)		
Ca ⁴¹	8 x 10 ⁴ y yield (DroJ62) others (BrowF53b)	★ EC (BrowF51) △ -35.125 (JohnCH64, MTW	B chem, n-capt, sep isotopes (BrowF51) others (SaiV51)	Ca ⁴⁰ (n, Y) (BrowF51, SaiV51, BrowF53, DroJ62)
<u>Ca⁴²</u>		% 0.64 (NierA38a) Δ -38.540 (MTW) σ (total absorption) 42 (GoldmDT64)		
Ca ⁴³		% 0.145 (NierA38a) \(\triangle -38.396 \) (MTW)		
<u>Ca⁴⁴</u>		% 2.06 (NierA38a) Δ -41.460 (MTW) σ _C 0.7 (GoldmDT64)		
Ca ⁴⁵	l65 d (WyaE61) 167 d (CaliJ59) 153 d (ThirH57) 164 d (DelC53) others (MatthD47, WalkH40b)		A chem, excit, cross bomb (WalkH40b) β 0.252 max average β energy: 0.075 ion ch (CaswR52)	Ca ⁴⁴ (n, Y) (WalkH40b, SerL47b)
<u>Ca⁴⁶</u>		% 0.0033 (NierA38a) Δ -43.14 (MTW) σ _c 0.3 (GoldmDT64)		
Ca ⁴⁷	4.535 d (GilmC64) 4.53 d (WyaE61) 4.56 d (GleG64) 4.7 d (LangeL63a, LidL56) others (BatzR51a, MarqL53a, CorkJ53a, LyoW55c)	Υ β (MatthD47) Δ -42.35 (MTW)	A chem, genet (BatzR51a) parent Sc ⁴⁷ (BatzR51a, CookL53) β 1.98 max (18%), 0.67 max 0.49 (5%), 0.815 (5%), 1.308 (74%) daughter radiations from Sc ⁴⁷	Ca ⁴⁶ (n, Y) (CorkJ53e, CookL53)
<u>Ca⁴⁸</u>	t _{1/2} (β ⁻) >1.1 x 10 ¹⁸ y sp act (AwsM56) t _{1/2} (ββ) >7 x 10 ¹⁸ y sp act (DobE59) others (BeliV58, JonJW52, MCarJ55, FremJ52, DobE57, AwsM56)	% 0.185 (NierA38a) Δ -44.22 (MTW) σ _c 1.1 (GoldmDT64)		
Ca ⁴⁹	8.8 m (OKelG56) 8.9 m (MartiDW56a) 8.5 m (DMatE50)	φ β (DMatE50) Δ -41.29 (MTW)	A chem, n-capt, sep isotopes (DMatE50) β 1.95 max Y 3.10 (89%), 4.1 (10%) daughter radiations from Sc ⁴⁹	Ca ⁴⁸ (n, Y) (DMatE50)

20Ca ⁵⁰ 9 s (Shidy64a) Δ [β] (Shidy64a) Δ 41 (Shidy64a, M' 21Sc ⁴⁰ 0.179 s (SchweF62) 0.22 s (GlasN55) 0 chers (TyrH54) Δ -20.3 (RickM65, Colores (TyrH54) Δ -20.3 (RickM65, Colores (TyrH54) Δ -28.63 (MTW, Journal of Mariws2, ElliD41a, WallR60) Sc ⁴² 0.68 s (FreeJ65a) 0.65 s (NelJW65) 0.69 s (JaneJ61) 0.62 s (MoriH55) Δ -32.109 (FreeJ65a) Δ -31.58 (LHP, Mr FreeJ65a) Δ -31.58 (LHP, Mr FreeJ65a) 3.92 h (HibC45) 3.95 h (DuvJ53) 3.84 h (AndeG54) others (WalkH40) Sc ⁴⁴ 3.92 h (HibC45) 3.90 h (AndeG54) others (WalkH40, SmiG42) Δ -36.17 (MTW) Sc ^{44m} 2.44 d (HibC45) 2.46 d (AndeG54) others (BruneJ50, WalkH40, RudG52) Δ -37.81 (MTW) Sc ⁴⁵ 8.3.9 d (GeiKW57) 84.1 d (SchumR56) 84.2 d (WriH57) others (BruneJ50, WalkH40, RudG52) Δ -37.54 (LHP, Mr GoldmD764) Sc ⁴⁶ 8.3.9 d (GeiKW57) 84.1 d (SchumR56) 84.2 d (WriH57) others (MurH54, AzuR55, WalkH39) Δ -41.061 (MTW) Sc ⁴⁶ 19.5 s (DMatE51) 20 s (HiammB52a, GoldhM48) Δ -41.064 (MTW) Sc ⁴⁷ 3.43 d (KriN49) 3.44 d (MarqL53a, DuvJ53) 3.40 d (CorkJ53e, MisrS64) T β (HibC45a) -41.326 (MTW)	(Shid) (C excit (C MTW) (D mTW) (D mTW) (D mass space) (A chem, compass space) (B mass space) (C decay clear (C mass space) (A chem, compass space) (B mass space)	(64a)	0.072, 0.258 (with Sc ^{50m}) daughter radiations from Sc ⁵⁰ 9.1 max 0.511 (200%, Y [±]), 3.75 [100%] 5.47 max [0.511 (200%, Y [±])] [5.41 max] 0.511 (200%, Y [±]) 2.82 max 0.438 (100%), 0.511 (200%, Y [±]), 1.22 (100%), 1.52 (100%) 1.20 max [Ca X-rays], 0.375 (22%), 0.511 [176%, Y [±]] 1.47 max 0.511 (188%, Y [±]), 1.159 (100%)	Ca ⁴⁰ (p, n) (GlasN55, SchweF62) Ca ⁴⁰ (p, Y) (YouD65) Ca ⁴⁰ (q, N) (ElliD41a, ElliD41, CramJ62) K ³⁹ (α, n) (MoriH55, JaneJ61, NelJW65) K ³⁹ (α, n) (RogeP63, NelJW65) Ca ⁴⁰ (α, p) + Ca ⁴⁰ (α, n) Ti ⁴³ (β ⁻) (FrisO35, WalkH40) daughter Ti ⁴⁴ (SharpRA54, DilL63)
Sc 41	MTW) B excit (E chnCH64) C decay cl excit (C a chem, a genet (Roge EC] A chem, a mass sp chem, a a chem, a mass sp daughte daughte	cross bomb, excit, energy levels P63) excit (FrisO35) p+ y (cross tomb, excit, energy levels P63) excit (FrisO35) p+ y (cross tomb, excit, energy levels P63)	0.511 (200%, Y [±]), 3.75 [100%] 5.47 max [0.511 (200%, Y [±])] [5.41 max] 0.511 (200%, Y [±]) 2.82 max 0.438 (100%), 0.511 (200%, Y [±]), 1.22 (100%), 1.52 (100%) 1.20 max [Ca X-rays], 0.375 (22%), 0.511 [176%, Y [±]] 1.47 max	Ca ⁴⁰ (p, Y) (YouD65) Ca ⁴⁰ (d, n) (ElliD41a, ElliD41, CramJ62) K ³⁹ (a, n) (MoriH55, JaneJ61, NelJW65) K ³⁹ (a, n) (RogeP63, NelJW65) Ca ⁴⁰ (a, p) + Ca ⁴⁰ (a, n) Ti ⁴³ (β) (FrisO35, WalkH40) daughter Ti ⁴⁴ (SharpRA54, DilL63)
0.55 s (CramJ62) 0.87 s (Martiw52, ElliD41a, WallR60)	ohnCH64) 5a, MTW) A chem, a genet (Roge EC] A chem, a mass sp	harac (MoriH55) CloJ57, NelJW65) cross bomb, excit, energy levels P63) excit (FrisO35) pect (AndeG54) pect (AndeG54) principle of the prin	[0.511 (200%, Y [±])] [5.41 max] 0.511 (200%, Y [±]) 2.82 max 0.438 (100%), 0.511 (200%, Y [±]), 1.22 (100%), 1.52 (100%) 1.20 max [Ca X-rays], 0.375 (22%), 0.511 [176%, Y [±]] 1.47 max	Ca ⁴⁰ (a, n) (ElliD4la, ElliD4la, ElliD4l, CramJ62) K ³⁹ (a, n) (MoriH55, JaneJ6l, NelJW65) K ³⁹ (a, n) (RogeP63, NelJW65) Ca ⁴⁰ (a, p) + Ca ⁴⁰ (a, n) Ti ⁴³ (β ⁻) (FrisO35, WalkH40) daughter Ti ⁴⁴ (SharpRA54, DilL63)
0.65 s (NelJW65) 0.68 s (CloJ57) 0.69 s (JaneJ61) 0.62 s (MoriH55) Sc ^{42m} 60.6 s (RogeP63) Sc ⁴³ 3.92 h (HibC45) 3.95 h (DuvJ53) 3.84 h (AndeG54) others (WalkH40) Sc ⁴⁴ 3.92 h (HibC45) 3.90 h (AndeG54) others (BruneJ50, WalkH40, SmiG42) Sc ^{44m} 2.44 d (HibC45) 2.46 d (AndeG54) others (BruneJ50, WalkH40, RudG52) Sc ⁴⁵ Sc ⁴⁶ 83.9 d (GeiKW57) 84.1 d (SchumR56) 84.2 d (WriH57) others (MurH54, AzuR55, WalkH39) Sc ^{46m} 19.5 s (DMatE51) 20 s (HammB52a, GoldhM48) Sc ⁴⁷ 3.43 d (KriN49) 3.44 d (MarqL53a, DuvJ53) 3.40 d (CorkJ53e, Da -32.109 (FreeJ65 β (RogeP63) β (RogeP63) -31.58 (LHP, M' FreeJ65a) β (FrisO35), [1] β + (FrisO35), [1] β + (FrisO35), [1] β + (FrisO35), [1] σ -36.17 (MTW) The second of the	A chem, genet (Roge EC] A chem, mass sp A chem, a genet (Roge A chem, a mass sp	cross bomb, excit, energy levels P63) excit (FrisO35) pect (AndeG54) pect (AndeG54) pect (AndeG54)	0.511 (200%, Y [±]) 2.82 max 0.438 (100%), 0.511 (200%, Y [±]), 1.22 (100%), 1.52 (100%) 1.20 max [Ca X-rays], 0.375 (22%), 0.511 [176%, Y [±]] 1.47 max	JaneJ61, NelJW65) K ³⁹ (a,n) (RogeP63, NelJW65) Ca ⁴⁰ (a,p) + Ca ⁴⁰ (a,n) Ti ⁴³ (β) (FrisO35, WalkH40) daughter Ti ⁴⁴ (SharpRA54, DilL63)
Sc 43 3.92 h (HibC45) 3.95 h (DuvJ53) 3.84 h (AndeG54) 0thers (WalkH40) 5c 44 3.92 h (HibC45) 3.90 h (AndeG54) 0thers (BruneJ50, WalkH40, SmiG42) 5c 45 6c 6c 6c 6c 6c 6c 6c 6	EC] A chem,	energy levels P63) excit (FrisO35) pect (AndeG54) excit (CorkJ38) pect (AndeG54) p	0.438 (100%), 0.511 (200%, Y [±]), 1.22 (100%), 1.52 (100%) 1.20 max [Ca X-rays], 0.375 (22%), 0.511 [176%, Y [±]] 1.47 max	Ca ⁴⁰ (a, p) + Ca ⁴⁰ (a, n) Ti ⁴³ (β ⁻) (FrisO35, WalkH40) daughter Ti ⁴⁴ (SharpRA54, DilL63)
3.95 h (DuvJ53) 3.84 h (AndeG54) others (WalkH40)	mass sp	excit (CorkJ38) β^+ excit (AndeG54)	[Ca X-rays], 0.375 (22%), 0.511 [176%, Y [±]] 1.47 max	Ca ⁴⁰ (a,n) Ti ⁴³ (β ⁻) (FrisO35, WalkH40) daughter Ti ⁴⁴ (SharpRA54, DilL63)
3.90 h (AndeG54) others (BruneJ50, WalkH40, SmiG42)	i8c) mass sp	pect (AndeG54)		(SharpRA54, DilL63)
2.46 d (AndeG54)	1 :			daughter Sc 44m (KliJ63) K 41(a,n) (BruneJ50, WalkH40, HibC43)
Sc 46 83.9 d (Geikw57) 84.1 d (SchumR56) 84.2 d (WriH57) 0thers (MurH54, AzuR55, WalkH39) AzuR55, WalkH39) Sc 46m 19.5 s (DMatE51) 20 s (HammB52a, GoldhM48) Sc 47 3.43 d (KriN49) 3.44 d (MarqL53a, DuyJ53) 3.40 d (CorkJ53e, January 3.40 d (CorkJ53e	(Walk	H37) pect (AndeG54)	Sc X-rays, 0.271 (86%), 1.02 (1.3%), 1.14 (2.7%, doublet) 0.267 daughter radiations from Sc 44	K ⁴¹ (a,n) (BruneJ50, WalkH40, HibC43)
84.1 d (SchumR5b) 84.2 d (WriH57) others (MurH54, AzuR55, WalkH39) Sc 46m 19.5 s (DMatE51) 20 s (HammB52a, GoldhM48) Sc 47 3.43 d (KriN49) 3.44 d (MarqL53a, DuvJ53) 3.40 d (CorkJ53e,	ollaR64)			
20 s (HammB52a, GoldhM48) Sc ⁴⁷ 3.43 d (KriN49) 3.44 d (MarqL53a, DuvJ53) 3.40 d (CorkJ53e,	chem,	and the same and t	1.48 max (0.004%), 0.357 max Ti X-rays, 0.889 (100%), 1.120 (100%)	Sc ⁴⁵ (n, Y) (HevG36, WalkH37b, SerL47b)
3.44 d (MarqL53a, DuvJ53) 3.40 d (CorkJ53e,	a otiva		[Sc X-rays], 0.142 [0.138]	Sc ⁴⁵ (n, Y) (GoldhM48)
	sep isot mass s	topes (KriN49) pect (AndeG54) r Ca ⁴⁷ (BatzR51a,	0.600 max 0.160 (73%)	daughter Ca ⁴⁷ (BatzR51a, CookL53)
Sc ⁴⁸ 1.83 d (WalkH40, KriN49, PouA59, AndeG54, RudG52) 1.84 d (HillmM63) 1.81 d (HibC45a) others (MandeC42)	sep isot	` '	0.65 max 0.175 (6%), 0.983 (100%), 1.040 (100%), 1.314 (100%)	V ⁵¹ (n, a) (WalkH37c, PoolM37, WalkH40) Ti ⁵⁰ (d, a) (KriN49) Ca ⁴⁸ (p, n) (HibC45a) Ca ⁴⁸ (d, 2n) (SmiG42, MandeC42, MandeC43a)
Sc ⁴⁹ 57.5 m (RezI61a) 57 m (WalkH40, OKelG56, KoesL54) Δ β (WalkH40) Δ -46.55 (MTW)		-TT40\	2.01 max 1.76 (0.03%)	Ca ⁴⁸ (d, n) (WalkH40)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≇M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
21 ^{Se⁵⁰}	1.72 m (KantJ63b) 1.7 m (ChilG63) others (KoehD63, MoriH55a) no 23 m activity (KantJ63b, KoehD63)	φ β (MoriH55a) Δ -45.0 (MTW)	С	excit (MoriH55a) excit, sep isotopes (KoehD63)	β ⁻ Υ	3.6 max 0.520 (100%), 1.12 (100%), 1.55 (100%)	Ti ⁵⁰ (n,p) (KoehD63, ChilG63, MoriH55a) Ca ⁴⁸ (t,n) (ShidY64a)
Sc ^{50m}	0.35 s (KarrM63a, KantJ63b)	Y IT, no p , lim 10% (KarrM63a) △ -44.7 (LHP, MTW)	С	excit, sep isotopes (KarrM63a'	Y	0.258 daughter radiations from Sc ⁵⁰	Ti ⁵⁰ (n, p) (KarrM63a) Ga ⁴⁸ (t, n) (ShidY64a)
22 ^{Ti⁴¹}	0.090 s (ReeP64)	Υ [β ⁺], p (ReeP64) Δ -15.9 (ReeP64, MTW)	С	excit, decay charac (ReeP64)	P	2.3 († 8), 3.05 († 17), 3.68 († 16), 4.12 († 4), 4.64 († 50), 5.30 († 5)	Ca ⁴⁰ (He ³ , 2n) (ReeP64)
Ti ⁴³	0.56 s (JaneJ61) 0.58 s (TyrH54) others (SchelA48, VasiSS61)	‡ β [†] (JaneJ61) Δ -29.3 (MTW)	С	excit (SchelA48) excit, decay charac (JaneJ61)	β ⁺ Υ	5.8 max [0.511 (200, Y [±])]	Ca ⁴⁰ (a, n) (SchelA48, JaneJ61, VasiSS63)
Ti ⁴⁴	48 y (MorelP65) 46 y (WingJ65) others (HuiJ57)	★ EC (SharpRA54) Δ -37.66 (MTW)	A	chem, genet (SharpRA54, HuiJ57, DilL63) parent Sc 44, not parent Sc 44m (SharpRA54, DilL63, HuiJ57)	e-	[Sc X-rays], 0.068 (90%), 0.078 (98%) 0.065, 0.073 daughter radiations from Sc 44	Sc ⁴⁵ (p, 2n) (SharpRA54, MorelP65) Sc ⁴⁵ (d, 3n) (HuiJ57, WingJ65)
Ti ⁴⁵	3.09 h (KunD50a) 3.10 h (RudG52) 3.05 h (TPogM50) others (AlleJS41, PouA59)	 φ⁺, EC (KunD50a) Δ		chem, cross bomb, excit (AlleJS41) mass spect (AndeG54)		1.04 max Sc X-rays, Y [±] [170%], 0.718 (0.4%), 1.408 (0.3%)	Sc ⁴⁵ (p, n) (AlleJS41, TPogM50, KunD50a) Sc ⁴⁵ (d, 2n) (AlleJS41, TPogM50)
Ti ⁴⁶		% 7.99 (HogJ54) 7.95 (NierA38a) Δ -44.123 (MTW) σ (total absorption) 0.6 (GoldmDT64)					
<u>Ti⁴⁷</u>		% 7.32 (HogJ54) 7.75 (NierA38a) Δ -44.927 (MTW) σ (total absorption) 1.7 (GoldmDT64)					
<u>Ti⁴⁸</u>		 73.99 (HogJ54) 73.45 (NierA38a) Δ -48.483 (MTW) σ (total absorption) 8.0 (GoldmDT64) 					
<u>Ti⁴⁹</u>		 5.46 (HogJ54) 5.51 (NierA38a) Δ -48.558 (MTW) σ (total absorption) 1.9 (GoldmDT64) 					
<u>Ti⁵⁰</u>		% 5.25 (HogJ54) 5.34 (NierA38a) Δ -51.431 (MTW) σ _C 0.14 (GoldmDT64)					
Ti ⁵¹	5.79 m (SargB53) 5.80 m (BunkM55) others (HammWR53, AteA53b, SegE49, DMatE50, SerL47b)	β ⁻ (SerL47b) Δ -49.74 (MTW)		n-capt (SerL47b) cross bomb (HammWR53)	١.	2.14 max 0,320 (95%), 0.605 (1.5%), 0.928 (5%)	Ti ⁵⁰ (n, Y) (SerL47b, DMatE50)
23 ^V ⁴⁶	0.426 s (FreeJ65a) 0.44 s (MillJH58) 0.40 s (MartiW52) 0.37 s (LeiO56) others (TyrH54)		B (7)	excit (MartiW52) sep isotopes, excit (JaneJ63a)	β ⁺ Y	6.03 max 0.511 (200%, Y [±])	Ti ⁴⁶ (p,n) (JaneJ63a, MartiW52, TyrH54, MillJH58)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≡M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
23 V ⁴⁷	33 m (BaskK62a, KriN49, OConJ42, WalkH37c) 31.1 m (KoesL54) 31 m (DaniH54a)	φ p ⁺ (WalkH37c), [EC] Δ -42.01 (MTW)	A chem, excit, cross bomb (OConJ42) chem, sep isotopes (KriN49) mass spect (AndeG54)	β ⁺ 1.89 max γ 0.511 [192%, γ [±]], 1.5 ? (0.7%), 1.80 (0.5%), 2.16 ? (0.2%)	Sc ⁴⁵ (a, 2n) Ti ⁴⁷ (p, n) (KriN49, OConJ42) Ti ⁴⁶ (d, n) (WalkH37c, OConJ42) Ti ⁴⁷ (d, 2n) (RuaJ62)
V ⁴⁸	16.0 d (KafP56, WalkH37c) 16.3 d (BurgW54) 16.4 d (MeyPe53) 16.2 d (VNooB57)	\$\begin{align*} \beta^+ 49\%, EC 51\% (CassH53) \\ \beta^+ 56\%, EC 44\% (VNooB57, HageL57) \\ \beta^+ 61\%, EC 39\% (RisR63) \\ \text{chars (GooW46, SterM53)} \\ \Delta -44.470 (MTW) \end{align*}	A chem, excit, cross bomb (WalkH37b, WalkH37c) daughter Cr ⁴⁸ (RudG52)	β [†] 0.696 max Y Ti X-rays, 0.511 (100%, Y [‡]), 0.945 (10%), 0.983 (100%), 1.312 (97%), 2.241 (3%)	Sc ⁴⁵ (a,n) (WalkH37b) Ti ⁴⁸ (p,n) (DubL40a, TicH52) Ti ⁴⁸ (d,2n) (WalkH37c Cr ⁵⁰ (d,a) (WalkH37c, PeaW46a)
v ⁴⁹	330 d (HaywR 56a, Lyo W 55)	★ EC (WalkH39) Δ -47.950 (MTW)	B chem (WalkH39, TurL40) chem, excit (HaywR56a, LyoW55)	Y Ti X-rays, continuous bremsstrahlung to 0.60	Cr ⁵² (p, a) (LyoW55) Ti ⁴⁸ (d, n) (WalkH39)
<u>v</u> 50	6×10^{15} y sp act (WatD62) 5×10^{14} y sp act (BaumE58) $t_{1/2}$ (EC) >8 × 10^{15} y sp act (MNaiA61) $t_{1/2}$ (β) >1.2 × 10^{16} y sp act (MNaiA61) others (GloR57a, HeIJ55, Coh552, BaumR56)	* EC =70%, β =30% (WatD62) % 0.25 (WhiF56) 0.24 (HessD49, LelW49a Δ -49.216 (MTW) σ _C 130 (GoldmDT64)	B chem (WatD62)	Y [Ti X-rays], 0.783 (30%), 1.55 (70%)	
<u>v⁵¹</u>		% 99.75 (WhiF56) 99.76 (HessD49, LelW49a) Δ -52.199 (MTW) σ _c 4.9 (GoldmDT64)			
v ⁵²	3.75 m (BormM65, LBlaJ54, AmaE35) 3.77 m (KoesL54) 3.76 m (SargB53, MalmS63) 3.74 m (MarteJ47) others (KohW65)	Ψ β ⁻ (AmaE35) Δ -51.44 (MTW)	A chem, n-capt (AmaE35) cross bomb, excit (WalkH37c	β ⁻ 2.47 max γ 1.434 (100%)	V ⁵¹ (n, Y) (AmaE35, WalkH37c, PoolM37, SerL47b)
v ⁵³	2.0 m (KumI60, SchaA56)	β [−] (SchaA56) Δ -51.8 (SchaA56, LHP, MTW)	C decay charac (SchaA56)	β 2.50 max Y 1.00 [100%]	Cr ⁵³ (n, p) (SchaA56)
v ⁵⁴	55 s (SchaA56)	φ β (SchaA56) Δ -50 (MTW)	C decay charac (SchaA56)	β 3.3 max Y 0.84 (100%), 0.99 (100%), 2.21	Cr 54 (n, p) (SchaA56)
24 ^{Cr⁴⁶}	1.1 s (TyrH54)	*	F excit (TyrH54)		protons on Cr, V (TyrH54)
Cr ⁴⁷ or V ⁴⁶)	0.4 s (TyrH54)	*	F excit (TyrH54)		protons on Cr, V (TyrH54)
Cr ⁴⁸	23 h (VLieR55) 24 h (ShelR55)	Y EC, no β [†] , lim 2% (VLieR55, ShelR55) Δ -43.1 (MTW)	A chem, genet (RudG52) parent V ⁴⁸ (RudG52)	Y X-rays, 0.116 (98%), 0.31 (99%) e ⁻ 0.111, 0.31 daughter radiations from V ⁴⁸	Ti ⁴⁶ (a, 2n) (She1R55)
Cr ⁴⁹	41.9 m (OConJ42) 41.7 m (CrasB53a)	φ ⁺ (OConJ42), [EC] Δ −45.39 (MTW)	A chem, excit, cross bomb (OConJ42)	β ⁺ 1.54 max e ⁻ 0.058, 0.084, 0.148 Y X-rays, 0.063 (14%), 0.091 (28%), 0.153 (13%), 0.511 ([186%], Y [±])	Ti ⁴⁸ (a, 3n), Ti ⁴⁷ (a, 2r (CrasB53a, NusR54) Ti ⁴⁶ (a, n) (OConJ42)
<u>Cr⁵⁰</u>		% 4.31 (WhiJ48) Δ -50.249 (MTW) σ _c 17 (GoldmDT64)			

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C"=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
24 ^{Cr⁵¹}	27.8 d (SchumR56, GleG64, LyoW52, WxH157) 27.9 d (KafP56) 27.5 d (SalS65)		EC (BradH45b, WalkH40a) no p [†] (BradH45b, KerB49, LyoW52) -51.447 (MTW)	A	chem, excit, cross bomb (WalkH40a) daughter Mn ⁵¹ (BurgW50)	l _	V X-rays, 0.320 (9%) 0.315	Cr ⁵⁰ (n, Y) (SerL47b, WalkH40a)
Cr ⁵²		Δ	83.76 (WhiJ48) -55.411 (MTW) 0.8 (GoldmDT64)					
Cr ⁵³		Δ	9.55 (WhiJ48) -55.281 (MTW) 18 (GoldmDT64)					
Cr ⁵⁴		Δ	2.38 (WhiJ48) -56.931 (MTW) 0.38 (GoldmDT64)					
Cr ⁵⁵	3.52 m (FlaA52b) 3.6 m (BazG54) 3.59 m (KohW65)	1	β¯ (FlaA52b) -55.11 (MTW)	В	chem, cross bomb (FlaA52b)	Ι.	2.59 max no Y, lim 10%	Cr ⁵⁴ (n, Y) (FlaA52b)
Cr ⁵⁶	5.9 m (DroB60)		p¯ (DroB60) -55.3 (MTW)	A	chem, genet (DroB60) parent Mn ⁵⁶ (DroB60)	e-	1.5 max [0.020, 0.077] [Mn X-rays], 0.026, 0.083 daughter radiations from Mn ⁵⁶	Cr ⁵⁴ (t, p) (DroB60)
25 Mn ⁴⁹ (or Cr ⁴⁷ , V ⁴⁶)	0.4 s (TyrH54)	*		F	excit (TyrH54)			protons on Cr (TyrH54)
Mn ⁵⁰	0.286 s (FreeJ65a) 0.28 s (MartiW52, MillJH58) 0.27 s (TyrH54)	1	ρ [†] (MartiW52) -42.618 (FreeJ65a, MTW)	В	excit (MartiW52, MillJH58, FreeJ65a)	Ι'	6.61 max [0.511 (200%, Y [±])]	Cr ⁵⁰ (p, n) (MartiW52, MillJH58, TyrH54)
Mn ⁵⁰	2 m (SutD59)	*	β [†] (SutD59), [EC]	E	excit (SutD59)	۲	0.511 (198%, Y [±]), 0.66 (25%), 0.783 (100%), 1.11 (100%), 1.28 (25%), 1.45 (75%)	Cr ⁵⁰ (p, n) (SutD59)
Mn ⁵¹	45.2 m (KoesL54) 44.3 m (BurgW50) 44 m (NozM60) others (MillDR48, LivJ38d)		ρ ⁺ (LivJ37a), [EC] -48.26 (MTW)	A	chem, cross bomb (LivJ37a, LivJ38d) chem, genet (BurgW50) parent Cr ⁵¹ (BurgW50)		2.1? max 0.511 [194%, Y ²], 1.56 (?), 2.03 (?)	Cr ⁵⁰ (d, n) (LivJ38d, BurgW50) Cr ⁵⁰ (p, Y) (DubL38, DelL39)
Mn ⁵²	5.60 d (BurgW54) 5.69 d (KafP56) 5.72 d (BackoE55)		EC 66%, p ⁺ 34% (KoniJ58c, KoniJ58a) EC 71%, p ⁺ 29% (RemL63, WilsRR62) others (GooW46, SehR54) -50.70 (MTW)	A	chem, excit, cross bomb (LivJ37a, LivJ38d)	1' '	0.575 max Cr X-rays, 0.511 (67%, Y ²), 0.744 (82%), 0.935 (84%), 1.434 (100%)	Cr ⁵² (p, n) (HemA40) Cr ⁵² (d, 2n) (PeaW46a, KoniJ58a)
Mn ^{52m}	21.1 m (JuliaJ59a) 21.3 m (HemA40) 22.1 m (KayG65)		β ⁺ , IT 2% (KatoT60), [EC] -50.32 (LHP, MTW)	A	chem (DarB37) chem, excit, cross bomb (LivJ37a, LivJ38d) daughter Fe ⁵² (MillDR48)		1.63 max 0.383 (2%), 0.511 (193%, Y [±]), 1.434 (100%)	daughter Fe ⁵² (MillDR48, JuliaJ59a)
Mn ⁵³	1.9 x 10 ⁶ y geochemical method (KayJ65) *2 x 10 ⁶ y yield (ShelR57, calc from WilkJR55, DobW56a)	Δ	EC (WilkJR55) -54.683 (JohnCH64, MTW) =170 (GoldmDT64)	В	chem, decay charac (WilkJR55)	Υ	Cr X-rays	Cr ⁵³ (p, n) (WilkJR55) Cr ⁵² (d, n) (DobW56a)
Mn ⁵⁴	303 d (MartiWH64) 291 d (BackoE55) 313 d (WyaE61) 278 d (SchumR56) 290 d (KafP56) 300 d (WriH57) others (LivJ38d, SuwS53, SalS65)		EC (AlvL38) nο β ⁺ , nο β ⁻ (LivJ38d, DeuM44) -55.55 (MTW)	A	chem, excit, cross bomb .(LivJ37a, LivJ38d)	_	Cr X-rays, 0.835 (100%) 0.829	Fe ⁵⁶ (d, a) (LivJ38d, DeuM44) V ⁵¹ (a, n) (LivJ38d) Cr ⁵³ (d, n) (LivJ38d) Cr ⁵⁴ (p, n) (DubL40a)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≅M-A), MeV (C"=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
25 ^{Mn 55}		% 100 (SamM36a, WhiF56) Δ -57.705 (MTW) σ _c 13.3 (GoldmDT64)			
Mn ⁵⁶	2.576 h (BarthR53a, BarthR53b) 2.574 h (LocE53) 2.586 h (BisG50) others (LivJ38d, BonaG64, BieJ64a, SalS65)	φ β (AmaE35) Δ -56.904 (MTW)	A chem, n-capt (AmaE35) daughter Cr ⁵⁶ (DroB60)	β 2.85 max γ 0.847 (99%), 1.811 (29%), 2.110 (15%)	Mn ⁵⁵ (n, Y) (AmaE35, SerL47b, OrsA49, HumV51)
Mn ⁵⁷	1.7 m (CohB54a, KumI60) 1.9 m (VasiSS63)	Υ β (CohB54a) Δ -57.5 (MTW)	B chem, excit (CohB54a)	β 2.55 max Y [Fe X-rays, 0.014], 0.122 (strong), 0.136 (strong), 0.22, 0.353, 0.692	Cr ⁵⁴ (a, p) (VasiSS63) Fe ⁵⁷ (n, p) (CohB54a)
Mn ⁵⁷	7 d (SharmH51)	* β (SharmH51)	G chem, cross bomb (SharmH51) activity not observed (CohB54a, NelM50)		alphas on Cr, Mn (SharmH51)
Mn ⁵⁸	1.1 m (ChitD61)	β (ChitD61) Δ -56 (MTW)	B chem, sep isotopes (ChitD61)	Y 0.36, 0.41, 0.52, 0.57, 0.82, 1.0, 1.25, 1.4, 1.6, 2.2, 2.8	Fe ⁵⁸ (n, p) (ChitD61)
26 ^{Fe⁵²}	8.2 h (JuliaJ59a) 7.8 h (MillDR48)	p ⁺ 56%, EC 44% (JuliaJ5%) others (ArbE56, FrieG51a) Δ -48.33 (MTW)	A chem, genet (MillDR48) parent Mn ^{52m} (MillDR48) not parent Mn ⁵² , lim 5% (FrieG51a)	β ⁺ 0.80 max Y Mn X-rays, 0.165 (100%), 0.511 (112%, Y [±]) daughter radiations from Mn ^{52m} Mn ⁵²	Cr ⁵⁰ (a, 2n) (FrieG5la)
Fe ⁵³	8.51 m (EbrT65) 8.9 m (RideL37a, LivJ38b, JuliaJ59a) 8.6 m (SalS65)		A chem (RideL37a) chem, excit, cross bomb (LivJ38b)	β ⁺ 3.0 max Y 0.38 (32%), 0.511 (196%, Y [±])	Cr ⁵⁰ (a, n) (NelM50, RideL37a, LivJ38b) Cr ⁵² (a, 3n) (JuliaJ59a)
Fe ⁵⁴		% 5.84 (ValleG4la) Δ -56.246 (MTW) σ _c 2.9 (Goldm DT64)			
Fe ⁵⁵	2.60 y (SchumR56) 2.94 y (BrowG50) others (SchumR51a)	FC, no β [†] (BradH46b, MaeD5la, PortF53) Δ -57.474 (MTW)	A chem, excit (LivJ39c) daughter Co ⁵⁵ (LivJ41)	Y Mn X-rays, continuous bremsstrahlung to 0.23 (0.004%)	Fe ⁵⁴ (n, Y) (Emm W 54a)
Fe ⁵⁶		% 91.68 (ValleG41a) Δ -60.605 (MTW) σ _c 2.7 (GoldmDT64)			
Fe ⁵⁷		% 2.17 (ValleG4la) Δ -60.176 (MTW) σ _c 2.5 (GoldmDT64)			
Fe ⁵⁸		% 0.31 (ValleG41a) Δ -62.147 (MTW) σ _C 1.1 (GoldmDT64)			
Fe ⁵⁹	45.6 d (PierA59) 44.5 d (GleG64) 45.1 d (SchumR51a) 45.0 d (TobJ53, TobJ51) 45.5 d (GovJ43) 44.3 d (WriH57) others (WorD63, HeaR60, FusE60, WahA53)	Υ β (LivJ38b) Δ -60.660 (MTW)	A chem, excit, cross bomb (LivJ38b)	β 1.57 max (0.3%), 0.475 max γ 0.143 (0.8%), 0.192 (2.8%), 1.095 (56%), 1.292 (44%)	Fe ⁵⁸ (n, Y) (SerL47b)
Fe ⁶⁰	3 x 10 ⁵ y yield (RoyJ57)	Υ [β ⁻] (RoyJ57) Δ -61.51 (MTW)	B chem, genet (RoyJ57) parent Co ^{60m} (RoyJ57)	daughter radiations from Co 60m Co 60	protons on Cu (RoyJ57)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
26 ^{Fe⁶1}	6.0 m (StraJ66, RiccE57) others (RiccE55)	φ β (RiccE55, RiccE57) Δ -59 (MTW)	A chem, genet (RiccE55, RiccE57, StraJ66) parent Co ⁶¹ (RiccE55, RiccE57, StraJ66)	β- 2.8 max γ 0.13 († 11), 0.30 († 48), 1.03 († 98), 1.20 († 100) daughter radiations from Co ⁶¹	Ni ⁶⁴ (n, a) (RiccE57) Ni ⁶⁴ (d, ap) (RiccE57)
27 ^{Co 54}	0.194 s (FreeJ65) others (MartiW52, LeiO56, TyrH54)	Υ β ⁺ (MartiW52) Δ -47.99 (MTW)	C excit (MartiW52, FreeJ65)	β ⁺ [7.23 max] Υ [0.511 (200%, Υ [±])]	Fe ⁵⁴ (p, n) (FreeJ65, MartiW52)
Co ⁵⁴	1.5 m (SutD59)	Υ β [†] (SutD59)	E excit (SutD59, FreeJ65)	β ⁺ 4.3 max Y 0.41 (100%), 0.511 (200%, Y [±]) 1.14 (100%), 1.41 (100%)	Fe ⁵⁴ (p,n) (FreeJ65)
Co ⁵⁵	18.2 h (DarB37) 17.9 h (RudG52) 18.0 h (LivJ41)	φ β 81%, EC 19% (MukA58) ρ α ≈60%, EC ≈40% (calc from DeuM49) Δ -54.01 (MTW)	A chem (DarB37) chem, cross bomb, genet (LivJ41) parent Fe ⁵⁵ (LivJ41)	β ⁺ 1.50 max Υ Fe X-rays, 0.480 (12%), 0.511 (160%, Υ [±]), 0.930 (80%), 1.41 (13%)	Fe ⁵⁴ (d, n) (DarB37, LivJ41, DeuM49) Fe ⁵⁴ (p, Y) (LivJ41) Fe ⁵⁶ (p, 2n) (MukA58)
Co ⁵⁶	77.3 d (WriH57) 77 d (BurgW54) others (CookCS42, LivJ41)	Υ EC 80%, β [†] 20% (CookC556) Δ -56.03 (MTW)	A chem, excit, cross bomb (Livy41) daughter Ni ⁵⁶ (ShelR52, WorW52)	β ⁺ 1.49 max Y Fe X-rays, 0.511 (40%, Y [±]), 0.847 (100%), 1.04 (15%), 1.24 (66%), 1.76 (15%), 2.02 (11%), 2.60 (17%), 3.26 (13%)	Fe ⁵⁶ (p,n) (KieP59, GrabZ60a, SakM54) Mn ⁵⁵ (a,3n) (ChenL52a) daughter Ni ⁵⁶ (ShelR52, WorW52) Fe ⁵⁶ (d,2n) (LivJ41, JensA41, PleE42, ElliL43a) Ni ⁵⁸ (d,a) (LivJ41, CookCS42, ElliL43a)
Co ⁵⁷	270 d (LivJ41) 267 d (CorkJ55)	Υ EC, no β [†] , lim 0.002% (CrasB55) Δ -59.339 (MTW)	A chem, excit, cross bomb (LivJ41) daughter Ni ⁵⁷ (FrieG52)	Y Fe X-rays, 0.014 (9%), 0.122 (87%), 0.136 (11%), 0.692 (0.14%) e ⁻ 0.007, 0.013, 0.115, 0.129	Ni ⁵⁸ (Y, p); Fe ⁵⁶ (d, n) (LivJ38a, PerrC38, BarrG39, LivJ41) Fe ⁵⁶ (p, Y) (LivJ41) Mn ⁵⁵ (a, 2n) (ChenL52a)
Co ⁵⁸	71.3 d (SchumR56) 71.0 d (CorkJ55) 72 d (LivJ41, HoffD52, PreiI60)	Υ EC 85%, β [†] 15% (GooW46, CookCS56) Δ -59.84 (MTW) σ _c 2500 (GoldmDT64)	A chem, excit, cross bomb (LivJ41)	β ⁺ 0.474 max Y Fe X-rays, 0.511 (30%, Y [±]), 0.810 (99%), 0.865 (1.4%), 1.67 (0.6%)	Mn ⁵⁵ (a,n) (LivJ38a, LivJ41)
Co ^{58m}	9.2 h (ChrisD50) 9.0 h (PreiI60) 8.8 h (StraK50)	▼ IT, no β ⁺ (StraK50) Δ -59.81 (LHP, MTW) σ _c 1.4 x 10 ⁵ (GoldmDT64)	A chem, excit (StraK50)	Y Co X-rays e 0.017, 0.024	Mn ⁵⁵ (a,n) (StraK50)
<u>Co⁵⁹</u>		% 100 (MitJ41) Δ -62.233 (MTW) σ _c 19 (to Co ⁶⁰) 18 (to Co ^{60m}) (GoldmDT64)			
Co ⁶⁰	5.263 y (GorbS63) 5.24 y (GeiKW57) 5.20 y (LocE56) 5.21 y (KasJ55a) 5.27 y (TobJ55, TobJ51) others (LocE53, LivJ41, BrowG50, SinW51)	$\begin{array}{c} & \begin{array}{c} \bullet \\ \bullet \end{array} & \begin{array}{c} \beta^- \text{ (RisJ37)} \\ \Delta & -61.651 \text{ (MTW)} \\ \sigma_c & \begin{array}{c} 6 \text{ (GoldmDT64)} \end{array} \end{array}$	A n-capt (SamM36) chem, excit, cross bomb (LivJ41)	β ⁻ 1.48 max (0.12%), 0.314 max (99+%) Y 1.173 (100%), 1.332 (100%)	Co ⁵⁹ (n, Y) (RisJ37, LivJ38a, LivJ41, SerL47b, YafL51)
Co ^{60m}	10.47 m (BarthR53b) 10.3 m (SchmW63) 10.5 m (PreiI60) 10.7 m (LivJ41)	T 99+%, β 0.25% (SchmW63) IT 99+%, β 0.28% (DeuM51) Δ -61.593 (LHP, MTW) σ _C 100 (GoldmDT64)	A n-capt (HeyF37a) chem, excit, cross bomb (LivJ41) daughter Fe ⁶⁰ (RoyJ57)	β ⁻ 1.55 max e ⁻ 0.051, 0.058 Y Co X-rays, 0.059 (2.1%), 1.33 (0.25%)	Co ⁵⁹ (n, Y) (HeyF37a, LivJ37a, LivJ41, SerL47b)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Major ra Genetic relationships approximate es and inte	nergies (MeV)
27 ^{Co61}	99.0 m (SmiL51, NerW55) 95 m (StraJ66) 100 m (NusR56) 104 m (ValtA62) others (ParmT49, BrowF53a, HopH50, PreiI60)	Υ β ⁻ (Parm T47) Δ -62.93 (MTW)	A chem, excit, cross bomb, sep isotopes, mass spect (ParmT47) daughter Fe 61 (RiccE55, RiccE57, StraJ66) A chem, excit, cross bomb, sep isotopes, mass spect [0.059] Y [Ni X-rays], 0.0	Ni ⁶⁴ (p,a), Ni ⁶⁴ (d,an), Ni ⁶¹ (n,p) (ParmT47, ParmT49) Co ⁵⁹ (t,p) (KunD48)
Co ⁶²	13.9 m (ParmT49, GardD57, ValtA62) 13.8 m (Preil60)	φ β (Parm T49) Δ -61.53 (MTW)	A chem, sep isotopes (ParmT49, GardD57) γ 1.17 (180%, com (20%), 1.74 (1	Ni ⁶⁴ (d, a) (ParmT49, GardD57) 19%), 2.03 (7%) Ni ⁶² (n, p) (ParmT49, ValtA62)
Co ⁶²	1.5 m (ValtA62) 1.6 m (ParmT49) 1.9 m (PreiI60)	φ (ParmT49)	C cross bomb, sep isotopes Y Y rays observed (ParmT49)	Ni ⁶⁴ (d, a) (ParmT49) Ni ⁶² (n, p) (ValtA62, PreiI60, ParmT49)
Co ⁶³	52 s (MoriH60)	φ β (MoriH60) Δ -61.9 (MTW)	E chem, excit (MoriH60) β 3.6 max γ no γ, lim 10%	Ni ⁶⁴ (Y,p) (MoriH60)
Co ⁶³	1.40 h (Preil60) 2.0 h (ValtA62)	*	G sep isotopes (PreiI60) activity assigned to Co 61 (StraJ66)	Ni(n, np) (PreiI60, ValtA62)
Co ⁶⁴	28 s (StraJ66)	*	F excit (StraJ66) Y 0.095	Ni ⁶⁴ (n,p) (StraJ66)
Co ⁶⁴	7.8 m (PreiI60) others (ValtA62, ParmT49)	*	G sep isotopes (PreiI60) activity not observed (StraJ66) others (ParmT49)	neutrons on Ni (64) (PreiI60)
Co ⁶⁴	2.0 m (PreiI60) others (ValtA62, ParmT49)	+	G sep isotopes (Preil60) activity not observed (StraJ66) others (ParmT49)	neutrons on Ni (64) (PreiI60)
28 ^{Ni⁵⁶}	6.10 d (WelD63) 6.4 d (ShelR52) 6.0 d (WorW52)	 EC, no β[†], lim 1% (ShelR52) Δ -53.92 (MTW) 	A chem (WorW52)	(35%), 0.748 WorW52, OhnH65, JenkR64)
Ni ⁵⁷	36.0 h (EbrT65) 35.7 h (RudG64) others (MaiF49, LivJ38, FrieG50, ChilG62, RoaJ59, PauA65)	EC 54%, β ⁺ 46% (KoniJ58c, KoniJ58) EC 50%, β ⁺ 50% (FrieG50) EC 63%, β ⁺ 37% (ChilG62) Δ -56.10 (MTW)	A chem, excit, cross bomb (LivJ38) $parent Co^{57} (FrieG52)$ $parent Co^{57} (FrieG52)$ $parent Co^{57} (FrieG52)$ $parent Co^{57} (FrieG52)$ $(92\%, \gamma^{\pm}), 1.3$ (14%) $qaughter radiation$	DorR41, NelM42, MaiF49, FrieG50,
Ni ⁵⁸		% 67.76 (WhiJ48) Δ -60.23 (MTW) σ _c 4.4 (GoldmDT64)		
Ni ⁵⁹	8 x 10 ⁴ y yield (BrosA51) 1 x 10 ⁵ y yield (SaraB56) 8 x 10 ⁵ y yield (WilsH51a)	EC (WilsH51a) no β ⁺ , lim 2 x 10 ⁻³ % (Emm W 54a) Δ -61.159 (MTW)	A chem, cross bomb, n-capt (CamM45) chem, sep isotopes, n-capt (BrosA51)	
<u>Ni⁶⁰</u>		% 26.16 (WhiJ48) Δ -64.471 (MTW) σ _c 2.6 (GoldmDT64)		
<u>Ni⁶¹</u>		% 1.25 (WhiJ48) Δ -64.22 (MTW) σ _c 2 (GoldmDT64)		
<u>Ni⁶²</u>		% 3.66 (WhiJ48) Δ -66.75 (MTW) σ _c 15 (GoldmDT64)		

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C²=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
28 Ni ⁶³	92 y sp act (HorrD62) 125 y sp act (MMulC56) 85 y yield (BrosA51) 61 y yield (WilsH51a)	1	β (BrosA51) -65.52 (MTW)	A	chem, n-capt, sep isotopes (BrosA51)	ı.	0.067 max no Y	Ni ⁶² (n, Y) (BrosA51, WilsH49, WilsH50)
<u>Ni⁶⁴</u>		Δ	1.16 (WhiJ48) -67.11 (MTW) 1.5 (GoldmDT64)					
Ni ⁶⁵	2.564 h (SilL51) 2.55 h (CliJ63a) 2.56 h (ScaR58) 2.50 h (RiccR60b) others (BonaG64, LivJ38, MaiF49, ForS52, NelM42, GrenH65a)		β (HeyF37b) -65.14 (MTW)	A	n-capt (RotJ36) chem, sep isotopes, excit (SwarJ46, ConnE46)	ľ	2.13 max 0.368 (4.5%), 1.115 (16%), 1.481 (25%)	Ni ⁶⁴ (n, Y) (HeyF37b, ConnE46, DorR41, NelM42, SerL47b, MaiF49)
Ni ⁶⁶	54.8 h (KjeA56) 55 h (JohnN56) 56 h (HopH50, GoeR49)		β ⁻ (GoeR49) -66.06 (MTW)	A	chem, genet (GoeR49) parent Cu ⁶⁶ (GoeR49)	ľ	0.20 max no Y, lim 1% daughter radiations from Cu ⁶⁶	fission (KjeA56, GoeR49, JohnN56)
Ni ⁶⁷	50 s (MeaJL65)	1	β ⁻ (MeaJL65) -63.2 (MeaJL65, MTW)	С	excit (MeaJL65)		4.1 max 0.90 (51%, doublet), 1.26 (15%)	Zn ⁷⁰ (n, a) (MeaJL65)
29 ^{Cu⁵⁷}	0.18 s (TyrH54) 0.14 s (MartiW52)	*		F	excit (TyrH54, MartiW52)			protons on Ni (TyrH54, MartiW52)
Cu ⁵⁸	3.20 s (FreeJ65) 3.04 s (MartiW52) 3.3 s (GerhJ58) others (TyrH54)		β [†] (MartiW52) -51.66 (MTW)	С	excit (TyrH54, MartiW52, FreeJ65)	Ι.	8.2 max [0.511 (200%, Y [±])]	Ni ⁵⁸ (p, n) (FreeJ65, MartiW52, TyrH54)
Cu ⁵⁸	9.5 m (YuaT55a) 7.9 m (DelL39) 10.0 m (LeiC47)	*	β [†] (DelL39, YuaT55a)	G	chem (DelL39) chem, excit, sep isotopes (LeiC47) activity cannot be assigned to Cu ⁵⁸ from threshold considerations (NDS)			protons on Ni ⁵⁸ (LeiC47, DelL39) deuterons on Ni ⁵⁸ (YuaT55a)
Cu ⁵⁹	81.5 s (ButlJW58) 81 s (LindnL55, DelL39, LeiC47) others (BudA62, YuaT55a)	l	β ⁺ , no EC, lim 5% (YuaT55b) -56.36 (MTW)	В	chem (DelL39) excit, sep isotopes (LeiC47) genet energy levels (CohB62a, ButlJW58)	l.	3.7 max 0.343 (5%), 0.463 (5%), 0.511 (197%, Y*), 0.872 (9%), 1.305 (11%), 1.70 (1%)	Ni ⁵⁸ (p, Y) (LeiC47, DelL39, ButlJW58) Ni ⁵⁸ (d, n) (LindnL55)
Cu ⁶⁰	23.4 m (NusR54b) 24.6 m (LeiC47) 24 m (BudA62)		β ⁺ 93%, EC 7% (NusR54b) -58.35 (MTW)	A	chem, excit, sep isotopes, mass spect (LeiC47) daughter Zn ⁶⁰ (LindnL55a)		3.92 max (6%), 3.00 max (18%), 2.00 max Ni X-rays, 0.511 (186%, Y [±]), 0.85 (15%), 1.332 (80%), 1.76 (52%), 2.13 (6%, doublet), 2.64 (5%), 3.13 (4%), 2.52 (2%), 4.0 (1.0%)	Ni ⁶⁰ (p, n) (LeiC47) Ni ⁶⁰ (d, 2n) (BudA62, LeiC47, LeviN58)
Cu ⁶¹	3.32 h (BermA54) 3.33 h (CookCS48b) 3.35 h (BudA62, BooF50) 3.4 h (ThorRL37, RideL37a, KunD50a) 3.3 h (HopH50)		β ⁺ 60%, EC 40% (NusR56) others (CookCS51, BouR50, HubeO49, KuzM57) -61.98 (MTW)	A	chem, excit (RideL37) chem, excit, sep isotopes (Leic47, KunD50a) daughter Zn ⁶¹ (LindnL55a, CumJ55, CumJ59)	e-	1.22 max 0.059 Ni X-rays, 0.067 (4%), 0.284 (12%), 0.38 (3%), 0.511 (120%, Y [±]), 1.19 (5%)	Ni ⁶⁰ (d, n) (ThorRL37) Co ⁵⁹ (a, 2n)
Cu ⁶²	9.76 m (EbrT65) 9.73 m (BermA54) 9.9 m (CriE39, ButlJW58a, PerlmM48, ForS52) 10.1 m (LeiC47, NusR54c) 10.0 m (RideL37a) others (HeyF37a)		β [†] (HeyF37a), [EC] -62.81 (MTW)	A	excit (HeyF37a) excit, cross bomb (RideL37a, StraC38, BotW39) chem, sep isotopes (LeiC47) daughter Zn ⁶² (MillDR48)		2.91 max 0.511 (195%, Y [±]), 0.88 (0.3%), 1.17 (0.5%, complex)	daughter Zn ⁶² (MillDR48) Co ⁵⁹ (a,n) (RideL37a) Ni ⁶² (p,n) (StraC38)
<u>Cu⁶³</u>		Δ	69.1 (BrowHS47) -65.583 (MTW) 4.5 (GoldmDT64)					

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△*M-A), MeV (C'*=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
29 ^{Cu⁶⁴}	12.80 h (TobJ55, RabE50) 12.88 h (SilL51) 12.87 h (WriH57) 12.7 h (SchumR51a) others (BonaG64, BatzR51a, KunD51, HubeO43a, HubeO44a, JohnH50, PerlmM49, StraK51, EdwL52, MillDR48, VVooS36a, HopH50, BeydJ57a, PauA65, ZinH65)	₩ EC 43%, β 38%, β 19% (NDS) (β + EC)/β 1.6 (ReynJH50) Δ -65.428 (MTW)	A chem, n-capt (AmaE35) excit (VVooS36a) chem, excit (DelL39)	β ⁻ 0.573 max β ⁺ 0.656 max e ⁻ 1.33 Y Ni X-rays, 0.511 (38%, Y [±]), 1.34 (0.5%)	Cu ⁶³ (n, Y) (HeyF37b, SerL47b)
<u>Cu⁶⁵</u>		% 30.9 (BrowHS47) Δ -67.27 (MTW) σ _C 2.3 (GoldmDT64)			
Cu ⁶⁶	5.10 m (SargB53) 5.07 m (BarthR53b) 5.12 m (SchumR51a) 5.20 m (KoesL54) 5.2 m (RoderH51, CamAG50) 5.3 m (BormM65) others (FrieG51)	φ β (AmaE35) Δ -66.26 (MTW) σ _c 130 (GoldmDT64)	A n-capt (AmaE35) excit (ChanW37) daughter Ni ⁶⁶ (GoeR49)	β 2.63 max Y 1.039 (9%)	Cu ⁶⁵ (n, Y) (AmaE35, SerL47b, OrsA49, HumV51) daughter Ni ⁶⁶ (GoeR49)
Cu ⁶⁷	58.5 h (KunD50a) 61 h (HopH50, EwaG53) 56 h (GoeR49)	φ β (GoeR49) Δ -67.29 (MTW)	A chem (GoeR49) chem, cross bomb, sep isotopes (KunD50a)	β ⁻ 0.57 max e ⁻ 0.082, 0.091 Y Zn X-rays, 0.092 (23%, doublet), 0.184 (40%)	Ni ⁶⁴ (a, p) (KunD50a) Zn ⁶⁷ (n, p) (KunD50a) Cu ⁶⁵ (t, p) (KunD51)
Cu ⁶⁸	30 s (BakH64) 32 s (FlaA53a)	Υ β ⁻ (FlaA53a) Δ −65.4 (MTW)	B chem, excit (FlaA53a) genet energy levels (BakH64)	β 3.5 max γ 0.80 (17%), 1.078 (95%), 1.24 (3%), 1.88 (5%)	Ga ⁷¹ (n, a) (FlaA53a, BakH64) Zn ⁶⁸ (n, p) (FlaA53a, YthC60c, BakH64)
30 ^{Zn⁶⁰}	2.1 m (LindnL55a)	♀ [EC, β ⁺] (LindnL55a)	B chem, genet (LindnL55a) parent Cu ⁶⁰ (LindnL55a)		Ni ⁵⁸ (a, 2n) (LindnL55a)
Zn ⁶¹	1.48 m (LindnL55a, CumJ59)	* ρ [†] , [EC] (CumJ55, LindnL55a, CumJ59), Δ -56.6 (MTW)	A chem, genet (CumJ55, LindnL55a, CumJ59) parent Cu ⁶¹ (CumJ55, LindnL55a, CumJ59)	β ⁺ 4.4 max Y 0.48 (11%), 0.511 (198%, Y [±]), 0.98 (3%), 1.64 (6%)	Ni ⁵⁸ (a, n) (CumJ55, LindnL55a, CumJ59)
Zn ⁶²	9.13 h (RudG64) 9.33 h (HaywR50a) 9.3 h (NusR54c) 9.5 h (MillDR48) others (KunD53, PoolM 52)	EC ≈82%, $β^+$ ≈18% (NDS) EC ≈90%, $β^+$ ≈10% (HaywR50a) Δ =61.12 (MTW)		β ⁺ 0.66 max e ⁻ 0.033 Y Cu X-rays, 0.042 (20%), 0.51 (47%, doublet, includes Y [±]), 0.59 (22%) daughter radiations from Cu ⁶²	Cu ⁶³ (p, 2n) (GhoS50) Cu ⁶³ (d, 3n) (NusR54c)
Zn ⁶³	38.4 m (CumJ61) 38.1 m (RiccR 59a) 38.3 m (HubeO47, StraC38, WafH48) 38.5 m (DeLL39) 37.6 m (VasiSS61b) others (BotW39, PauA65)	* β ⁺ 93%, EC 11% (HubeO47) Δ -62.22 (MTW)	A chem, excit (BotW37a, HeyF37b, RideL37a) daughter Ga ⁶³ (NurM65)	β ⁺ 2.34 max Y Cu X-rays, 0.511 (186%, Y [±]), 0.669 (8%), 0.962 (6%), 1.42 (0.9%)	Ni ⁶⁰ (a, n) (GhoS 50, Ride L37a) Cu ⁶³ (p, n) (StraC 38, Del L39, Blas J 51, GhoS 50, Cum J 61) Cu ⁶³ (d, 2n) (LivRS 40, Town A 41)
Zn ⁶⁴	t _{1/2} (EC EC) >8 x 10 ¹⁵ y sp act (BertA53)	% 48.89 (BaiK50) Δ -66.000 (MTW) σ _c 0.46 (GoldmDT64)			
Zn ⁶⁵	245 d (TobJ53, PerrC38) 244 d (GeiKW57) 246 d (WriH57, EasH60) 250 d (TatV61, AgarI61)	★ EC 98.3%, β [†] 1.7% (GleG59, RiccR60b) β [†] 1.2% (BereD62b) Δ -65.92 (MTW)	labour avait aross bomb	 β[†] 0.327 max e⁻ 1.106 Y Cu X-rays, 0.511 (3.4%, Y[±]), 1.115 (49%) 	Zn ⁶⁴ (n, Y) (SagR39, SerL47b)
2n66		% 27.81 (BaiK50) Δ -68.88 (MTW)			
Zn 67		% 4.11 (BaiK50) Δ -67.86 (МТW)			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
30 ^{Zn68}		 % 18.56 (BaiK50) Δ -69.99 (MTW) σ_c 1.0 (to Zn⁶⁹) 0.1 (to Zn^{69m}) (GoldmDT64) 			
Zn ⁶⁹	57 m (LivJ39a) 51 m (HopH48) 52 m (HansA49)	 β (HeyF37b) Δ -68.43 (MTW) 	A chem, n-capt (HeyF37b) chem, excit, cross bomb (LivJ39a, KenJ39) daughter Zn ^{69m} (KenJ39)	β 0.90 max Υ no Y	daughter Zn ^{6 9m} (KenJ39) Zn ⁶⁸ (n, Y) (HeyF37b, HeyF36, SerL47b, HumV51, SagR39) Ga ⁷¹ (d, a) (LivJ39a)
Zn ^{69m}	13.8 h (LivJ39a) others (HopH50, HopH48)	★ IT (KenJ39) △ -67.99 (LHP, MTW)	A chem, excit (ThorRL38) chem, excit, cross bomb (LivJ39a, KenJ39) parent Zn ⁶⁹ (KenJ39)	Y Zn X-rays, 0.439 (95%) e 0.429 daughter radiations from Zn ⁶⁹	Zn ⁶⁸ (n, Y) (ThorRL38, LivJ39a, SerL47b) Ga ⁷¹ (d, a) (LivJ39a)
<u>Zn</u> 70	t _{1/2} (ββ) >10 ¹⁵ y sp act (FremJ52)	% 0.62 (BaiK50) Δ -69.55 (MTW) σ _c 0.10 (to Zn ⁷¹) 0.01 (to Zn ⁷¹ m) (GoldmDT64)			
Zn ⁷¹	2.4 m (ThwT61) 2.2 m (LBlaJ55, HugD46)	β (HugD46) Δ -67.5 ₁ (MTW)	C n-capt, cross bomb (HugD46) n-capt, sep isotopes (LBlaJ55)	β- 2.61 max Υ 0.120 (0.9%), 0.39 (1.3%), 0.510 (13%), 0.92 (3%), 1.12 (1.3%)	Zn ⁷⁰ (n, Y) (HugD46, LBlaJ55, ThwT61)
Zn ^{7lm}	3.92 h (LevkV58) 4.1 h (SonT64) 4.0 h (ThwT61)	φ β (LBlaJ55) Δ -67.2 (LHP, MTW)	A sep isotopes, n-capt (LBlaJ55) chem (SonT64)	β 1.46 max Y 0.13 (9%), 0.385 (94%), 0.495 (75%), 0.609 (65%), 0.76 (5%), 0.99 (8%), 1.11 (4%)	Zn ⁷⁰ (n, Y) (LBlaJ55, ThwT61, TanP64, SonT64)
Zn ⁷²	46.5 h (ThwT63) 49 h (SiegJ51) 37 h (IshM63)	φ β (SiegJ51) Δ -68.14 (MTW)	A chem, genet (SiegJ46, SiegJ51) parent Ga ⁷² (SiegJ51)	β- 0.30 max e- 0.005, 0.014 Y Ga X-rays, 0.015 (8%), 0.046 (weak), 0.145 (90%), 0.192 (10%) daughter radiations from Ga ⁷²	fission.(SiegJ51, SteinE51c, GoeR49, FolR51, TurA51a, ThwT63, KjeA63)
31 ^{Ga 63}	33 s (NurM65)	Υ [β ⁺ , EC] (NurM65) Δ −57 (MTW)	B chem, excit, cross bomb, genet (NurM65) parent Zn ⁶³ (NurM65)		Cu ⁶³ (a, 4n) (NurM65) Ni ⁶⁰ (Li ⁶ , 3n) + Ni ⁵⁸ (Li ⁶ , n) (NurM65)
Ga ⁶⁴	2.6 m (CrasB53) 2.5 m (CohB53)		B chem, cross bomb (CrasB53) chem, excit, sep isotopes (CohB53)	β ⁺ 6.05 max (33%), 2.8 max γ 0.511 (196%, γ [±]), 0.80 (15%), 0.992 (43%), 1.25 (7%), 1.38 (14%), 1.56 (7%), 1.78 (5%), 2.18 (11%), 2.34 (9%), 3.32 (18%)	Cu ⁶³ (a, 3n) (CrasB53) Zn ⁶⁴ (p, n) (CohB53, JacoT60) Zn ⁶⁴ (d, 2n) (CrasB53)
Ga ⁶⁵	15.2 m (DaniH57a) 15 m (AlvL38, LivJ39d, CrasB54, KoesL54, PoolM52)	Φ EC (AlvL38) β ⁺ >50% (AteA52) Δ −62.66 (MTW)	A chem, genet (LivJ39d) parent Zn ⁶⁵ (LivJ39d) daughter Ge ⁶⁵ (PoriN58)	β ⁺ 2.24 max (12%), 2.11 max e ⁻ 0.044, 0.053, 0.105 Y Zn X-rays, 0.054 (8%), 0.061 (12%), 0.115 (55%), 0.152 (10%), 0.206 (4%), 0.511 (180%, Y [±]), 0.75 (10%), 0.93 (3%)	Cu ⁶³ (a, 2n), Zn ⁶⁴ (d, n), Zn ⁶⁴ (p, Y) (MorrD59)
Ga ⁶⁵	8.0 m (CrasB54)	*	G chem, excit, cross bomb (CrasB54) activity not observed (MorrD59)		alphas on Cu, protons on Zn (CrasB54)
Ga ⁶⁶	9.45 h (Dange L50d) 9.3 h (RudG64) 9.5 h (CarvJ59) 9.4 h (Ride L37a, BucJ38) 9.2 h (MukA50, MannW37) others (FrauH57b)	∳ β [†] 57%, EC 43% (CamD63) Δ -63.71 (MTW)	A chem, excit (MannW37, RideL37) daughter Ge ⁶⁶ (HopH49)	β [±] 4.153 max Y Zn X-rays, 0.511 (114%, Y [±]), 0.828 (5%), 1.039 (37%), 1.91 (3%), 2.183 (5%), 2.748 (25%), 4.30 (5%)	Cu ⁶³ (a, n) (MannW37, RideL37a, LangeL50d)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△■M-A), MeV (C¹²-0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
31 ^{Ga 67}	77.9 h (TobJ55, TobJ51) 79.2 h (RudG64) 78.2 h (MCowD48) others (HopH50, HopH48, MannW38)	★ EC (AlvL38) no β [†] , lim 0.01% (MeyW53) Δ -66.87 (MTW)	A chem, excit (MannW38, MannW38a) chem, excit, cross bomb (AlvL38) daughter Ge ⁶⁷ (HopH49)	Y Zn X-rays, 0.093 (40%), 0.184 (24%), 0.296 (22%), 0.388 (7%) e ⁻ 0.084, 0.092	Zn ⁶⁷ (d, n) (AlvL38, ValleG39) Cu ⁶⁵ (a, 2n) (HubbJ57)
Ga ⁶⁸	68.3 m (EbrT65) 68.2 m (BormM65) 68 m (RideL37a, PerlmM48, KoesL54)	p [†] 88%, EC 12% (RamaeM59a, TayH63a) Δ -67.07 (MTW)	A chem, excit (BotW37a, RideL37a) daughter Ge ⁶⁸ (HopH48, HopH50)	β [†] 1.90 max Y Zn X-rays, 0.511 (176%, Y [‡]), 0.80 (0.4%), 1.078 (3.5%), 1.24 (0.14%), 1.87 (0.15%)	daughter Ge ⁶⁸ (HopH48) Cu ⁶⁵ (a, n) (RideL37a, MannW37) Zn ⁶⁸ (p, n) (DubL38, BucJ38, MukA50) Zn ⁶⁷ (d, n) (ValleG39)
Ga 69		% 60.2 (IngM48b) 60.5 (AntkS53) Δ -69.326 (MTW) σ _c 1.9 (GoldmDT64)			
Ga ⁷⁰	21.1 m (BunkM57) 20 m (AmaE35, MannW38)		A chem, n-capt (AmaE35) chem, excit (DubL38)	β 1.65 max Y 0.173 (0.16%), 1.040 (0.5%)	Ga ⁶⁹ (n, Y) (AmaE35, SerL47b)
<u>Ga. 71</u>		% 39.8 (IngM48b) 39.5 (AntkS53) Δ -70.135 (MTW) σ _C 5.0 (GoldmDT64)			
Ga ⁷²	14.12 h (WyaE61) 14.08 h (BisG50) 14.3 h (SlegJ51, MandeC43a) 14.1 h (SagR39) others (LangeL60)	* β (SagR39) Δ -68.58 (MTW)	A chem, n-capt, excit (LivJ38b, SagR39) daughter Zn ⁷² (SiegJ51)	β ⁻ 3.15 max γ 0.601 (8%), 0.630 (27%), 0.835 (96%), 0.894 (10%), 1.050 (7%), 1.465 (3.5%), 1.60 (5%, complex), 1.860 (5%), 2.201 (26%), 2.50 (20%, doublet)	Ga ⁷¹ (n, Y) (SagR39, SerL47b, SiegJ51)
Ga ⁷³	4.9 h (YthC58) 5.1 h (MarqL59) 5.0 h (SiegJ51)	☆ ρ ⁻ (SiegJ51) Δ −69.74 (MTW)	A chem, excit (SiegJ46, SiegJ51) chem, sep isotopes, cross bomb (YthC58)	β ⁻ 1.19 max e ⁻ 0.012, 0.043, 0.053 Y Ge X-rays, 0.054 (9%), 0.295 (94%), 0.74 (6%) daughter radiations from Ge ^{73m} included in above listing	Ge ⁷³ (n, p) (SiegJ51, YthC58) Ge ⁷⁶ (d, an) (YthC58)
Ga ⁷⁴	8.0 m (YthC5%) 7.8 m (EicE58) others (MarinJ60, MoriH56)	* ρ (EicE58) Δ -67.8 (MTW)	A decay charac, excit (MoriH56) chem, sep isotopes, excit, genet energy levels (EicE58, EicE62)	β- 2.5 max Y 0.50 (11%, complex?), 0.60 (100%, doublet), 0.87 (9%, doublet), 1.11 (5%), 1.20 (8%, doublet), 1.33 (5%), 1.46 (8%, doublet), 1.76 (7%, doublet), 2.35 (45%)	Ge ⁷⁶ (d, a) (YthC59b) Ge ⁷⁴ (n, p) (MarinJ60, EicE62, EicE58, YthC59b)
Ga ⁷⁵	2.0 m (MoriH60) 1.5 m (YthC60a)	# β (MoriH60, YthC60a) Δ -68.5 (MoriH60, MTW)	D chem (YthC60a)	β 3.3 max γ 0.36 ? (1%), 0.58 (3%) [daughter radiations from Ge ⁷⁵]	Ge ⁷⁶ (n, pn) (YthC60a) Ge ⁷⁶ (Y, p) (MoriH60)
Ga ⁷⁶	32 s (TakaK61)	† β (TakaK61)	C genet energy levels (TakaK61)	β 6 max Y 0.563, 0.96, 1.12	Ge ⁷⁶ (n, p) (TakaK61)
32 ^{Ge 65}	1.5 m (PoriN58)	† β [†] (PoriN58), [EC] Δ ~56 (MTW)	A chem, excit, sep isotopes, genet (PoriN58) parent Ga ⁶⁵ (PoriN58)	β [†] 3.7 max Y 0.511 (197%, Y [±]), 0.67 (3%), 1.72 (2%) daughter radiations from Ga ⁶⁵	Zn ⁶⁴ (a, 3n) (PoriN58)
Ge ⁶⁶	2.4 h (RiccR60a) 2.5 h (HopH50) others (RiccR56, ZinH65)	† p [†] =62%, EC =38% (RiccR60a) EC(K) =48% (ZinH65) Δ -60.7 (MTW)	A chem, genet (HopH49) parent Ga ⁶⁶ (HopH49)	β ⁺ 2.0 max (<10%), 1.3 max Y Ga X-rays, 0.046 (37%), 0.068 (11%), 0.114 (22%), 0.185 (23%), 0.245 (7%), 0.27 (17%), 0.30 (6%), 0.34 (19%), 0.38 (48%, doublet?), 0.40 (6%), 0.47 (19%), 0.511 (124%, γ*) daughter radiations from Ga	Zn ⁶⁴ (a, 2n) (RiccR60a)

Isotope Z A	Half-life	Type of decay (**); % abundance; Mass excess (Δ=M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
32 ^{Ge⁶⁷}	18.7 m (RiccR59) 18.6 m (CogM65) 21 m (HopH50, VasiSS64) 19 m (AteA53) others (RiccR56)	β [†] , EC (HopH50, RiccR59) Δ -62.5 (MTW)	A chem, genet (HopH49) parent Ga ⁶⁷ (HopH49)	β ⁺ 3.1 max Y 0.170 (105%, doublet), 0.511 (170%, Y [±]), 0.84 (4%), 0.92 (7%), 1.48 (5%) daughter radiations from Ga ⁶⁷	Zn ⁶⁴ (a, n) (RiccR59)
Ge ⁶⁸	275 d (CrasB56) 250 d (HopH50)	EC (HopH48) no β [†] , lim 0.4% (RamasM59a)	A chem (MannW38) chem, genet (HopH48) parent Ga ⁶⁸ (HopH48, HopH50)	Y Ga X-rays daughter radiations from Ga ⁶⁸	Zn ⁶⁶ (a, 2n) (MannW38, RamasM59a, HoreD59)
Ge ⁶⁹	36 h (TemJ65) 40.4 h (NusR57) 38.5 h (SchweC63) 40 h (MCCwD48, HopH50) others (MannW38, HubeO44a)	Y EC ≈67%, β [†] ≈33% (MCowD48) EC(K) ≈55% (ZinH65) Δ -67.101 (MTW)	A chem (MannW38) chem, excit, cross bomb (MCowD48) daughter As ⁶⁹ (ButeF55)	β [†] 1.22 max Υ Ga X-rays, 0.511 (68%, Υ [±]), 0.573 (13%), 0.872 (10%), 1.107 (28%), 1.335 (3%)	Ga ⁶⁹ (d, 2n) (SeaG41, MCowD48, HudC51, TemJ65)
Ge ⁷⁰		% 20.55 (IngM48e) Δ -70.558 (MTW), σ _c 3.2 (GoldmDT64)			
Ge ⁷¹	11.4 d (MCowD48) 11 d (MandeC49, SeaG41)	EC, no β [†] (MCowD48, MandeC49) Δ -69.90 (MTW)	A chem, excit, cross bomb (SeaG41) sep isotopes, n-capt (ReynS50) daughter As 71 (HopH49)	Y Ga X-rays	Ge ⁷⁰ (n, Y) (SerL47b, MCowD48, MandeC49, ReynS50) Ga ⁷¹ (d, 2n) (SeaG41, MCowD48)
ૃGe [?]	14 d (LangeM 56, LangeM 54b)	EC (LangeM 56, (LangeM 54b)	E chem, critical abs (LangeM56, LangeM54b)	Y Ga X-rays, continuous internal bremestrahlung to 0.15	neutrons on Ge (LangeM54b, LangeM56)
Ge ⁷²		% 27.37 (IngM48e) Δ -72.579 (MTW) σ _c 1.0 (GoldmDT64)			
Ge ⁷³		% 7.67 (IngM48e) Δ -71.293 (MTW) σ _C 14 (GoldmDT64)			
Ge ^{73m}	0.53 s (CamE57)	Y IT (CamE57) △ -71.226 (LHP, MTW)	A n-capt, chem, genet (CamE57) daughter As ⁷³ (CamE57)	Y Ge X-rays, 0.054 (9%) e 0.012, 0.043, 0.053	daughter As 73 (CamE57)
<u>Ge⁷⁴</u>		% 36.74 (IngM48e) Δ -73.419 (MTW) σ _c 0.3 (to Ge ⁷⁵) 0.2 (to Ge ^{75m}) (GoldmDT64)			
Ge ⁷⁵	82 m (MCowD48) 89 m (SeaG41) 79 m (ReynS50)	β (SeaG41) Δ −71.83 (MTW)	A chem, excit, cross bomb (SeaG41) n-capt, sep isotopes (ReynS50)	β- 1.19 max Υ 0.066 (0.3%), 0.199 (1.4%), 0.265 (11%), 0.427 (0.3%), 0.477 (0.3%), 0.628 (0.1%)	Ge ⁷⁴ (n, Y) (ReynS 50, SmiA 52c, SagR 39, SagR 41, Ser L 47b) As ⁷⁵ (n, p) (SagR 41, Sea G 41, M Cow D 48)
Ge ^{75m}	48 s (SmiA52c) 49 s (Burs554a) 42 s (FlaA52)	Y IT (FlaA52) △ -71.69 (LHP, MTW)	A excit (FlaA52) cross bomb, n-capt, sep isotopes (SmiA52c)	Y Ge X-rays, 0.139 (34%) e 0.128, 0.138 daughter radiations from Ge 75	Ge ⁷⁴ (n, Y) (SmiA52c, FlaA52) As ⁷⁵ (n, p) (FlaA52, SmiA52c)
<u>Ge⁷⁶</u>	t _{1/2} (ββ) >2 x 10 ¹⁶ y sp act (FremJ52)	% 7.67 (IngM48a) Δ -73.209 (MTW) σ _C 0.1 (to Ge 77) 0.1 (to Ge 77m) (Goldm:DT 64)			

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≢M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
₃₂ Ge ⁷⁷	11.3 h (LyoW57) 12 h (SeaG41, SteinE51)		β¯ (SagR41) -71.2 (MTW)	A	chem, excit, cross bomb (SeaG41) parent As ⁷⁷ (SteinE46, SteinE51)	e-	2.2 max 0.198, 0.253 As X-rays, 0.21 (61%, doublet), 0.263 (45%), 0.368 (15%), 0.417 (25%), 0.563 (18%), 0.632 (11%), 0.73 (14%, complex), 0.80 (6%, complex), 0.93 (5%, complex), 1.09 (6%), others to 2.4 daughter radiations from As	Ge ⁷⁶ (n, Y) (LyoW57, ReynS50, SagR39, SagR41, SerL47b)
Ge ^{77m}	54 s (LyoW57) 52 s (BursS54a) 59 s (ArnJ47, (VKooJ65) others (ReynS50)		β 76%, IT 24% (VK00J65) β 73%, IT 27% (LyoW57) β ≈85%, IT ≈15% calc from (BursS54a) -71.0 (LHP, MTW)	A	cross bomb, genet, n-capt (ArnJ47) sep isotopes (ReynS50) parent As 77 ReynS50)	e ⁻	2.9 max 0.148, 0.158 Ge X-rays, 0.159 (12%), 0.215 (21%)	Ge ⁷⁶ (n, Y) (LyoW57, ReynS50, ArnJ47)
Ge ⁷⁸	1.47 h (FritK65, KvaE65) 1.43 h (SugaN53) 2.1 h (YthC59a, SteinE51)	1	β (SteinE51) -71.8 (KvaE65, MTW)	В	chem, genet (SteinE46, SteinE51, YthC59a) parent As ⁷⁸ (SteinE46, SteinE51, SugaN53, YthC59a)	l. :	0.71 max 0.277 (94%) daughter radiations from As ⁷⁸	fission (SteinE51, FritK65, KvaE65) Se ⁸² (n, an) (YthC59a)
33 ^{As 68}	≈7 m (Bute F 55)	*		E	chem, excit (ButeF55)			Ge ⁷⁰ (p, 3n) (ButeF55)
As ⁶⁹	15 m (ButeF55)	1	β ⁺ (ButeF55), [EC] -63.2 (MTW)		chem, genet (ButeF55) parent Ge ⁶⁹ (ButeF55)		2.9 max 0.23, 0.511 (Y [±]) daughter radiations from Ge ⁶⁹	Ge ⁷⁰ (p, 2n) (ButeF55)
As ⁷⁰	52 m (HopH50, VerkB52) 47 m (SouA55)		β [†] (HopH50) no EC, lim 20% (VerkB52) -64.32 (MTW)	A	chem (HopH49, HopH50) chem, decay charac (SouA55) chem (VerkB52) chem, excit (ButeF55) daughter Se ⁷⁰ (HopH50)		2.89 max (6%), 2.14 max [Ge X-rays], 0.511 (183%, Y [±]), 0.60 (23%), 0.67 (25%), 0.75 (23%), 0.91 (17%), 1.040 (78%), 1.12 (23%), 1.36 (12%), 1.42 (10%), 1.54 (7%), 1.71 (22%), 1.80 (6%), 2.03 (19%), others to 4.7	Ge ⁷⁰ (p, n) (ButeF55) Ge ⁷⁰ (d, 2n) (VerkB52, BornP63)
As ⁷¹	62 h (GravW55) 60 h (HopH50, StokP53, BeydJ57a) 65 h (AttH53, ThuS54b)		EC ≈70%, β [†] ≈30% (ThuS54b) EC(K) ≈54% (ZinH65) -67.89 (MTW)	A	chem (SagR41) chem, genet (HopH49) mass spect (BracD52) parent Ge ⁷¹ (HopH49)	e-		Ga ⁶⁹ (a, 2n) (MeiJ50) Ge ⁷⁰ (d, n) (GravW55, ThuS54b, BracD52, MCowD48a)
As ⁷²	26 h (MCowD48a) 27 h (HopH50)		EC, β [†] (MCowD48a) EC(K) <30% (ZinH65) -68.22 (MTW)	A	chem, excit (MitA47) chem, excit, sep isotopes (MCowD48a) daughter Se ⁷² (HopH48, HopH50)	e ⁻	3.34 max (17%), 2.50 max 0.679 Ge X-rays, 0.511 (150%, Y [±]), 0.630 (8%), 0.835 (78%), other weak Y¹s to 3.7 (each <3%)	daughter Se ⁷² (HopH48 Ga ⁶⁹ (a,n) (MitA47, MCowD48a, MeiJ50, BrunE56)
As ⁷³	80.3 d (GleG64) 76 d (MCowD48a) others (SagR39a, MeiJ50)		EC, no 6 [†] , lim 2% (MCowC48a, ElliL43b) -70.92 (MTW)	A	chem (SagR39a) chem, excit, cross bomb, sep isotopes (MCowC48a) mass spect (JohaS51a) parent Ge ^{73m} (CamE57)	_ :	Ge X-rays, 0.054 (9%) 0.012, 0.043, 0.053 daughter radiations from Ge ⁷³ m included in above listing	Ge ⁷² (d, n) (SagR39a, JohaS52)
As ⁷⁴	17.9 d (GleG64) 17.5 d (MCowD48a) others (HopH50, SagR39a, MocD48)		 β⁺ 29%, EC 39%, β⁻ 32% (GrigE58d) others (GriR59j, HoreD59a, JohaS51, ScoJ57, MeiJ50) -70.855 (MTW) 	A	excit (CurtB38) chem, excit (SagR39a)	β+	1.36 max 1.54 max (3%), 0.95 max (26%) Ge X-rays, 0.511 (59%, Y [±]), 0.596 (61%), 0.635 (14%)	Ga ⁷¹ (a,n) (MCowD48a HoreD59a)
As ^{74m}	8.0 s (SchaA61a)	j i	IT (SchaA6la) -70.572 (LHP, MTW)	В	sep isotopes, cross bomb, excit (SchaA61a)	Υ	0. 283	Ge ⁷⁴ (p,n) (SchaA6la) Ge ⁷³ (p,Y) (SchaA6la)
As ⁷⁵		Δ	100 (NierA37a) -73.031 (MTW) 4.5 (GoldmDT64)					

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
33 ^{As} 76	26.4 h (HubeP53, HubeP52) 26.5 h (DzhB55) 26.3 h (MitA40) 26.8 h (WriH57, WeilG42) 26.1 h (PhiK48)	φ ⁻ , no β ⁺ , lim 0.03% (BarbW47) no EC(K), lim 0.02% (ScoJ57) Δ -72.29 (MTW)	A chem, n-capt (AmaE35)	β 2.97 max Y 0.559 (43%), 0.657 (6%), 1.22 (5%, doublet), 1.44 (0.7%, doublet), 1.789 (0.3%), 2.10 (0.9%, doublet)	As ⁷⁵ (n, Y) (AmaE35, CurtB38, OrsA49, Hum V51)
As ⁷⁷	38.7 h (BunkM53, SchmJ55) 38 h (SugaN53, TurA51a) 39 h (EndP54, ReynS53) others (SteinE51)	φ β (SteinE51) Δ -73.92 (MTW)	A chem, genet (SteinE46, SteinE51) daughter Ge ⁷⁷ (SteinE51, SteinE46) daughter Ge ^{77m} (ArnJ47, ReynS50)	β 0.68 max Y 0.086 (0.1%), 0.239 (2.5%), 0.522 (0.8%) daughter radiations from Se ⁷⁷ m	Ge ⁷⁶ (n, Y) Ge ⁷⁷ + Ge ⁷ (β̄) (LyoW57, ArnJ47, ReynS57)
As 78	91 m (SugaN53, KjeA59) 90 m (SteinE51, BrigR51) 88 m (CunJ53) others (SneA37, SagR39a, CurtB38)	Υ β (SneA37) Δ -72.8 (MTW)	B chem (SneA37) excit (CurtB38) daughter Ge ⁷⁸ (SteinE46, SteinE51, SugaN53, YthC59a)	β 4.1 max γ 0.614 († 42), 0.70 († 15), 0.83 († 8), 1.31 († 11)	Br ⁸¹ (n, a) (SneA37, SagR39a, BrigR51) fission (SteinE46, SteinE51) Se ⁷⁸ (n, p) (NemY58a)
78m As	6 m (NemY58a)	☆ IT (?) (NemY58a)	G excit (NemY58a) activity not observed (FritK65a)		neutrons on Se ⁷⁸ (NemY58a)
As ⁷⁹	9.0 m (CunJ53) 9.1 m (YthC54)	φ β (VHaaP52) Δ -73.7 (MTW)	A chem (ButeF50) chem, genet (YthC54, CunJ53) parent Se ^{79m} (YthC54, CunJ53)	β 2.15 max Y 0.36 (2%), 0.43 (2%), 0.54 (0.5%), 0.73 (0.5%), 0.89 (1%) daughter radiations from Se ^{79m}	Se ⁸² (n,α)[Ge ⁷⁹](β ⁻) (YthC61, YthC54) Se ⁸⁰ (n,pn) (VHaaP52 YthC61) Se ⁸⁰ (Y,p) (KuroT61a)
As ⁸⁰	15.3 s (MeaRE59) others (YthC54)	β (MeaRE59) Δ -71.8 (MTW)	C chem, excit (YthC54) excit, sep isotopes (MeaRE59)	β - 6.0 max Y 0.666 (42%), 0.8 (1.4%, complex), 1.22 (4%), 1.64 (4%), 1.77 (1.7%)	Se ⁸⁰ (n, p) (MeaRE59, YthC54)
As ⁸¹	33 s (YthC60) 31 s (MoriH60)	β (YthC60, MoriH60) Δ -72.6 (MoriH60, MTW)	B chem, excit (MoriH60, YthC60)	β 3.8 max Y no Y	Se ⁸² (n, pn) (YthC60) Se ⁸² (Y, p) (MoriH60)
As ⁸⁵	0.43 s (WanR55)	* [β], n (WanR55)	F excit (WanR55)		fission (WanR55)
34 ^{Se 70}	≈44 m (HopH50)	Υ β [†] (HopH50), [EC]	D chem (HopH49, HopH50) parent As ⁷⁰ (HopH50)	Y [As X-rays, 0.511 (Y [±])] [daughter radiations from As ⁷⁰]	As ⁷⁵ (d, 7n) (HopH50)
Se ⁷¹	4.5 m (AteA57) 5 m (BeydJ57)	φ β [†] (BeydJ57), [EC] Δ -63.5 (MTW)	B chem, excit (BeydJ57, AteA57)	β ⁺ 3.4 max Y 0.16, 0.511 (Y [±] , [195%])	Ge ⁷⁰ (a, 3n) (AteA57) N ¹⁴ on Cu (BeydJ57)
Se ⁷²	8.4 d (CumJ58) 9.7 d (HopH50)	FC (HopH50) no β [†] , lim 0.1% (CumJ58) Δ -68 (MTW)	A chem, genet (HopH48) parent As ⁷² (HopH48, HopH50)	Y As X-rays, 0.046 (59%) e 0.034, 0.044 daughter radiations from As 72	As ⁷⁵ (d, 5n) (HopH48, HopH50) Ge ⁷⁰ (a, 2n) (CumJ58)
Se ⁷³	7.1 h (CowW48, ScoF51, HaywR56, RiccR60c) others (HopH50)	φ ⁺ 65%, EC 35% (HaywR56, LHP) others (KuzM57, RiccR60c) no IT (RiccR60c) Δ -68.17 (MTW)	A chem (HopH48) chem, excit, sep isotopes (CowW48)	β ⁺ 1.66 max? (≤0.7%), 1.30 max e ⁻ 0.054, 0.064, 0.347 Y As X-rays, 0.066 (65%), 0.359 (99%), 0.511 (130%, Y [±]) daughter radiations from As ⁷³	Ge ⁷⁰ (a, n) {CowC48, ScoF51, RiccR60c) As ⁷⁵ (d, 4n) (HopH50)
Se ⁷³	42 m (RiccR60c) 44 m (HooF53)	* β ⁺ , EC (HooF53, RiccR60c) Δ -68.2 (RiccR60c, MTW)	B chem, excit (ScoF53)	β ⁺ 1.7 max Y As X-rays, 0.088 ? (6%), 0.251 ? (14%), 0.58 ? (6%)	Ge ⁷⁰ (a, n) (RiccR60c Ge ⁷² (a, 3n) (HocF53)
<u>Se⁷⁴</u>		% 0.87 (WhiJ48) Δ -72.212 (MTW) σ _c 30 (GoldmDT64)			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△■M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
34 ^{Se⁷⁵}	120.4 d (EasH60) 120 d (WriH57, HopH50) 127 d (CowW48) others (CorkJ50f, FrieH47)	EC, no β [†] (FrieH47, CowW48, CorkJ50f) Δ -72.166 (MTW)	A chem, excit (DubL40a, KenC42) sep isotopes, n-capt (CorkJ50f)	Y As X-rays, 0.066 (1.0%), 0.097 (3.3%), 0.121 (17%), 0.136 (57%), 0.265 (60%), 0.280 (25%), 0.401 (12%) e 0.085, 0.095, 0.109, 0.124, 0.253	Se ⁷⁴ (n, Y) (CorkJ50f, SerL47b, FrieH47) As ⁷⁵ (d, 2n) (KenC42, FrieH47, CowW48, HopH50) As ⁷⁵ (p, n) (DubL40a)
Se ⁷⁶		% 9.02 (WhiJ48) Δ -75.26 (MTW) σ _c 63 (to Se ⁷⁷) 22 (to Se ^{77m}) (GoldmDT64)			
<u>Se⁷⁷</u>		% 7.58 (WhiJ48) Δ -74.60 (MTW) σ _c 42 (GoldmDT64)			
Se ^{77m}	17.5 s (ArnJ47, CanR51a, RutW52) 17.4 s (FlaA50) 17.7 s (AlexKF63) 18.8 s (MalmS62)	☆ IT (ArnJ47) △ -74.44 (LHP, MTW)	A n-capt (ArnJ47) sep isotopes, n-capt (GoldhM48a) genet (CanR5la) daughter Br 77 (CanR5la, CanR5lc)	Y Se X-rays, 0.161 (50%) e 0.148, 0.160	Se ⁷⁶ (n, Y) (GoldhM48a ArnJ47) daughter Br ⁷⁷ (CanR5 CanR51c)
<u>Se⁷⁸</u>		% 23.52 (WhiJ48) Δ -77.021 (MTW) σ _C 0.05 (to Se ⁷⁹) 0.36 (to Se ⁷⁹ m) (GoldmDT64)			
Se ⁷⁹	≤6.5 x 10 ⁴ y sp act (est fission yield) (ParkG49a)	Υ β (ParkG49a) Δ -75.921 (MTW)	B chem, decay charac (ParkG49a)	β 0.16 max Y no Y	fission (ParkG49a)
Se ^{79m}	3.91 m (YthC54) 3.88 m (CunJ53)		A excit, n-capt (FlaA50, FlaA50a) n-capt, sep isotopes (RutW52) daughter As 79 (YthC54, CunJ53)	Y Se X-rays, 0.096 (9%)	Se ⁷⁸ (n, Y) (RutW52, FlaA50, FlaA50a)
Se ⁸⁰		% 49.82 (WhiJ48) Δ -77.753 (MTW) σ _C 0.5 (to Se ⁸¹) 0.1 (to Se ⁸¹ m) (GoldmDT64)			
Se ⁸¹	18.6 m (ApeD57) 18.2 m (YthC54) others (GleL51b, FlaA50, LangsA40, RutW52, WafH48)	φ ρ (LangsA40) Δ -76.40 (MTW)	A chem, genet (LangsA40) daughter Se ^{8 lm} (LangsA40)	β 1.58 max Y 0.030 (0.06%), 0.28 (0.9%, complex), 0.56 (0.3%, complex), 0.83 (0.2%)	Se ⁸⁰ (n, Y), daughter Se ⁸¹ m (SneA37, LangsA40, SerL47b, SunR62)
Se ^{81m}	56.8 m (YthC54) 56.5 m (WafH48) 62 m (ApeD57) 57 m (SneA37, LangsA 40) 61 m (YthC59) others (GleL51b, RutW52, BergI49b)	# IT, no β (SunR62) IT, [β] (YthC59) Δ -76.29 (LHP, MTW)	A chem, excit, cross bomb (SneA37) sep isotopes, n-capt (LeviHA47) mass spect (BergI49b) parent Se ⁸¹ (LangsA40)	Y Se X-rays, 0.103 (8%) e 0.090, 0.102 daughter radiations from Se 81	Se ⁸⁰ (n, Y) (SneA37, HeyF37, SerL47b, LevyHA47)
Se ⁸²	>10 ¹⁷ y genet (SharmH53)	% 9.19 (WhiJ48) Δ -77.59 (MTW) σ _c 0.004 (to Se ⁸³) 0.05 (to Se ^{83m}) (GoldmDT64)			
Se ⁸³	25 m (GleL51a) 26 m (RutW52) others (LangsA40, YthC54)	φ ρ (SneA37) Δ -75.4 (CocR59, MTW)	A chem, excit, cross bomb (SneA37) chem, genet (LangsA40) parent Br ⁸³ (LangsA40, GleL51a)	β 1.8 max Y 0.22 (44%), 0.36 (69%), 0.52? (59%), 0.71? (25%), 0.83? (41%, complex), 1.06? (16%), 1.31? (25%), 1.88 (16%), 2.29 (9%) daughter radiations from Br ⁸³ ,	Se ⁸² (n, Y) (SneA37, LangeA40, SerL47b, CocR59)

Isotope Z A	Half-life	Type of decay (♠); % abundance; Mass excess (△≡M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Major radiations: Genetic relationships and intensities	Principal means of production
34 ^{Se 83m}	70 s (CocR58) 69 s (RutW52) 67 s (ArnJ47)	φ β (ArnJ47) Δ -75.2 (CocR59, MTW)	A chem, genet (ArnJ47) parent Br ⁸³ (ArnJ47) β 3.8 max γ 0.35 († 16), 0.65 († 20), 1.01 († 100, complex), 2.02 († 40) daughter radiations from Br ⁸³ , Kr ^{83m}	Se ⁸² (n, Y) (ArnJ47, CocR58)
Se ⁸⁴	3.3 m (SatJ60)	* [β] (SatJ60)	A chem, genet (GleL46) parent 31.8 m Br ⁸⁴ (GleL51, EdwR51, SatJ60) not parent 6.0 m Br ⁸⁴ (SatJ60)	fission (SatJ60)
Se ⁸⁵	39 s genet (SatJ60)	☆ [β¯] (SatJ60)	B chem, genet (SatJ60) parent Br ⁸⁵ (SatJ60)	fission (SatJ60)
Se ⁸⁷	16 s (SatJ60)	Υ [β ⁻] (SatJ60)	D chem, genet (SatJ60) daughter radiations from Br ⁸⁷ parent Br ⁸⁷ (or Br ⁸⁶) (SatJ60)	fission (SatJ60)
35 ^{Br<74}	4 m (HollaJ53)	↑ (HollaJ53)	E chem, excit (HollaJ53)	C ¹² on Cu (HollaJ53)
Br ⁷⁴	36 m (HollaJ53, GrayJH60) 26 m (ButeF60a) 42 m (BeydJ57a)	φ ⁺ , [EC] (HollaJ53) Δ -65 (MTW)	B chem, excit (HollaJ53) chem, genet energy levels (BeydJ57a) daughter Kr ⁷⁴ (20 m) (GrayJH60) daughter Kr ⁷⁴ (12 m) (Buter 60a)	Cu ⁶⁵ (C ¹² ,3n) (HollaJ53)
Br ⁷⁵	1.7 h (BaskK61, WoodwL48a) 1.6 h (HollaJ53, BeydJ57a)	β ⁺ ≈90%, EC ≈10% (BaskK61) Δ -69.44 (MTW)	isotopes (WoodwL48a) Y [Se X-rays], 0.285, 0.511 (180%, daughter Kr 75 (ButeF60a) 180	Se ⁷⁴ (d, n) {WoodwL48a, Ful552, BaskK61) Se ⁷⁴ (p, y) (WoodwL48a) Cu ⁶⁵ (C ¹² , 2n) (HollaJ51)
Br ⁷⁶	16.1 h (GirR59c) 16.2 h (Dos163) 16.3 h (ButeF60a) 17.2 h (Ful552) 17.5 h (ThuS55)	φ [†] ≈62%, EC ≈38% (Dos163) [β [†] 67%, EC 33%] (GirR59c) EC(K) 20% (KuzM57) Δ -70.6 (MTW)	A chem (HopH48a) chem, sep isotopes (FulS52) chem, mass spect (ThuS55) daughter Kr ⁷⁶ (CareA54, ThuS55, DosI63) A chem (HopH48a) Y Se X-rays, 0.511 (133%, Y [±]), 0.559 (63%), 0.65 (19%), 0.75 (6%), 0.85 (7%), 1.21 (13%), 1.37 (5%), 1.47 (7%), 1.86 (11%), 2.10 (7%), 2.39 (4%), 2.78 (5%), 2.97 (8%), 3.57 (2%)	As ⁷⁵ (a, 3n) (GirR59c)
Br ⁷⁷	57 h (HollaJ51) 58 h (WoodwL48a)	EC 99%, β [†] 1% (SehR 54) others (WoodwL48a) Δ -73.24 (MTW)	A chem, sep isotopes (WoodwL48a) parent Se	As ⁷⁵ (a, 2n) (HollaJ51, CanR51a, MonaS63)
Br ⁷⁷ m	4.2 m (GooA59)	 T (GooA59) Δ −73.13 (LHP, MTW) 	B excit, sep isotopes (GooA59) Y [Br X-rays], 0.108 e- 0.094, 0.106 (these radiations were formerly assigned to Br 78)	Se ⁷⁶ (p, Y) (GooA59)
Br ⁷⁸	6.5 m (SchaA61a, RikR61) 6.4 m (SneA37) 6.2 m (PierW60)	p ⁺ [92%], EC [8%] (RikR61, PierW60) Δ -73.45 (MTW)	Cross bomb (PierW60) Y Se X-rays, 0.511 (184%, Y [±]), 0.614 (14%)	As ⁷⁵ (a,n) (SneA37) Se ⁷⁸ (p,n) (SchaA61a, RikR61, PierW60, BucJ38, ValleG39) Se ⁷⁷ (p,Y) (SchaA61a) Se ⁷⁷ (d,n) (SneA37, VasiSS62c)
Br ⁷⁸	<6 m (SneA37)	Υ β [†] (SneA37)	G [genet] (StahP53a) activity not observed (SchaA6la, PierW60)	[daughter Br ⁷⁸] (StahP63a)
Br ⁷⁹		 50.52 (WilliD46) 50.56 (CamAE55a) -76.075 (MTW) 6.5 (to Br⁸⁰) 2.9 (to Br^{80m}) (GoldmDT64) 		

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
35 ^{Br⁷⁹m}	4.8 s (GooA59) 5.0 s (SchaG54)	↑ IT (SchaG54) △ -75.87 (LHP, MTW)	В	excit (SchaG54) excit, sep isotopes (GooA59)	Y	[Br X-rays], 0.21	Se ⁷⁸ (p, Y) (GooA59) Br ⁷⁹ (n, n') (SchaG54)
Br ⁸⁰	17.6 m (KinA57) 18 m (SneA37, SegE39, AmaE35)	β 92%, β 2.6%, EC 5.7% (TrehP62) others (MimW51, ReynJH50, LabJ51, BarbW47) Δ -75.882 (MTW)	A	chem, n-capt (AmaE35) chem, excit, cross bomb (SneA37) chem, genet (SegE39) daughter Br 80m (SegE39, DVauD40, SidR41)	β+	2.00 max 0.87 max Se X-rays, 0.511 (5%, Y [±]), 0.618 (7%), 0.666 (1.0%)	Br ⁷⁹ (n, Y), daughter Br ^{80m} (SneA37, SerL47b, OrsA49, AliA36, SegE39)
Br ^{80m}	4.38 h (KinA57) 4.40 h (SchmW60) 4.6 h (MimW51) others (SneA37, BucJ38, BotW39)	↑ IT (SegE39) △ -75.796 (LHP, MTW)	A	chem, n-capt (AmaE35) chem, excit, cross bomb (SneA37) parent Br ⁸⁰ (SegE39, DVauD40, SidR41)	1 3	Br X-rays, 0.037 (36%) 0.024, 0.036, 0.047 daughter radiations from Br ⁸⁰	Br ⁷⁹ (n, Y) (AliA36, SneA37, SegE39, SerL47b)
Br ⁸¹		% 49.48 (WilliD46) 49.44 (CamAE55a) Δ -77.97 (MTW) σ _c 3 (GoldmDT64)					
Br ⁸²	35.34 h (MerJ62) 35.9 h (CobJ50) 35.1 h (WintF51) 36.0 h (BerneE50) 35.5 h (WyaE61) 35.7 h (SinW51)	β (KurtB35) no EC or β [†] , lim 0.03% (ReynJH50) no β [†] lim 0.02% (MimW51) Δ -77.50 (MTW)	A	chem, n-capt (KurtB35) chem, excit, cross bomb (SneA37) daughter Br ^{82m} (EmeJ65, AndeO65)	1.	0.444 max 0.554 (66%), 0.619 (41%), 0.698 (27%), 0.777 (83%), 0.828 (25%), 1.044 (29%), 1.317 (26%), 1.475 (17%)	Br ⁸¹ (n, Y) (SneA37, KurtB35, SerL47b, EmeJ65)
Br ^{82m}	6.05 m (AndeO65) 6.20 m (EmeJ65) 6.2 m (IyeR65)	Y IT 97.6%, β 2.4% (EmeJ65) IT, β ≥ 0.18% (AndeO65) Δ -77.45 (LHP, MTW)		chem, genet, sep isotopes (AndeO65) genet (EmeJ65) parent Br ⁸² (EmeJ65, AndeO65)	β-	Br X-rays, 0.046 (0.3%), 0.777 (0.15%), 1.475 (0.009%) [3.138 max] [0.033, 0.044] daughter radiations from Br ⁸²	Br ⁸¹ (n, Y) (EmeJ65, AndeO65)
Br ⁸³	2.41 h (BowleB61) 2.39 h (PastM63) 2.30 h (SwiP53) 2.4 h (GleL51a, SneA37, VasiI58) 2.3 h (LangsA40, HasR51)	Υ β (SneA37) Δ -79.02 (MTW)	A	chem, excit (SneA37) daughter Se , parent Kr 83m (LangsA40, StraF40, MoussA41, GleL51a) daughter Se (ArnJ47)	i.	0.93 max 0.530 (1.4%) daughter radiations from Kr ^{83m}	Se ⁸² (n, Y)Sc ⁸³ (β ⁻) (SneA37, LangsA40, GleL51a, BowleB61)
Br ⁸⁴	31.8 m (JohnN57) 31.7 m (SatJ60) others (StraF40, DufR51, KatcS51)	☆ β ⁻ (DodR39) Δ -77.7 (MTW)	А	chem (DodR39) chem, excit (BornH43) daughter Se ⁸⁴ (GleL51, EdwR51, SatJ60) not parent 6.0 m Br ⁸⁴ (SatJ60)	Y	4.68 max 0.81 (9%), 0.88 (51%), 1.01 (10%), 1.21 (4%), 1.90 (18%), 2.47 (8%), 3.93 (13%)	Rb ⁸⁷ (n, a) (BornH43, SatJ60) fission (DodR39, HahO39c, HahO39e, StraF40, MoussA41, BornH43, KatcS51)
Br ⁸⁴	6.0 m (SatJ60)	Ψ β (SatJ60)	1	chem, excit, sep isotopes (SatJ60) not daughter Se ⁸⁴ (SatJ60) not daughter 31.8 m Br ⁸⁴ (SatJ60)	1.	1.9 max 0.44 (68%), 0.88 (75%), 1.46 (75%), 1.89 (16%)	Rb ⁸⁷ (n,α) (SatJ60) fission (SatJ60)
Br ⁸⁵	3.00 m (SugaN49) 3.0 m (StraF40, BornH43)	☆ β (StraF40) Δ -78.7 (MTW)		chem (StraF40) chem, genet (SeeW43) parent Kr ^{85m} (SeeW43, SugaN49) daughter Se ⁸⁵ (SatJ60)	β ⁻ Υ	2.5 max no Y daughter radiations from Kr ^{85m}	fission (StraF40, BornH43, SeeW43, SugaN49)
Br ⁸⁶	54 s (StehA62, WilliE63)	 [↑] (StehA62) no n, lim 0.25% (SteinE63) [↑] (MTW) 	В	chem, excit, sep isotopes (StehA62)	l' :	7.1 max 1.29 († 12), 1.36 († 39), 1.56 († 100), 1.97 († 20), 2.34 († 20), 2.75 († 36)	Kr ⁸⁶ (n,p) (StehA62)
Br ⁸⁷	55.6 s (n) (HugD48) 54.5 s (n) (KeeG57, PerloG59) 55.0 s (n) (RedW47) 56.1 s (β-) (SugaN49) 55.4 s (n) (WilliE63)	 p̄, p̄n (≈2%) (LeviJ51, StehA53) Δ -74.6 (WilliE63, MTW) 		chem (StraF40) chem, genet (BornH43, SugaN49) parent Kr ⁸⁷ (BornH43, SeeW43, SugaN49) parent Kr ⁸⁶ (2%) (SneA47a, SugaN49) daughter Se ⁸⁷ (?) (SatJ60)	n	8.0 max(?), 2.6 max 0.3 (mean energy) 1.44 († 100), 1.85 († 18), 2.48 († 18), 2.64 († 16), 2.98 († 25), 3.18 († 16), 3.80 († 11), 4.19 († 21), 4.8 († 17), 5.0 († 17), 5.2 († 12) daughter radiations from Kr ⁸⁷	fission (StraF40, SneA47a, SugaN47, SugaN49, RedW47, HugD48)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△■M-A), MeV (C³=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
35 ^{Br⁸⁸}	15.5 s (SugaN49) 16.3 s (PerloG59) others (PerloG57, KeeG57)	*	β (SugaN49) n (weak) (PerloG59, PerloG57)	A	chem, genet (SugaN49) parent Kr ⁸⁸ (SugaN49)	Υ	0.76	fission (SugaN49, KeeG57, PerloG59, PerloG57)
Br ⁸⁹	4.5 s (n) (HugD48, RedW47) 4.4 s (n) (PerloG59)	*	β ⁻ , β ⁻ n (SneA47, HugD48)	D	chem (SneA47) parent Kr ⁸⁹ (?), parent Kr ⁸⁸ (?) (CoryC51)	n	0.5 (mean energy)	fission (SugaN47, SneA47, SugaN49, RedW47, HugD48)
Br ⁹⁰	1.6 s (PerloG59)	*	[β¯], n (PerloG59)	D	chem, decay charac (PerloG59)			fission (PerloG59)
36 ^{Kr ⁷⁴}	20 m (GrayJH60) 12 m (ButeF60a)		β ⁺ , [EC] (GrayJH60) -62 (MTW)	В	chem, genet (GrayJH60, ButeF60a) parent Br ⁷⁴ (36 m) (GrayJH60) parent Br ⁷⁴ (26m) (ButeF60a)	β ⁺ Υ	3.1 max 0.511 (Y [±]) daughter radiations from Br ⁷⁴	protons on Br (GrayJH60) protons on Sr (ButeF60a)
Kr ⁷⁵	5.5 m (ButeF60a) <1 m (GrayJH60)	1 3	[B ⁺ ,EC] (ButeF60a) -64 (MTW)	E	chem, genet (ButeF60a) activity not observed (GrayJH60) parent Br ⁷⁵ (ButeF60a)			protons on Br (ButeF60a)
Kr ⁷⁶	14.8 h genet (DosI63) 9.7 s (CareA54) 11 h (ThuS55)		EC, no β [†] , lim 1% (DosI63) no EC(K) (CareA54) -69 (MTW)	A	chem, genet (CareA54) chem, mass spect (ThuS55) parent Br ⁷⁶ (CareA54, ThuS55, DosI63)	Y	[Kr X-rays], 0.039, 0.104, 0.135, 0.267, 0.316, 0.407, 0.452 daughter radiations from Br ⁷⁶	Br ⁷⁹ (p, 4n) (ThuS55) Se ⁷⁴ (a, 2n) (DosI63)
Kr ⁷⁷	1.19 h (ButeF60a) others (ThuS55, Woodw148a, BeydJ57a)		EC ≈20%, β [†] ≈80% (ThuS55) others (WoodwL48a) -70.4 (MTW)	A	chem, sep isotopes (WoodwL48a) chem, mass spect (ThuS55)		1.86 max 0.011, 0.023, 0.094 (with Br ^{77m}), 0.106 (with Br ^{77m}), 0.118, 0.136 Br X-rays, 0.024, 0.108 (with	Br ⁷⁹ (p, 3n) (ThuS55)
						, T	Br ^{77m}), 0.131, 0.149, 0.665 daughter radiations from Br ⁷⁷	
<u>Kr ⁷⁸</u>		Δ	0.354 (NierA50a) -74.14 (MTW) 2 (to Kr ⁷⁹) (GoldmDT64)					
Kr ⁷⁹	34.92 h (BonaE64) 34.5 h (RadP52) others (WoodwL48, CreEC40a, ChacK61)		EC 92%, p ⁺ 8% (NDS, BonaE64) others (RadP52a, RadP52b, RadP55, LangeM54, BergI51d, ThuS54c) -74.46 (MTW)	A	chem (CreEC40a) chem, sep isotopes (WoodwL48) mass spect (BracD52) daughter Rb ⁷⁹ (ChacK61)	e-	0.60 max 0.031, 0.043, 0.123, 0.204, 0.248, 0.384 Br X-rays, 0.136 (0.7%), 0.261 (9%), 0.398 (10%), 0.511 (15%, y [±]), 0.606 (10%), 0.836 (2.0%), 1.119 (0.5%), 1.336 (0.5%)	Br ⁷⁹ (p, n) (CreEC40a) Br ⁷⁹ (d, 2n) (ClarE44, BonaE64) Kr ⁷⁸ (n, y) (HoaE51a, BergI51d)
Kr ^{79m}	55 s (CreEC40a)		IT (?), no β [†] (CreEC40a) -74.33 (LHP, MTW)	D	chem (CreEC40a)		Kr X-rays, 0.127 0.113, 0.125	Br ⁷⁹ (p, n) (GreEC40a)
<u>Kr⁸⁰</u>		Δ	2.27 (NierA50a) -77.89 (MTW) 15 (GoldmDT64)		u			
Kr ⁸¹	2.1 x 10 ⁵ y sp act, mass spect (EasT64a, ReynJH50a)		EC (ReynJH50a) -77.7 (MTW)	A	chem, mass spect (ReynJH50a)	Y	Br X-rays	Kr ⁸⁰ (n, γ) (ReynJH50a, EasT64a)
Kr ^{81m}	13 s (ChacK61, CreEC40a) others (KarrD50)		IT, no β ⁺ (CreEC40a) -77.5 (LHP, MTW)	A	chem (CreEC40a) genet (KarrD50) daughter Rb ⁸¹ (KarrD50)		Kr X-rays, 0.190 (65%) 0.176, 0.188	daughter Rb ⁸¹ (KarrD50)
Kr ⁸²		Δ	11.56 (NierA50a) -80.589 (MTW) 42 (to Kr ⁸³) 3 (to Kr ⁸³ m) (GoldmDT64)					

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C"=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
36 ^{Kr⁸³}		% 11.55 (NierA50a) Δ -79.985 (MTW) σ _c 180 (GoldmDT64)			
Kr ^{83m}	1.86 h (DVriL52) 1.90 h (Berg[51b) 1.88 h (LangsA40) others (RieW46)	T (LangeA40) Δ -79.943 (LHP, MTW)	A chem, genet (LangsA40) mass spect (BergI50) daughter Br 83 (LangsA40) daughter Rb 83 (CastS50)	Y Kr X-rays, 0.009 (9%) e 0.007, 0.018, 0.031	daughter Rb ⁸³ (CastS50)
Kr ⁸⁴		% 56.90 (NierA50a) Δ -82.433 (MTW) σ _c 0.04 (to Kr ⁸⁵) 0.10 (to Kr ^{85m}) (GoldmDT64)			
Kr ⁸⁵	10.76 y (LernJ63) 10.3 y (WanR53) 9.4 y (ThodH48a) others (HoaE51)	φ β (HoaE51) Δ -81.48 (MTW) σ _c <15 (GoldmDT64)	A chem (HoaE51) chem, mass spect (ThodH47)	β 0.67 max Y 0.514 (0.41%)	Kr 84 (n, Y) (HoaE51a) fission (ThodH47, HoaE51)
Kr ^{85m}	4.4 h (KocJ49, WoodwL48) 4.5 h (HoaE51a, SneA37) 4.6 h (RieW46, SeeW43)	β 77%, IT 23% (BergI51) β 78%, IT 22% (BladA55) Δ -81.18 (LHP, MTW)		β 0.82 max e 0.134, 0.291 Y Kr X-rays, 0.150 (74%), 0.305 (13%)	Kr 4(n, Y) (RieW46, HoaE5la) fission (SeeW43, SugaN49) Se 82(a, n) (WoodwL48)
<u>Kr⁸⁶</u>		% 17.37 (NierA50a) Δ -83.259 (MTW) σ _c 0.06 (GoldmDT64)	daughter Br ⁸⁷ (2%) (SneA47a, SugaN49)		
Kr ⁸⁷	76 m (ClarW64) 78 m (KocJ49) 74 m (SneA37) 75 m (SeeW43, SugaN49)	β [−] (SneA37) △ -80.70 (MTW) σ _c <600 (GoldmDT64)	A chem (SneA37) chem, mass spect (KocJ49) daughter Br ⁸⁷ (SeeW43, BornH43, SugaN49)	β 3.8 max Y 0.403 (84%), 0.85 (16%), 2.57 (35%)	Kr ⁸⁶ (n, Y) (RieW46, HoaE51a) fiesion, daughter Br ⁸⁷ (BornH43, SeeW43, SugaN49)
Kr ⁸⁸	2.80 h (ClarW64) 2.77 h (KocJ49) others (GlasG40, SugaN49)	Ψ β (LangsA39) Δ -79.9 (MTW)	1 1 17 120)	β 2.8 max e 0.013 γ 0.028, 0.166 (7%), 0.191 (35%), 0.36 (5%), 0.85 (23%), 1.55 (14%), 2.19 (≤18%), 2.40 (35%) daughter radiations from Rb ⁸⁸	fission (HeyF39, HahO40, GlasG40, HahO40b)
Kr ⁸⁹	3.18 m (KofO51b) 3.2 m (OckD62) 2.6 m (DilC51a) others (HahO43b)	Υ β (GlasG40) Δ -78 (MTW)	A chem, genet (GlasG40, SeeW40) mass spect (KofO51b) parent Rb ⁸⁹ (GlasG40, SeeW40, HahO40b, HahO43, BradE51, KofO51b)	β 4.0 max 9.23 († 85), 0.36 († 28), 0.43 († 29), 0.51 († 42), 0.60 († 100), 0.74 († 32), 0.88 († 55), 1.12 († 45), 1.29 († 31), 1.51 († 88, complex?), 1.71 († 34), 1.93 († 10), 2.04 († 16), 2.23 († 10), 2.42 († 22), 2.57 († 10), 2.84 († 25), (some of these may be sum peaks) daughter radiations from Rb ⁸⁹	fission (GlasG40, SeeW40, HahO40b, HahO43, BradE51, KofO51b, AdaRM51)
Kr ⁹⁰	33 s (KofO51b) 35 s (OckD62)	φ β (DilC51) Δ -74.8 (MTW)	4	β 2.80 max 9.105 (15%), 0.120 (65%), 0.236 (16%), 0.495 (12%), 0.536 (48%), 1.11 (48%), 1.54 (17%), 1.79 (11%), 2.48 (4%) daughter radiations from Rb 90	fission (DilC51, DilC51a, KofO51b, OckD62, GooR64)
Kr ⁹¹	9.8 s (DilC51a) 10 s (KofO51b) 6 s (OveR51)	ၞ β (HahO40c)	175 50 511	β 3.6 max γ no γ daughter radiations from 1.2 m Rb 91	fission (HahO40c, DilC51a, BradE51, DilC51, AdaRM51)

~-,	Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
	36 ^{Kr 92}	3.0 s (DilC5la)	*	β (HahO40)	В	chem, genet (HahO40, DilC51a) ancestor Y ⁹² , parent Rb ⁹² (DilC51a)			fission (HahO40, DilC51a)
	Kr ⁹³	2.0 s (DilC51a)	*	β ⁻ (HahO42)	В	chem, genet (HahO42, SelB51) parent Rb ⁹³ (BradE51, DilC51a, DilC51) ancestor Y ⁹³ (SelB51)			fission (HahO42, DilC5la, SelB51, BradE51)
	Kr ⁹⁴	1.4 s (DilC5la)	*	β¯ (HahO43b)	В	chem, genet (HahO43b, DilC5la) parent Rb ⁹⁴ (HahO43, HahO43b, DilC5l) ancestor Y ⁹⁴ (HahO43b, DilC5la)			fission (HahO43b, DilC5la, HahO43)
	Kr ⁹⁵	short (DilC51)	*	[β¯] (Di1C51)	F	chem, genet (DilC51) parent Rb ⁹⁵ , ancestor Zr ⁹⁵ (DilC51)			fission (DilC51)
	Kr ⁹⁷	≈l s (DilC51)	*	β (AdaRM51)	G	chem, genet (AdaRM51, DilC51) activity not observed (WahA62)			fission (DilC51, AdaRM51)
	37 ^{Rb} ⁷⁹	24 m (BeydJ57a, ChamiR57) 21 m genet (ChacK61)	*	β [†] (BeydJ57), [EC]	A	chem (BeydJ57, ChamiR57) chem, genet (ChacK61) parent Kr ⁷⁹ (ChacK61)	Y	[Kr X-rays], 0.15 (73%), 0.19 (29%), 0.511 (Y^{\pm} , [180%]), daughter radiations from Kr ⁷⁹	Cu ⁶⁵ (O ¹⁶ , 2n) (BeydJ57, ChamiR57) Br ⁷⁹ (He ³ , 3n) (ChacK61)
 	Rb ⁸⁰	34 s (HoffR 61)	1	β ⁺ , [EC] (HoffR61) -73 (MTW)	A	chem, mass spect (HoffR61) daughter Sr ⁸⁰ (HoffR61)		4.1 max 0.511 (Y [±] , [195%]), 0.618 (39%)	daughter Sr ⁸⁰ (HoffR61)
	Rb ⁸¹	4.7 h (KarrD50, DogW56, CastS52)	1	EC 87%, g ⁺ 13% (KarrD50) -75.4 (MTW)	A	chem, mass spect (ReynF49) parent Kr ^{81m} (KarrD50) daughter Sr ⁸¹ (CastS50, CastS52) daughter Rb ^{81m} (DogW56) descendant Zr ⁸¹ (ZaitN65)	1.	1.03 max Kr X-rays, 0.253, 0.450, 0.511 (26%, γ^{\pm}), 1.10 daughter radiations from Kr^{8} 1m	Br ⁷⁹ (a, 2n) (ReynF49, KarrD50)
	Rb ^{81m}	31 m (DogW56)		β ⁺ , [EC], IT (DogW56) -75.3 (LHP, MTW)	В	chem, genet (DogW56) parent Rb ⁸¹ (DogW56)	e-	1.4 mag spect 0.071, 0.083 [Rb X-rays, Kr X-rays, 0.085, 0.511 (Y [±])] daughter radiations from Rb ⁸¹ Kr ⁸¹ m	Br ⁷⁹ (a, 2n) (DogW56)
	Rb ⁸²	1.25 m (LitL53) 1.3 m (KruP53) 1.1 m (KurcB55)	1	β [†] 96%, EC 4% (SakM62) -76.42 (MTW)	A	chem, genet (LitL53, KruP53) daughter Sr ⁸² (LitL53, KruP53, KurcB55)	ı.	3.15 max Kr X-rays, 0.511 (192%, Y [±]), 0.777 (9%)	daughter Sr ⁸² (LitL53, KruP53, KurcB55)
	Rb ⁸² m	6.3 h (KarrD50) 6.5 h (HancJ40)		EC 94%, β [†] 6% (KarrD50) [EC 79%, β [†] 21%] (NDS) -76.14 (LHP, MTW)	A	chem (HancJ40) chem, mass spect (ReynF49) not daughter Sr ⁸² , lim 0.1% (LitL53, CastS52)	1.	0.78 max Sr X-rays, 0.511 (Y [±]), 0.554 (66%), 0.619 (41%), 0.698 (27%), 0.777 (83%), 0.828 (25%), 1.044 (29%), 1.317 (26%), 1.475 (17%)	Br ⁷⁹ (a,n) (HancJ40, ReynF49, KarrD50) Kr ⁸² (d,2n) (HancJ40)
	Rb ⁸³	83 d (CastS50) 100 d (KurcB55) 107 d (KarrD50)		EC (KarrD50) no β [†] (PerlmM55) -79 (MTW)	A	83m		Kr X-rays, 0.53 (93%, 3 Y rays), 0.79 (0.9%) 0.007, 0.52 daughter radiations from Kr ^{83m}	Br ⁸³ (a, 2n) (KarrD50) daughter Sr ⁸³ (CastS50, DosI64a)
	Rb ⁸⁴	33.0 d (WelJ55) 34 d (KarrD50)	1	EC 76%, β [†] 21%, β [¯] 3% (NDS) -79.753 (MTW)	A	chem, cross bomb (BarbW47) chem, mass spect (KarrD50)	β	1.66 max 0.91 max Kr X-rays, 0.511 (42%, Y [±]), 0.88 (74%), 1.01 (0.5%), 1.90 (0.8%)	Br ⁸¹ (a, n) (KarrD50)

Isotope Z A	Half-life		Type of decay (**); % abundance; Mass excess (Δ=M-A), MeV (C ² =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
37 ^{Rb^{84m}}	20 m (CohL58, HancJ40) 21 m (CaiR53) 23 m (FlaA50b)	1	IT, EC (weak) (CaiR53) -79.289 (LHP, MTW)	В	chem (HancJ40) chem, excit (FlaA50b)		Rb X-rays, 0.216 (37%), 0.250 (65%), 0.464 (32%) 0.201, 0.214, 0.449	Br ⁸¹ (a,n) (HancJ40) Rb ⁸⁵ (n,2n) (FlaA50b)
<u>Rb⁸⁵</u>		Δ	72.15 (NierA50a) -82.16 (MTW) 0.9 (to Rb ⁸⁶) 0.1 (to Rb ^{86m}) (GoldmDT64)					
Rb ⁸⁶	18.66 d (EmeE55a, EmeE55) 18.64 d (NidJ55) 18.7 d (WriH57) 18.8 d (GleG64) others (HelmhA41, RobiR58a)		β ⁻ (HelmhA41) -82.72 (MTW)	A	chem, n-capt (SneA37) chem, excit (HelmhA41)	Ι'	1.78 max 1.078 (8.8%)	Rb ⁸⁵ (n, Y) (SneA37, ScheiH38, SerL47b)
Rb ^{86m}	1.02 m (SchwaR53) 1.06 m (FlaA51)	1	IT (SchwaR53) -82.16 (LHP, MTW)	В	chem, excit, n-capt (FlaA51)	٧	[Rb X-rays], 0.56	Rb ⁸⁵ (n, Y) (FlaA51, SchwaR53)
<u>Rb</u> 87	4.8 x 10 ¹⁰ y sp act (KovA65) 4.7 x 10 ¹⁰ y sp act (FlyK59, GleL61) 5.2 x 10 ¹⁰ y sp act (MNaiA61a, BrinGA65) 5.8 x 10 ¹⁰ y sp act (EgeK61, LeuH62a) 5.0 x 10 ¹⁰ y sp act (CovE606) 6.2 x 10 ¹⁰ y sp act (MGreM54, CurrS51, FliJ54*) 5.1 x 10 ¹⁰ y sp act (LibW57) 5.9 x 10 ¹⁰ y sp act (LewisG52) 4.3 x 10 ¹⁰ y sp act (Ceci54) others (FriK56, StraF38, HaxO48a, HaxO48, KemM49, CharG51, EklS46, Bah152) *corrected for 27.85%	% Δ σ _c	β (ThomJ05, CamN06) 27.85 (NierA50a) -84.591 (MTW) 0.12 (GoldmDT64)	A	chem (ThomJ05, CamN06) chem, genet (HahO37, MattaJ37) chem, mass spect (HemA37) parent Sr ⁸⁷ (mass spect) (HahO37, MattaJ37)	1.	0.274 max no Y	:
RЪ ⁸⁸	abundance (NDS) 17.8 m (GlasG40, BunkM51) 17.7 m (ThuS52b) 17.5 m (WeilG42) 18 m (HahO40b, SneA37)	Δ	β ⁻ (HahO39c) -82.7 (MTW) 1.0 (GoldmDT64)	A	chem (SneA37) chem, genet (LangsA39, GlasG40, HahO39c) daughter Kr ⁸⁸ (HeyF39, LangsA39, GlasG40, HahO40, HahO40b, AteA39)	١.	5.3 max 0.898 (13%), 1.863 (21%), 2.68 (2.3%)	Rb ⁸⁷ (n, Y) (SneA37, PoolM37, ScheiH38, SerL47b) fission, daughter Kr ⁸⁸ (HeyF39, LangsA39, GlasG40, HahO40, HahO40b)
Rb ⁸⁹	15.4 m (GlasG40) 14.9 m (OKelG56a) 15.5 m (HahO40b)	1	β ⁻ (GlasG40) -82.3 (MTW)	A	chem, genet (GlasG40, SeeW40) daughter Kr ⁸⁹ (GlasG40, SeeW40, HahO40b, HahO43, BradE51, KofO51b) parent Sr ⁸⁹ (GlasG40, HahO40, HahO43, HahO40b, GrumW46)	ľ	3.92 max (7%), 2.9 max (5%), 1.6 max 0.66 (17%), 1.05 (75%), 1.26 (54%), 2.20 (14%), 2.59 (13%)	fission (GlasG40, SeeW40, HahO40b, HahO43, BradE51)
Rb ⁹⁰	2.91 m (JohnN64) 2.74 m (KofO51b) 2.8 m (OckD62)	1	β¯ (KofO51b) -79.3 (MTW)	А	chem, genet (KofO51b) daughter Kr ⁹⁰ , parent Sr ⁹⁰ (DilC51, DilC51a, KofO51b)	γ	6.6 max 0.53 (4%), 0.83 (61%, doublet), 1.03 (5%), 1.11 (7%), 1.40 (5%), 1.70 (3%), 3.07 (5%), 3.34 (15%, doublet), 3.54 (5%), 4.13 (11%), 4.34 (18%, doublet), 4.60 (5%), 5.2 (4%)	fission (KofO51b, DilC51, DilC51a, JohnN64, OckD62)
Rb ⁹¹	1.2 m (JohnN64, WahA62) 1.7 m (KofO51b)	1	β (KofO51b) -78 (MTW)	A	chem, genet (KofO51b) daughter Kr ⁹¹ , parent Sr ⁹¹ (KofO51b) ancestor Y ⁹¹ (DilC51, HahO40c)	β-	4.6 max	fission (KofO51b, DilC51, HahO40c, WahA62, JohnN64)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), MeV (C ¹¹ =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities	Principal means of production
37 ^{Rb⁹¹}	14 m (KofO51b) activity not observed (WahA62)	☆ β¯ (KofO51b)	E chem, genet (KofO51b) daughter Kr ⁹¹ , parent Sr ⁹¹ (KofO51b) no 14 m Rb parent of Sr ⁹¹ (WahA62)	fission (KofO5lb)
Rb ⁹²	5.3 s genet (FritK60) others (BradE51, DilC51a, HahO40)	Υ [β¯] (DilC5la) Δ -75 (MTW)	B genet (DilC51a) chem, genet (FritK60) daughter Kr ⁹² , ancestor Y ⁹² (DilC51a) parent Sr ⁹² (FritK60)	fission (FritK60) DilC51a)
Rb ⁹³	5.6 s (FritK60)	☆ [β¯] (HahO42)	B chem, genet (FritK60) parent Sr ⁹³ , ancestor Y ⁹³ (FritK60) daughter Kr ⁹³ (BradE51, DilC51a, DilC51)	fission (FritK60)
Rb ⁹⁴	2.9 s (FritK61) others (DilC51a, HahO43b, HahO43)	Υ [β ⁻] (HahO43b, HahO43, FritK61)	B chem, genet (FritK61) ancestor Y ⁹⁴ (FritK61) daughter Kr ⁹⁴ , ancestor Y ⁹⁴ (HahO43, HahO43b, DilC51)	fission (FritK61)
Rь ⁹⁵	<2.5 s (FritK61)	* [β¯] (DilC51)	F genet (DilC51) daughter Kr ⁹⁵ , ancestor Zr ⁹⁵ (DilC51)	fission (DilC51)
38 ^{Sr⁸⁰}	1.7 h (HoffR61)	★ EC (HoffR61)	A chem, genet (HoffR61) Parent Rb ⁸⁰ (HoffR61) Y [Rb X-rays], 0.58 daughter radiations from Rb ⁸⁰	N ¹⁴ on Ga (HoffR61)
Sr ⁸¹	29 m (CastS50, CastS52)	Υ ΕC, β ⁺ (CastS50)	B chem, genet (CastS50, CastS52) parent Rb ⁸¹ (CastS50, CastS52) descendant Zr ⁸¹ (ZaitN65)	Rb ⁸⁵ (p, 5n) (CastS50, CastS52)
Sr ⁸²	25.0 d (SanV58) 25.5 d (KruP53) others (MaclK52, LitL53, CastS50)	Υ EC, no β ⁺ , lim 5% (KurcB55) Δ -76 (MTW)	A chem, excit (Cast550) mass spect (MLurK52) parent Rb ⁸² , not parent Rb ^{82m} , lim 0.1% (CastS52, LitL53, KruP53, KurcB55) daughter Y ⁸² (MaxV62, ButeF63) descendant Zr ⁸² (ZaitN65)	Rb ⁸⁵ (p, 4n) (CastS50, CastS52) As ⁷⁵ (C ¹² , 5n)Y ⁸² (EC) (MaxV62)
Sr ⁸³	32.4 h (Dos164) 32.9 h (KuroT61) others (KurcB55, CastS50, MaclK52, ButeF63, MaxV62)	Υ EC 84%, β ⁺ 16% (KuroT61) Δ -77 (MTW)	A chem, genet (CastS50) mass spect (MLurK52) parent Rb ⁸³ (CastS50) daughter Y ⁸³ (MaxV62, DosI64a, NiecW65) descendant Zr ⁸³ (ZaitN65) A chem, genet (CastS50) parent Rb ⁸³ (CastS50) A color of the max and	Rb ⁸⁵ (p, 3n) (CastS52)
<u>Sr⁸⁴</u>		 % 0.56 (NierA38b) 0.55 (AldL53) Δ -80.638 (MTW) σ_c 0.8 (to Sr⁸⁵) 0.65 (to Sr^{85m}) (GoldmDT64) 		
Sr ⁸⁵	64.0 d (WriH57) 64.9 d (GleG64) 63.9 d (SatA62a) 65 d (HerrmG56, TPogM51) 66 d (DubL40)	 EC (TPogM51, BisA56f) no β⁺ (TPogM51) Δ -81.05 (MTW) 	A chem, excit (DubL40) daughter Y ⁸⁵ (DosI63a, CareA52, NiecW65) Y Rb X-rays, 0.514 (100%) 0.499	Sr ⁸⁴ (n, Y) (SatA62a) Rb ⁸⁵ (p, n) (DubL40) Rb ⁸⁵ (d, 2n) (TPogM51, EmmW52)
Sr ^{85m}	70 m (DubL40)	Y IT 86%, EC 14% (SunA52) △ -80.81 (LHP, MTW)	A chem, excit (DubL40) daughter Y ^{85m} (MaxV62, Dos163a, NiecW65) descendant 15 m Zr ⁸⁵ (Buter63) A chem, excit (DubL40) Y Rb X-rays, Sr L X-rays, 0.150 (14%), 0.231 (85%) 0.005, 0.134, 0.215	Sr ⁸⁴ (n, Y) (SunA52) Rb ⁸⁵ (p, n) (DubL40) Rb ⁸⁵ (d, 2n) (TPogM51)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
38 ^{Sr⁸⁶}		 9.86 (NierA38b) 9.87 (AldL53) Δ -84.499 (MTW) σ_c 1.3 (to Sr^{87m}) (GoldmDT64) 			
Sr ⁸⁷		% 7.02 (NierA38b, AldL53) △ -84.865 (MTW)	daughter Rb ⁸⁷ (mass spect) (HahO37, MattaJ37)		
Sr ⁸⁷ m	2.83 h (BormM65) 2.80 h (MannL51, HydE51) 2.88 h (GravG52) others (HerrmG56, DubL40)	Y IT 99+%, EC(K) 0.6% (SunA60) △ -84.477 (LHP, MTW)	A chem, excit (StewD37) chem, excit, cross bomb, genet (DubL40) daughter Y ⁸⁷ (DubL39, DubL40, MannL50, MannL51, LindnM50a, HydE51)	Sr X-rays, 0.388 (80%) e 0.372, 0.386	daughter Y ⁸⁷ (DubL39, MannL50, MannL51) Sr ⁸⁶ (n, Y) (StewD37, DubL39, RedH40, RedH40a) Rb ⁸⁷ (p, n) (DubL39)
<u>Sr⁸⁸</u>		% 82.56 (NierA38b, AldL53) Δ -87.89 (MTW) σ _C 0.006 (GoldmDT64)			
Sr ⁸⁹	52.7 d (FlyK65a) 50.4 d (OsmR59) 53.6 d (SatA62) 50.5 d (HerrmG54, HerrmG55) others (KjeA56, NoveT51, LieC39, StewD39, GoeR49, GrumW46)	φ β (StewD37) Δ -86.22 (MTW) σ _c 0.4 (GoldmDT64)	A chem, excit (StewD37) chem, mass spect (HaydR48) daughter Rb ⁸ (GlasG40, HahO40, HahO40b, HahO43, GrumW46) parent Y ⁸ 9m 0.009% (SatA62) 0.02% (LyoW55b); 0.01% (HerrmG56); <0.0005% (BisA55d)	β [*] 1.463 max γ 0.91 (0.009%, with Υ ^{89m})	Sr ⁸⁸ (d, p) (StewD37, StewD39) Sr ⁸⁸ (n, Y) (SerL47b, StewD37, StewD39)
Sr ^{89m}	10 d (HerrmG54, HerrmG55)		G activity not observed (HerrmG56, SatA62, F1eJ62)		
Sr ⁹⁰	27.7 y sp act, mass spect (WileDM55) 28.0 y (FlyK65) 28.4 y (ReeG55) others (AniM58, PowR50)	φ β (NotR51) Δ -85.95 (MTW, LHP) σ _c 1 (GoldmDT64)	A chem, genet (HahO42) chem, mass spect (HaydR48) daughter Rb 90 (DilC51, DilC51a, KofO51b) parent Y 90 (HahO42, HahO43, GrumW46, NotR51) descendant Kr 90 (DilC51, DilC51a)	β 0.546 max Y no Y daughter radiations from Y 90	fission (DilC51, DilC51a, KofO51b, GrumW46, GrumW48)
Sr ⁹¹	9.67 h (AmeD53) 9.7 h (HerrmG54, HerrmG55, FinB51, VasiI58, BakH65) others (HahO43)	φ β (GotH41) Δ -83.68 (MTW)	A chem, genet (GotH41) chem, excit (SeeW43b) parent Y 91m, parent Y 91 (GotH41, HahO43, FinB51) daughter 1.2 m Rb 91 (KofO51b) no 14 m Rb parent of Sr 91 (WahA62)	β-2.67 max 9 0.645 (15%), 0.748 (27%), 0.93 (3%), 1.025 (30%), 1.413 (5%) daughter radiations from Y 9 lm, Y 91	fission (GotH41, HahO43, FinB51, KatcS48, FinB51c) Zr ⁹⁴ (n, a) (SeeW43b)
Sr ⁹²	2.71 h (FritK60) 2.60 h (HerrmG56) 2.7 h (GotH41)	φ β (GotH41) Δ -82.9 (MTW)	A chem, genet (GotH41) parent Y 92 (GotH41, HoaE51b) daughter Rb 92 (FritK60)	β 1.5 max (10%), 0.55 max Y 0.23 (3%), 0.44 (4%), 1.37 (90%) daughter radiations from Y 92	fission (HahO40, HahO43, HahO43b, KatcS51a, BradE51, KatcS48)
Sr ⁹³	8.3 m (ValliD61) 7.5 m (FritK60) 8.5 m (BakH65) 8 m (KniJD59) 7 m (LieC39)	 β (LieC39) Δ -79.4 (MTW, SteinE65) 	A chem (LieC39, HahO43) chem, sep isotopes (BakH65) parent Y ⁹³ (HahO43, HahO43b, KniJD59) daughter Rb ⁹³ (FritK60)	β 4.8 max ? (weak), 2.9 max γ 0.60, 0.8, 1.2, others between 0.2 and 3.0 daughter radiations from γ 93	Zr ⁹⁶ (n, a) (ValliD61, BakH65) fission (LieC39, HahO42, HahO43, KniJD59)
Sr ⁹⁴	1.35 m (FritK61) 1.2 m (HovD64) 1.3 m (KniJD59)	 β⁻ (HahO43b, HahO43) Δ -78.8 (MTW) 	A chem, genet (HahO43b, HahO43) parent Y ⁹⁴ (HahO43, HahO43b, KniJD59)	β 2.1 max Y 1.42 (100%) daughter radiations from Y 94	fission (HahO43, HahO43b, DilC51, KniJD59, FritK61, HovD64)

Isotope Z A	Half-life	Type of de % abundance (△=M-A), M Thermal cross section	e; Mass excess MeV (C''=0); neutron		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
38 ^{Sr⁹⁵}	0.8 m genet (FritK61)	ኍ β⁻ (Di1C51)	F		genet (DilC51) chem (FritK61) ancestor Zr ⁹⁵ , descendant Kr ⁹⁵ (DilC51) parent Y ⁹⁵ (FritK61)			fission (DilC51, FritK61)
39 ^{Y82}	12.3 m genet (ButeF63) 9 m genet (MaxV62) <1.5 m genet (not observed) (NiecW65)	Υ [EC, β [†]] (N ButeF63)	MaxV62, E		chem, genet (MaxV62, ButeF63) parent Sr ⁸² (MaxV62, ButeF63) daughter Zr ⁸² (ZaitN65)			As ⁷⁵ (C ¹² , 5n) (MaxV62) protons on Y ⁸ 9 (ButeF63)
Y ⁸²	70 m (CareA52)		c		chem, genet (CareA52) activity not observed (MaxV62, ButeF63)			protons on Y (CareA52)
Y ⁸³	7.4 m genet (Dos164a) 7.5 m genet (NiecW65) 8 m genet (MaxV62)	¥ [EC, β [†]] (Ν	faxV62) A	1	chem, genet (MaxV62, DosI64a, NiecW65) parent Sr ⁸³ (MaxV62, DosI64a, NiecW65)			As ⁷⁵ (C ¹² ,4n) (MaxV62) Sr ⁸⁴ (p,2n) (DosI64a)
Y ⁸³	3.5 h (CareA52)		c		chem, genet (CareA52) activity not observed (DosI64a, NiecW65)			protons on Y (CareA52)
Y ⁸³	35 m (ButeF63)		c	G	chem, genet (ButeF63) activity not observed (Dos164a, NiecW65)			protons on Y (ButeF63)
Y ⁸⁴	43 m (YamaT62) 39 m (MaxV62)	Υ β [†] , [EC] (Υ Δ −74.3 (MTW	· · ·	İ	chem, excit, cross bomb (MaxV62) chem, excit (YamaT62) daughter Zr ⁸⁴ (ZaitN65)	l.	3.5 max [Sr X-rays], 0.511 (strong, Y [±]), 0.590 (15%), 0.795 (100%), 0.982 (100%), 1.041 (50%), 1.27 (9%), 1.47 (6%)	As ⁷⁵ (C ¹² , 3n) (MaxV62) Sr ⁸⁴ (d, 2n) (MaxV62) Sr ⁸⁸ (p, 5n) (YamaT62)
Y ⁸⁴	3.7 h (RobeB49) 2.6 h (ButeF63)		c		chem, excit, sep isotopes (RobeB49) assigned to Y ^{85m} (MaxV62, YamaT62)			deuterons, protons on Sr ⁸⁴ (RobeB49)
Y ⁸⁵	5.0 h (DosI63a) 4.9 h (NiecW65) 5 h (CareA52)	* β [†] 70%, EC lim 1% (D Δ -77.79 (MT	os163a)		chem, genet (DosI63a, CareA52) parent Sr ⁸⁵ (DosI63a, CareA52, NiecW65) daughter 1.4 h Zr ⁸⁵ (ZaitN65)	e ⁻	2.24 max 0.215 Sr X-rays, 0.231 (13%), 0.511 (140%, Y [±]), 0.77 (8%), 2.16 (9%) daughter radiations from Sr ⁸⁵	Sr ⁸⁴ (d, h) (DosI63a)
Y ^{85m}	2.68 h (Dosf63a) 2.5 h (NiecW65) others (MaxV62, PatA62a, ButeF63)	‡ β [†] 55%. EC lim 1% (D Δ −77.75 (LH)	osI63a)		chem, genet (MaxV62, DosI63a) parent Sr 85m (MaxV62, DosI63a, NiecW65) daughter Zr ⁸⁵ (ButeF63, DosI63a, ZaitN65)		1.54 max Sr X-rays, 0.51 (200%, complex, includes γ^{\pm}), 0.92 (9%) daughter radiations from Sr 85m Sr 85	Sr ⁸⁴ (d,n) (Dos163a) Sr ⁸⁴ (p,Y) (PatA62a)
Y ⁸⁶	14.6 h (HydE51, CastS51, ButeF63)	* [EC 74%, β (VNooB65) [EC 72%, β (YamaT62)	28%] 28%]		chem, excit, sep isotopes (CastS51) genet energy levels (VNooB65, HarpJ63) daughter Zr ⁸⁶ (HydE51) daughter Y ^{86m} (HasL61, KimY62)		/35% doublet includes V±\	Rb ⁸⁵ (a, 3n) (YamaT62a) Sr ⁸⁶ (p, n) (VNooB65, YamaT62a) Sr ⁸⁸ (p, 3n) (CastS51)
¥86m	48 m (KimY62) 49 m (HasL61)	♀ IT (HasL61) △ -79.01 (LH1	· I		chem, cross bomb, genet (HasL61) chem, cross bomb, sep isotopes, génet (KimY62) parent Y ⁸⁶ (HasL61, KimY62)		Y L X-rays, 0.208 (94%) 0.008 daughter radiations from Y ⁸⁶	Rb ⁸⁵ (a, 3n) (Has L61, Kim Y 62)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
39 ^{¥87}	80 h (MannL51, HydE51, DubL40)		EC 99+%, β [†] ≈0.3% (MannL51) -83.2 (MTW)	A	chem (StewD37) chem, excit, cross bomb (DubL40) daughter Y 87m (MannL50, MannL51, HydE51) parent Sr 87m (DubL40, DubL39, LindnM50a, MannL50, HydE51, MannL51)	1.	0.7 max (?) Sr X-rays, 0.483 daughter radiations from Sr ⁸⁷ m	Sr ⁸⁶ (d,n) (StewD37, DubL40, MannL51, MannL50) Sr ⁸⁷ (p,n) (DubL40, MannL51)
Y ^{87m}	14 h (DubL40, HydE51, MannL51) 13 h (VanR65)		IT (DubL40) β ⁺ ≈5% (YamaT62a) no β ⁺ (HydE51) -82.8 (LHP, MTW)	A	chem (StewD37) chem, excit, cross bomb (DubL40) daughter Zr ⁸⁷ (HydE51) parent Y ⁸⁷ (MannL50, HydE51, MannL51)	β [†] e ⁻ Υ	1.60 max (?) 0.364, 0.379 Y X-rays, 0.381 (74%) daughter radiations from Y ⁸⁷	Sr ⁸⁶ (d,n) (StewD37, DubL40, MannL50, MannL51) Y ⁸⁹ (p,3n)Zr ⁸⁷ (β) (ButeF63, AwaY64)
Y ⁸⁸	108.1 d (WyaE61) 105 d (DubL40)		EC 99+%, β ⁺ 0.20% (RhoJ63) -84.27 (MTW)	A	chem (DubL40) chem, excit (HelmhA42) mass spect (HaydR48) daughter Zr ⁸⁸ (HydE51)		0.76 max Sr X-rays, 0.898 (91%), 1.836 (100%)	Sr ⁸⁸ (p, n) (DubL40) Sr ⁸⁸ (d, 2n) (PecC40, HelmhA42, GamG44, BradE50)
¥89		Δ	100 (DempA39, CollT57) -87.678 (MTW) 1.3 (to Y ⁹⁰) 0.001 (to Y ^{90m}) (GoldmDT64)					
Y ^{89m}	16.1 s (SwanC55) 16.5 s (SatA62) 16.8 s (BroaK65) 16 s (BramE62, BramE63) others (GoldhM51)	☆	IT (GoldhM51) -86.77 (LHP, MTW)	A	chem, genet (GoldhM51) daughter Zr ⁸⁹ (GoldhM51) daughter Sr ⁸⁹ 0.009% (SatA62) 0.02% (LyoW55b); 0.01% (HerrmG56); <0.0005% (BisA55d)		0.91 (99%) 0.89	daughter Zr ⁸⁹ (GoldhM51)
y ⁹⁰	64.0 h (PepD57, HeaR61) 63.7 h (VGunH63) 64.8 h (HerrmG56, MaraE55) 64.2 h (VolH55, SchmP55) 64.3 h (RobeJ59a) 64.6 h (ChetA54) 64.4 h (WriH57) 64.9 h (BiryE61a)	1	β¯ (StewD37) -86.50 (LHP , MT W)	A	chem, excit, cross bomb (StewD37) chem, mass spect (HaydR48) daughter Sr 90 (HahO42, HahO43, GrumW46, NotR51) daughter Y 90m (HasL61, AlfWL61)		2.27 max average β energy: 0.93 calorimeter (BiryE61a) 0.90 ion ch (CaswR52) no Y	Y ⁸⁹ (n, Y) (StewD37, SagR38, SerL47b) daughter Sr ⁹⁰ (HahO42, HahO43, CrumW46, NotR51)
ү ^{90т}	3.1 h (AlfWL61, LyoW61a, HeaR61) 3.2 h (HasL61, BacM60, CartC61, DavP64) 3.0 h (BramE62) others (FergJ61a)		IT 99.6%, p 0.4% (DavP64) -85.81 (LHP, MTW)	A	chem, cross bomb, sep isotopes, genet, excit, n-capt (LyoW61a, HasL61, HeaR61, AlfWL61, FergJ61a, CartC61) parent Y 90 (HasL61, AlfWL61)		Y X-rays, 0.202 (97%), 0.482 (91%), 2.315 (0.4% with Zr ^{90m}) 0.185, 0.465 daughter radiations from Y ⁹⁰	Rb ⁸⁷ (a, n) (CartC61, HasL61) Y ⁸⁹ (n, Y) (HeaR61, FergJ61a, LyoW61a) Y ⁸⁹ (d, p) (CartC61) Nb ⁹³ (n, a) (BramE62, AlfWL61, LyoW61a)
Y ⁹¹	58.8 d (HoffD63) 59.1 d (WyaE61) 57.5 d (KahB55) 58.3 d (HerrmG56) others (GrumW46, LangeL49, BolF53, GotH41, HahO40c, JoliF44)	Δ	β ⁻ (HahO40c) -86.35 (MTW) 1.4 (GoldmDT64)	A	chem, genet (HahO40c, HahO43) chem, mass spect (BradE51a, HaydR48) daughter Sr ⁹¹ (GotH41, HahO43, FinB51) descendant Kr ⁹¹ (HahO40c, BradE51, DilC51, DilC51a)	ľ	1.545 max 1.21 (0.3%)	fission (GotH41, HahO4: FinB51, FinB51c, EngeD51c)
Y ^{91m}	50.3 m (AmeD53) 51.0 m (FinB51) 50 m (GotH41)		IT, no β ⁻ , lim 1.5% (AmeD53) -85.80 (LHP, MTW)	A	chem, genet (GotH41) daughter Sr ⁹¹ (GotH41, HahO43, FinB51)		Y X-rays, 0.551 (95%) 0.534	fission, daughter Sr ⁹¹ (GotH41, HahO43, FinB51)
ү ⁹²	3.53 h (FritK60) 3.50 h (BunkM62) 3.5 h (AgeM43, HahO43b, LieC39)		p¯ (LieC39) -84.83 (MTW)	A	chem (LieC39) fission fragment range (KatcS48) chem, sep isotopes (SchoG53) daughter Sr ⁹² (GotH41, HoaE51b) descendant Kr ⁹² , descendant Rb ⁹² (DilC51a)	l.	3.63 max 0.448 (2.3%), 0.560 (2.6%), 0.934 (14%), 1.40 (4.7%), 1.83 (0.4%)	Zr ⁹⁴ (d, a) (SchoG53, CassW55) fission, daughter Sr ⁹² (GotH41, HoaE51b, BunkM62, KatcS48) Zr ⁹² (n, p) (SagR40a, SecW43b, AgeM43)
		5						, A

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△■M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
39 [¥] ⁹³	10.3 h (KniJD59) 10.1 h (FritK60) others (BallN51a, HahO43)	1 -	β (BallN5la) -84.22 (MTW, SteinE65)	A	chem (HahO43, BallN46, BallN51a, SelB51) fission fragment range (KatcS48) genet (HahO43, HahO43b, KniJD59) daughter Sr ⁹³ (HahO43, HahO43b, KniJD59) descendant Kr ⁹³ (SelB51)		2.89 max 0.267 (6%), 0.67 (0.7%), 0.94 (2.3%), 1.42 (0.7%), 1.90 (1.8%), 2.18 (0.3%, doublet)	fission (HahO43, HahO43b, BallN5la, FritK60, KniJD59)
y ⁹⁴	20.3 m (FritK61) 20 m (KniJD59, DilC51b, HahO43) 16 m (BrowLJ49)	1	β ⁻ (HahO43, HahO43b) -82.3 (MTW)	A	chem (HahO43, HahO43a) fission fragment range (KatcS48) chem, sep isotopes (SchoG53) daughter Sr 4 (HahO43, HahO43, HahO43b, KniJD59) descendant Kr descendant Kr descendant Rb descendant Rb HahO43b, DilC51	Y	5.0 max 0.56 (6%), 0.92 (43%), 1.13 (5%), 1.65 (2.4%), 1.90 (1.6%), 2.13 (2.4%), 2.57 (1.5%, complex), 3.06 (1.3%), 3.53 (1.1%)	fission (HahO43, HahO43b, KatcS48, KniJD59, FritK61, DilC51a) Zr 96 (d, a) (SchoG53)
Y ⁹⁵	10.9 m (FritK61) 10.5 m (KniJD49)		β ⁻ (KniJD49) -81 (MTW)	В	chem, sep isotopes, excit (KniJD49) daughter Sr ⁹⁵ (FritK61)	Y	1.30 (?), 1.80 (?)	fission (FritK61, KniJD59) Zr ⁹⁶ (Y,p) (KniJD49)
¥ 96	2.3 m (ValliD61)		β (ValliD61) -79 (MTW)	В	chem, excit (ValliD61)	١.	3.5 max 0.7, 1.0, 1.5 (complex)	Zr ⁹⁶ (n,p) (ValliD61)
40 ^{Zr⁸¹}	7-15 m genet (ZaitN65)	*	[β ⁺ , EC] (ZaitN65)	E	chem, genet (ZaitN65) ancestor Sr ⁸¹ , Rb ⁸¹ (ZaitN65)			protons on Y ⁸⁹ (ZaitN65)
Zr ⁸²	10 m genet (ZaitN65)	*	[β ⁺ , EC] (ZaitN65)	D	chem, genet (ZaitN65) parent Y ⁸² , ancestor Sr ⁸² (ZaitN65)			protons on Y ⁸⁹ (ZaitN65)
Zr ⁸³	5-10 m genet (ZaitN65)	*	[EC, β [†]] (ZaitN65)	E	chem, genet (ZaitN65) ancestor Sr ⁸³ (ZaitN65)			protons on Y ⁸⁹ (ZaitN65)
Zr ⁸⁴	16 m genet (ZaitN65)	*	[EC, β [†]] (ZaitN65)	в	chem, genet (ZaitN65) parent Y ⁸⁴ (ZaitN65)			protons on Y ⁸⁹ (ZaitN65)
Zr ⁸⁵	15 m (ZaitN65) 6 m (ButeF63)	*	[EC, β [†]] (ButeF63)	В	chem, genet (ButeF63, ZaitN65) parent Y ^{85m} , ancestor Sr ^{85m} (ButeF63, DosI63a, ZaitN65)			Y ⁸⁹ (p, 5n) (ButeF63)
Zr ⁸⁵	1.4 h genet (ZaitN65)	*	[EC, β [†]] (ZaitN65)	в	chem, genet (ZaitN65) parent Y ⁸⁵ (ZaitN65)			protons on Y ⁸⁹ (ZaitN65)
Zr ⁸⁶	16.5 h (AwaY64) 17 h genet (HydE51) 15 h genet (ZaitN65)		EC, no p ⁺ , lim 0.1% (HydE66, HydE54a) -78 (MTW)	A	chem, genet (HydE51) parent Y ⁸⁶ (HydE51)	`	Y X-rays, 0.028 (20%), 0.243 (96%), 0.612 (5%) [0.015] daughter radiations from Y ⁸⁶	Υ ⁸⁹ (p, 4n) (AwaΥ64)
Zr ⁸⁷	1.6 h (HydE51) 1.5 h (ButeF63, HoltzR52, ZaitN65) 2.0 h (RobeB49)		ρ ⁺ , EC (RobeB49) [ρ ⁺ 83%, EC 17%] (NDS) -79.7 (MTW)	A	chem, excit, sep isotopes (RobeB49) chem, genet (HydE51) parent Y ^{87m} (HydE51)	ı.	2.10 max Y X-rays, 0.511 (Y [±] , [166%]), 1.2, 2.2 daughter radiations from Y ^{87m} , Y ⁸⁷	Y ⁸⁹ (p, 3n) (ButeF63, AwaY64)
Zr ⁸⁸	85 d (HydE53a)		EC (HydE51) no β [†] (HydE55) -84 (MTW)	В	chem, genet (HydE51) parent Y ⁸⁸ (HydE51) descendant Mo ⁸⁸ (ButeF64c)		Y X-rays, 0.394 (97%) 0.377 daughter radiations from Y ⁸⁸	protons on Nb (HydE51, HydE55)
Zr ⁸⁹	78.4 h (VPatD64) 79.0 h (HamiJ60) 79.3 h (ShuK51) others (HydE51, KatzL53, DubL40, ShoF53, HowD62)		EC 78%, β [†] 22% (VPatD64, MonaS61) -84.85 (MTW)	A	chem excit (SagR38, DubL40) parent Y ^{89m} (GoldhM51) daughter Nb ⁸⁹ (DiaR54, MathH55 descendant Mo ⁸⁹ (ButeF64c)	e ⁻	0.90 max 0.89 (with Y ^{89rn}) Y X-rays, 0.511 (44%, Y [±]), 0.91 (99%, with Y ^{89rn}), 1.71 (1%)	Y ⁸⁹ (p, n) (DubL40, VPatD64) Y ⁸⁹ (d, 2n) (GoldhM51, HamiJ60, MonaS61)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△®M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
40 ^{Z r 89m}	4.18 m (VPatD64) 4.4 m (ShoF53, ShoF51, MangS63) 4.3 m (KatzL53) 4.5 m (DubL40)	# IT 94%, EC 4.7%, β [†] 1.4% (VPatD64) IT 93%, EC 5.6%, β [†] 1.8% (ShoF53) Δ -84.26 (LHP, MTW)		β ⁺ 2.40 max (0.2%), 0.89 max (1.2%) e ⁻ 0.570 Y Zr, Y X-rays, 0.588 (87%), 1.51 (6%)	Y ⁸⁹ (p, n) (VPatD64, DubL40)
Zr ⁹⁰		 51.46 (WhiJ48) Δ -88.770 (MTW) σ_c 0.1 (GoldmDT64) 			
Zr ^{90m}	0.80 s (WagR63) 0.83 s (Schrw 63, CamE55) 0.86 s (WhiW62)	☆ IT (CamE55) △ -86.45 (LHP, MTW)	genet energy levels	Y Zr X-rays, 0.133 (4%), 2.18 (14%), 2.32 (86%)	Nb ⁹³ (p, a) (WhiW62) Zr ⁹⁰ (n, n') (CamE55, WagR63, SchmW63)
<u>Zr⁹¹</u>		% 11.23 (WhiJ48) Δ -87.893 (MTW), σ _c 1 (GoldmDT64)			
<u>Zr</u> 92		% 17.11 (WhiJ48) Δ -88.462 (MTW) σ _c 0.2 (GoldmDT64)			
Zr ⁹³	1.5 x 10 ⁶ y sp act (SteinE65)	φ β (SteinE50) Δ ~87.11 (SteinE65, MTW) σ _c <4 (GoldmDT64)	(Clay 53)	β 0.060 max no Y daughter radiations from Nb ⁹³ m	fission (SteinE50)
<u>Zr⁹⁴</u>		% 17.40 (WhiJ48) Δ -87.267 (MTW) σ _c 0.08 (GoldmDT64)			
Zr ⁹⁵	65.5 d (FlyK65a) 65 d (BradE51a, GrumW46, CorkJ53b) 66 d (GrossA48) 63 d (SagR40a)	♥ β (SagR40a) Δ -85.663 (MTW)	chem genet (ColdoB51)	β 0.89 max (2%), 0.396 max Y 0.724 (49%), 0.756 (49%) daughter radiations from Nb ⁹⁵ , Nb ⁹⁵ m	Zr ⁹⁴ (n, Y) (SagR40a, SerL47b) fission (HudJ49, BradE51a, JacoL51, SteinE51a, FinB51c)
<u>Zr⁹⁶</u>	spact (AwsM56)	% 2.80 (WhiJ48) \(\Delta = 85.430 \) (MTW) \(\sigma_c \) 0.05 (GoldmDT64)			
Zr ⁹⁷	17.0 h (BurgW50a, MandeC52, GrossA40, KatcS51b, VasiI58)	★ β (GrossA40) Δ -82.93 (MTW)		β ⁻ 1.91 max Y 0.747 (92%, with Nb ^{97m}) daughter radiations from Nb ⁹⁷	Zr ⁹⁶ (n, Y) (BurgW50a, MandeC52, SagR40a, SerL47b) fission (GrossA40, HahO41, KatcS48)
Zr ⁹⁸	1 m (OrtC60)	★ [β¯] (OrtC60) Δ −82 (MTW)	E chem, genet (OrtC60) [parent <2 m Nb ⁹⁸], not parent 51 m Nb ⁹⁸ (OrtC60)		fission (OrtC60)
Zr ⁹⁹	35 s genet (OrtC60)		G chem, genet (OrtC60) activity not observed, t _{1/2} ≤1.6 s genet (TroD63)		fission (OrtC60)
41 ^{Nb⁸⁸}	14 m (KorR64, HydE65) 21 m (ButeF64b)	 ★ p⁺ (HydE65), [EC] △ -77 (MTW) 	1 11 15 ZE D. 1 - 56 41 1	β ⁺ 3.2 max γ 0.076, 0.141, 0.272, 0.399, 0.511 (γ [±]), 0.671, 1.058, 1.083	Br ⁷⁹ (C ¹² , 3n) (KorR64, HydE65)
Nb ⁸⁹	1.9 h (HydE65, DiaR54, MathH55) 2.0 h (ButeF64b)	* β [†] (DiaR54), [EC] Δ -81.0 (MTW)		 g[†] 2.9 max Y 0.511 (Y[±]), 1.626, 3.577, 3.838 daughter radiations from Zr⁸⁹ 	C ¹² on Br (MathH55, HydE65) Y ⁸⁹ (a, 4n) (MathH55)

Isotope Z A	Half-life		Type of decay (**); % abundance; Mass excess (Δ*M-A), MeV (C"-0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
41 ^{Nb⁸⁹m}	42 m (ButeF64b) ≈48 m (DiaR54)	1	β [†] (DiaR54), [EC] -80.2 (LHP, MTW)	A	chem, genet (DiaR54, MathH55) parent Zr ⁸⁹ m (DiaR54, MathH55) daughter Mo ⁸⁹ (ButeF64c)	e-	3.1 max 0.570 (with Zr ^{89m}) 0.511 (Y [±]), 0.588 (93%, with Zr ^{89m}) daughter radiations from Zr ⁸⁹	C ¹² on Br (MathH55) protons on Zr (DiaR54)
№ 90	14.6 h (OngP54a, ShelR57a) 14.7 h (DiaR53, ButeF64b) others (KunD49, JacoL51)		 β⁺, EC (BjoS59, LazN58, ShelR57a) EC(K) ~50% (KuzM57) -82.66 (MTW) 	A	chem, excit, cross bomb (JacoL51) chem, sep isotopes, cross bomb (KunD49) descendant Mo (DiaR53, MathH55b)	e ⁻	1.50 max 0.115, 0.123 Zr X-rays, 0.142 (75%), 0.511 {Y\frac{\pi}{2}}, 1.14 (97%), 2.18 (14%), 2.32 (82%) daughter radiations from Zr\frac{90m}{10m} included in above listing	Zr ⁹⁰ (p, n) (BjoS59, LazN58) Zr ⁹⁰ (d, 2n) (KunD49, JacoL51) descendant Mo ⁹⁰ (ButeF64b, DiaR53)
Nb ⁹⁰ m	24 s (MathH55b)		IT (MathH55b) -82.54 (LHP, MTW)	A	chem, genet (MathH55b) daughter Mo ⁹⁰ (MathH55b)		Nb X-rays, 0.122 (71%) 0.104, 0.120	daughter Mo ⁹⁰ (MathH55b)
N ь ⁹¹	long (OvaJ51)	1 -	[EC] (OvaJ51) -86.8 (MTW)		genet (OvaJ51) [daughter Nb ^{91m}] (OvaJ51)	٧	[Zr X-rays]	Zr ⁹⁰ (d, n) (OvaJ51)
Nb ^{91m}	64 d (BoydG49) 60 d (JacoL51)		IT 97%, EC 3% (NDS) -86.6 (LHP, MTW)	A	chem, excit (JacoL51) chem, sep isotopes (OvaJ51)	ı	Nb X-rays, 0.104 (0.5%), 1.21 (3%) 0.086, 0.102	Y ⁸⁹ (a, 2n) (HaywR55a) Zr ⁹⁰ (d, n) (OvaJ51, HaywR55a, JacoL51)
n ь ⁹²	>350 y or <1 h (BunkM 62)	Δ	-86.45 (ShelR64, MTW)	F	levels observed in Nb ⁹³ (d,t) reaction (ShelR64) and in Nb ⁹³ (p,d) reaction (SweR64)			
Nb ^{92m}	10.16 d (BunkM62) 10.15 d (WestH59) others (GlagV61, MacD48, SagR40b, SagR38a)		EC 99+%, p [†] 0.06% (WestH59, BunkM62) no p ⁻ , lim 0.05% (PreiP51) -86.32 (ShelR64, MTW)	A	chem, excit (SagR38a)	٧	Zr X-rays, 0.934 (99%)	Y ⁸⁹ (a, n) (BunkM 62)
n ь ⁹²	13 h (JameR54)			G	chem, excit (JameR54) activity not observed (SilE58, BramE62, BunkM62, BosH64b)			protons on Nb ⁹³ (JameR54)
Nb ⁹³		Δ	100 (SamM36a, WhiF56) -87.204 (MTW) 0.1 (to Nb ⁹⁴) 1 (to Nb ^{94m}) (GoldmDT64)					
Nb ^{93m}	13.6 y (FlyK65a) *4 y (SchumR54)		IT (SchumR54) -87.173 (LHP, MTW)	A	chem, genet (GleL53) daughter Zr ⁹³ (85%) (GleL53) daughter Mo ⁹³ (HohK64)		Nb X-rays 0.011, 0.028	daughter Zr ⁹³ (GleL53) Nb ⁹³ (n, n') (SchumR54, HohK64)
Nb ⁹⁴	2.0 x 10 ⁴ y sp act, mass spect (SchumR59a) 1.8 x 10 ⁴ y sp act (RolM55) 2.2 x 10 ⁴ y sp act (DouDL53)	Δ	β, no EC (DouDL53) no EC(K), lim 6% (SchumR59a) -86.35 (MTW) ≈15 (GoldmDT64)	A	n-capt (GoldhM46a) chem, n-capt (HeiR52)		0.49 max 0.702 (100%), 0.871 (100%)	Nb ⁹³ (n, Y) (GoldhM46a, HeiR52)
Nb ⁹⁴ m	6.29 m (KilP62) 6.6 m (SagR40b)		IT 99+%, 8 0.2% (ReicC63, YinL62) IT 99+%, 8 0.5% (KUP62) -86.31 (LHP, MTW)	A	n-capt, excit (PoolM37, SagR38a, GoldhM48a, KunD46)		Nb X-rays, 0.871 (0.2%) 0.023, 0.039	Nb. (n, Y) (PoolM37, SagR38a, SagR40b, \$erL47b)
Nb⁹⁵	35.0 d (WyaE61) 35.6 d (PierA59) 35 d (CorkJ53a, EngeD51) others (JacoL51, LangeL63, FlyK65a)	Δ	p¯ (GoldsB51) -86.784 (MTW) ≈7 (GoldmDT64)	A	chem (GoldsB46, GoldsB51) chem, excit, cross bomb (JacoL51) daughter Zr ⁹⁵ (HudJ49, BradE51a, SteinE51a, JacoL51) daughter Nb ^{95m} (SteinE51a, LeviJ51a)	ľ	0.160 max 0.765 (100%)	daughter Zr ⁹⁵ (HudJ49, BradE51a, JacoL51, SteinE51b)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≡M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
41 ^{Nb^{95m}}	90 h (SteinE5la, HudJ49, DrabG55) 84 h (SlaH52a, SlaH53)	↑ IT (SteinE51a) Δ -86.549 (LHP, MTW)	A chem (EngeD46, EngeD51a) chem, genet (SteinE51a) daughter Zr ⁹⁵ (HudJ49, BradE51a, JacoL51, SteinE51a) parent Nb ⁹⁵ (SteinE51a, LeviJ51a)	Y Nb X-rays, [0.235] e- 0.216 daughter radiations from Nb ⁹⁵	daughter Zr ⁹⁵ (HudJ49, BradE51a, JacoL51, SteinE51a) Mo ⁹⁷ (d, a) (JacoL51, BoydG49) Zr ⁹⁴ (d, n) (JacoL51)
Nb ⁹⁶	23.35 h (KunD49) 23.5 h (MonaS62)	φ β (KunD49) Δ -85.64 (MTW)	A chem, excit, sep isotopes (KunD49)	β ⁻ 0.7 max Y 0.459 (28%), 0.569 (59%), 0.778 (97%), 0.811 (14%), 0.851 (22%), 1.092 (49%), 1.200 (21%)	Zr ⁹⁶ (p, n) (KunD49) Mo ⁹⁸ (d, α) (BornP63c)
n ь ⁹⁷	72 m (MandeC52) 74 m (BurgW50a) 75 m (GrossA40)	φ β (GrossA40) Δ -85.61 (MTW)	A chem, genet (GrossA40) daughter Nb ^{97m} (SaraB55a)	β 1.27 max Y 0.665 (98%)	descendant Zr ⁹⁷ (GrossA40, BurgW50a)
Nb ⁹⁷ m	1.0 m (BurgW50a)	★ IT (BurgW50a) -84.86 (LHP, MTW)	A chem, excit, sep isotopes, genet (BurgW50a) daughter Zr ⁹⁷ (BurgW50a) parent Nb ⁹⁷ (SaraB55a)	Y 0.747 (98%) e- 0.728 daughter radiations from Nb 97	daughter Zr ⁹⁷ (BurgW50a)
№ 98	51 m (OrtC60, WahA62, TakaK61) others (BoydG49)	φ β (BoydG49) Δ -83.5 (OrtC60, MTW)	B chem, sep isotopes (BoydG49) chem, genet energy levels (OrtC60) not daughter Zr 98 (OrtC60)	β-3.1 max Y 0.330 (9%), 0.720 (75%), 0.787 (100%), 1.16 (30%), 1.44 (10%) 1.52 (4%), 1.68 (10%), 1.88 (4%), 1.93 (8%)	Mo ⁹⁸ (n,p) (OrtC60, TakaK61, WahA62)
n ь ⁹⁸	<2 m (OrtC60)	φ β (OrtC60)	F genet, excit (OrtC60) [daughter Zr 98] (OrtC60)	β high-energy β	fission, daughter Zr ⁹⁸ (OrtC60)
n ь ⁹⁹	2.4 m (OrtC60) 2.3 m (TroD63) 2.5 m (DufR50)	φ β (DufR 50) Δ −83 (MTW)	A chem, excit, sep isotopes (DufR50) chem, genet (OrtC60) parent Mo 99 (OrtC60)	β 3.2 max Y 0.100 († 1), 0.260 († 1)	fission (OrtC60, TroD63 Mo ¹⁰⁰ (Y, p) (DufR50)
n ь ⁹⁹	10 s genet (TroD63)	☆ β >52% (TroD63)	C chem, genet (TroD63) parent Mo ⁹⁹ (TroD63)		fission (TroD63)
Nb ¹⁰⁰	3.0 m (OrtC60)	* [β ⁻] (OrtC60) Δ -80 (MTW)	B chem, genet energy levels (OrtC60)	Y 0.140 († 10), 0.36 († 55), 0.45 († 40), 0.53 († 100, complex), 0.65, 2.2, 2.3, 2.65, 2.85	fission (OrtC60)
NP ₁₀₀	llm (TakaK61)	φ β (TakaK61) Δ -80 (MTW)	C chem, genet energy levels (TakaK61)	β ⁻ 4.2 max (≤10%), 3.5 max γ 0.535 († 100), 0.62 († 60), 1.04 († 10), 1.15 († 10), 1.47 († 5)	Mo ¹⁰⁰ (n,p) (TakaK61)
Nb ¹⁰¹	1.0 m genet (OrtC60)	τ [β¯] (OrtC60)	B chem, genet (OrtC60) parent Mo ¹⁰¹ (OrtC60)		fission (OrtC60)
42 ^{Mo⁸⁸}	27 m (ButeF64c)	≄ β [†] (ButeF64c), [EC]	B chem, genet (ButeF64c) parent Nb ⁸⁸ , ancestor Zr ⁸⁸ (ButeF64c)	 β[†] 2.5 max γ 0.511 (γ[±]), 2.69 daughter radiations from Nb⁸⁸ 	protons on Nb, Mo (ButeF64c)
Мо ⁸⁹	7 m (ButeF64c)	‡ β [†] (ButeF64c), [EC]	B chem, genet (ButeF64c) parent Nb ^{89m} , ancestor Zr ⁸⁹ (ButeF64c)	 β⁺ 4.9 max Y 0.511 (Y[±]) daughter radiations from Nb^{89m} 	protons on Mo (ButeF64c)
мо ⁹⁰	5.67 h (PettH66) 5.7 h (DiaR53) 6.3 h (KuzM57) others (KurcB55)	Φ EC 75%, β [†] 25% (CoopJ65) Δ -80.17 (PettH66, MTW)	Machueth	β ⁺ 1.2 max e ⁻ 0.104, 0.120, 0.239, 0.255 Y Nb X-rays, 0.122 (71%), 0.257 (85%), 0.445 (9%), 0.511 (50%, Y*), 0.945 (10%), 1.273 (8%), 1.389 (4%), 1.46 (4%, doublet) daughter radiations from Nb 90 (daughter radiations from Nb 90m included in above listing)	Nb ⁹³ (p, 4n) (DiaR53, MathH55b, CoopJ65) Zr ⁹⁰ (a, 4n) (CoopJ65)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
42 ^{Mo 91}	15.49 m (EbrT65) 15.5 m (DufR49b, WafH48, KatzL53) others (AxeP55, BotW39, SagR38)		A excit (BotW37) chem, excit (SagR38) chem, sep isotopes, excit (KunD49a, DufR49b)	β ⁺ 3.44 Y Nb X-rays, 0.511 (Y [±])	Mo ⁹² (n, 2n) (KunD49a, HeyF37, SagR38, SagR40a, BrolJ52, EbrT65)
Mo ^{9lm}	64 s (PrenJ57) 66 s (KatzL53, AxeP55) 73 s (WafH48) 75 s (DufR49b)	T ≈57%, β ⁺ + EC ≈43% (SmiF56) IT ≈70%, β ⁺ + EC ≈30% (AxeP55) Δ -81.6 (LHP, MTW)	B chem, sep isotopes (DufR49b)	β ⁺ 3.99 max († 15), 2.78 max († 100) e ⁻ 0.638 Y Nb X-rays, Mo X-rays, 0.511 (γ [±] , [76%]), 0.658 (54%), 1.21 (22%), 1.53 (15%) daughter radiations from Mo 91	
<u>м</u> о ⁹²	t _{1/2} (ECEC) >4 x 10 ¹⁸ y (WintR55)	% 15.86 (WilliD46) Δ -86.804 (MTW) σ _C <0.3 (to Mo ⁹³) <0.006 (to Mo ^{93m}) (GoldmDT64)			
мо ⁹³	>100 y genet (HohK64)	☆ EC (BoydG49a) △ -86.79 (MTW)	A chem, n-capt (BoydG49a) genet (HohK64) parent Nb 93m (85%) (HohK64)	Y Nb X-rays daughter radiations from Nb ^{93m}	Mo ⁹² (n, Y) (BoydG49a) Nb ⁹³ (p, n) (HohK64)
Мо ^{93т}	6.95 h (BoydG52b) 6.75 h (KunD50)		A chem, excit (KunD46) chem, excit, cross bomb, sep isotopes (KunD50) chem, excit (BoydG52b) chem, mass spect (AlbuD53, BernaR53) not daughter Tc 93 (BoydG50)	Y Mo X-rays, 0.264 (58%), 0.685 (100%), 1.479 (100%) e ⁻ 0.244, 0.261	Nb ⁹³ (d, 2n) (AlbuD53, KunD46, WieM46, KunD50a) Zr ⁹⁰ (a, n) (KunD50) Nb ⁹³ (p, n) (BoydG52b, ForC53)
<u>Мо⁹⁴</u>		% 9.12 (WilliD46) Δ -88.407 (MTW)			
<u>Мо⁹⁵</u>		% 15.70 (WilliD46) Δ -87.709 (MTW) $\sigma_{\rm C}$ 14 (GoldmDT64)			
<u>мо⁹⁶</u>		% 16.50 (WilliD46) Δ -88.794 (MTW) σ _c 1 (GoldmDT64)			
<u>Мо⁹⁷</u>		% 9.45 (WilliD46) Δ -87.539 (MTW) σ _c 2 (GoldmDT64)			
<u>мо⁹⁸</u>		% 23.75 (WilliD46) Δ -88.110 (MTW) σ _c 0.51 (GoldmDT64)			
мо ⁹⁹	66.7 h (CrowP65) 66.0 h (Gun557) 67.0 h (WriH57) others (SeaG39, CorkJ*9a, VasiI58, WafH48, SagR40a)	♣ $β$ (SagR38) $△$ -85.96 (MTW)	A chem, n-capt, excit (SagR38, SagR40a) parent Tc 99m (SeaG39, SagR40a, MedH49; GleL51d, MihJ51) daughter 2.4 m Nb 99 (OrtC60) daughter 10 s Nb 99 (TroD63) ancestor Tc 99 (MotE47a)	Y Tc X-rays, 0.04i (2%), 0.181 (7%), 0.372 (1%), 0.740 (12%), 0.780 (4%)	Mo 98 (n, Y) (SagR40, SagR40a, MauW41, SerL47b, HumV51) fission (HahO39b, SagR40a, KatcS51c, KatcS48, FinB51c)
мо ¹⁰⁰	t _{1/2} (ββ) ≥3 x 10 ¹⁷ y sp act (WintR55) others (FremJ52)	 % 9.62 (WilliD46) Δ -86.185 (MTW) σ_c 0.2 (GoldmDT64) 			
Мо ¹⁰¹	14.6 m (MauW41, WileDR54, OKelG57)	Υ β ⁻ (SagR40a) Δ -83.50 (MTW)	A chem, n-capt (SagR40a) parent Tc ¹⁰¹ (SagR40, BotW41, HahO41a, HahO41b, MauW41) daughter Nb ¹⁰¹ (OrtC60)	β- 2.23 max e- 0.170 Y 0.191 (25%), 0.51 (15%), 0.59 (21%), 0.70 (11%), 0.89 (15%), 1.02 (25%), 1.18 (11%), 1.38 (9%), 1.56 (11%), 2.08 (16%) daughter radiations from Tc ¹⁰¹	Mo ¹⁰⁰ (n, Y) (SagR40, SagR40b, MauW41, SerL47b, HumV51)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Princa, al means of production
42 ^{Mo¹⁰²}	11.5 m (FleJ54) 11.0 m (WileDR54a) 12 m (HahO41a)	φ β (HahO41a) Δ -84 (MTW)	D	chem (HahO4la) parent 5 s Tc ¹⁰² (HahO4la, HahO4lb, FleJ54)	β	1.2 max daughter radiations from 5 s Tc ¹⁰²	fission (HahO41a, FleJ54, WileDR54a)
Мо ¹⁰³	62 s genet (VBaeA65) 70 s (KieP63a)	☆ [β¯] (KieP63a)	В	chem, genet (KieP63a) parent Tc 103 (KieP63a)			fission (KieP63a, VBaeA65)
Mo ¹⁰⁴	1.1 m (KieP62) 1.6 m (TerG64)	☆ β¯ (TerG64)		chem, genet (KieP62) chem, excit (TerG64) parent Tc 104 (KieP62)	β ⁻ Υ	4.8 max 0.070 daughter radiations from Tc ¹⁰⁴	fission (TerG64, KieP62)
Мо ¹⁰⁵	40 s (KieP62a) 42 s genet (VBaeA65) others (FleJ55a, FleJ56a, SeeW47)	☆ β¯ (BornH43b)		chem, genet (BornH43b, KieP62a) ancestor Ru ¹⁰⁵ (BornH43b, KieP62a) parent Tc ¹⁰⁵ , ancestor Rh ¹⁰⁵ (KieP62a, BornH43b, FleJ55a)			fission (BornH43b, FleJ55a, FleJ56a, KieP62a, VBaeA65)
43 ^{Tc⁹²}	4.4 m (VLieR64)	↑ β ≈ 92%, EC ≈8% (VLieR64) Δ -78.8 (MTW)	В	chem, sep isotopes (MotE48, VLieR64)	1.	4.1 max Mo X-rays, 0.090 (20%), 0.14 (67%), 0.24 (30%), 0.33 (90%), 0.511 (184%, Y [±]), 0.79 (95%), 1.54 (100%)	Mo ⁹² (d, 2n) (MotE48, VLieR64)
Tc ⁹³	2.75 h (KunD48a) 2.7 h (VinG62, MotE48, DelL39)	Y EC 87%, β [†] 13% (VinG62, LeviC54a) Δ -83.60 (MTW)		chem (SeaG39) chem, excit, sep isotopes (KunD48a) not parent Mo ^{93rn} (BoydG50)	β ⁺ Υ	0.80 max Mo X-rays, 0.511 (26%, Y [±]), 1.35 (65%), 1.49 (33%)	Mo ⁹² (d, n) (KunD48a, MotE48, SeaG39, VinG62) Mo ⁹² (p, Y) (KunD48a, DelL39)
Tc ^{93m}	43 m (MedH50, VinG62) 47 m (KunD48a)	1T 82%, EC 18% (VinG62) △ -83.21 (LHP, MTW)	1 1	chem, excit, sep isotopes (KunD48a) mass spect (BernaR54) chem, mass spect (LeviC54a)	Υ e ⁻	Tc X-rays, Mo X-rays, 0.390 (63%), 2.66 (18%) 0.369 daughter radiations from Tc ⁹³	Mo ⁹² (d, n) (EasH53, BernaR54, VinG62) Mo ⁹² (p, Y) (EasH53) Nb ⁹³ (a, 4n) (EasH53)
Tc ⁹⁴	293 m (MatuJ63) 270 m (MonaS62a)	# EC 89%, β [†] 11% (HamiJ64) EC 93%, β [†] 7% (MatuJ63) EC 86%, β [†] 14% (MonaS62a) Δ -84.15 (MTW)	А	excit (MonaS62) chem, excit, cross bomb (MatuJ63)	l'	0.816 max Mo X-rays, 0.511 (22%, Y [‡]), 0.702 (100%), 0.849 (100%), 0.871 (100%)	Nb ⁹³ (a, 3n) (MatuJ63) Mo ⁹⁴ (d, 2n) (MatuJ63, MonaS62a, HamiJ64)
Tc ⁹⁴ m	53 m (MedH50, MonaS62) 50 m (MotE48a)	β ⁺ 66%, EC 34% (HamiJ64) β ⁺ 72%, EC 28% (MonaS62a) β ⁺ 61%, EC 39% (MatuJ63) Δ -84.04 (LHP, MTW)		chem, excit (GugP47) chem, excit, sep isotopes (MotE48a) genet energy levels (HamiJ64) daughter Ru 94 (VWieA52)	١.	2.47 max Mo X-rays, 0.511 (132%, Y [±]), 0.871 (91%), 1.53 (10%), 1.87 (9%), 2.73 (5%), 3.20 (2%)	Nb ⁹³ (a, 3n) (MatuJ63) Mo ⁹⁴ (d, 2n) (MotE48a, MonaS62, MatuJ63, HamiJ64) Mo ⁹⁴ (p, n) (GugP47, HubeO48a, MedH50)
Tc ⁹⁵	20.0 h (VinG62, EggD48) 20 h (MotE48a)	₩ EC (EggD48) no β [†] (MedH50) Δ -86.05 (MTW)	A	chem, sep isotopes (EggD48, MotE48a)	Y	Mo X-rays, 0.768 (82%), 0.84 (11%), 1.06 (4%)	Mo ⁹⁵ (p,n) (EggD48, MedH50) Mo ⁹⁴ (d,n) (VinG62) Mo ⁹⁵ (d,2n) (MotE48a)
T c ⁹⁵ m	61 d (UniJ59) 60 d (MedH50) 62 d (CacB39) 52 d (EdwJ47)	 ★ EC 95%, β[†] 0.42%, IT 4% (UniJ59, MedH50, MedH50a, CreT65a) Δ -86.01 (LHP, MTW) 	A	chem (CacB37, CacB39) chem, sep isotopes (MotE48b)	e-	0.68 max 0.019, 0.036, 0.184 Mo X-rays, 0.204 (70%), 0.584 (36%), 0.78 (12%, complex), 0.823 (9%), 0.838 (27%), 1.042 (4%) daughter radiations from Tc ⁹⁵	Mo ⁹⁵ (p,n) (EdwJ47) Mo ⁹⁴ (d,n) (CacB37, CacB39, UniJ59) Mo ⁹⁵ (d, 2n) (MotE48b)
Tc ⁹⁶	4.35 d (MedH50) 4.20 d (CobJ50) 4.3 d (Mona562, EdwJ47) 4.2 d (MotE48b)	 ★ EC (MotE48b) no β[†] (MedH50) Δ -85.9 (MTW) 		chem (EwiD39) chem, excit, cross bomb (EdwJ47) chem, excit, sep isotopes (MedH52)		Mo X-rays, 0.32 (5%), 0.778 (100%), 0.81 (84%), 0.851 (100%), 1.12 (16%) 0.30, 0.75, 0.79, 0.82	Nb ⁹³ (a,n) (EdwJ47)

	Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C'=0); Thermal neutron cross section (7), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
	43 ^{Tc} 96m	52m (MedH50, EasH53)		IT (MedH50) β [†] ≈0.01% (EasH53) -85.8 (LHP, MTW)	В	chem, excit (MedH50) chem, excit, sep isotopes (MedH52)		Tc X-rays 0.013, 0.032 daughter radiations from Tc ⁹⁶	Nb ⁹³ (α,n) (EasH53)
	Tc ⁹⁷	2.6 x 10 ⁶ y yield (KatcS58a) others (BoydG54)		EC (BoydG54) -87 (MTW)	A	genet (BoydG51a) chem (KatcS58a) [daughter Tc ^{97m}] (BoydG51a) daughter Ru ⁹⁷ (99+%) (KatcS58a)	Y	Mo X-rays	Ru ⁹⁶ (n, Y)Ru ⁹⁷ (β ⁻) (KatcS58a) Mo ⁹⁷ (d, 2n) (BoydG54)
	T c ^{97m}	91 d (BoydG54, HelmhA41a) 90 d (MotE48b, GugP47, CacB37) 87 d (UniJ59) 95 d (EdwJ47)	1	IT (HelmhA4la, EdwJ47) -87 (LHP, MTW)	A	chem (PerrC37, CacB37) chem, genet (MotE47) excit, sep isotopes (MotE48b) daughter Ru ⁹⁷ (0.04%) (KatcS58a)	l _	Tc X-rays 0.075, 0.094	Mo ⁹⁶ (d, n) (CacB37, PerrC37, CacB39) Mo ⁹⁷ (p, n) (EdwJ47) Mo ⁹⁷ (d, 2n) (MotE48b) Ru ⁹⁶ (n, γ) Ru ⁹⁷ (β ⁻) (KatcS58a)
	Тс ⁹⁸	1.5 x 10 ⁶ y sp act (OKelG56b) others (KatcS55)	Δ	β ⁻ (KatcS55) -86.5 (MTW) 3 (to Tc ^{99m}) (GoldmDT64)	A	chem, mass spect (BoydG55)	ı.	0.30 max 0.66 (100%), 0.76 (100%)	Mo ⁹⁸ (p, n) (BoydG55) Ru ⁹⁶ (n, γ)Ru ⁹⁷ (β ⁻) Tc ⁹⁷ (n, γ) (KatcS55, KatcS58a)
	Tc ⁹⁹	2.12 x 10 ⁵ y sp act (FrieS51) 2.15 x 10 ⁵ y sp act (BoydG60)	Δ	β ⁻ (LincD51, SchumR51) -87.33 (MTW) 22 (GoldmDT64)	A	chem (LincD46, SchumR46) chem, mass spect (IngM47g) daughter Tc ^{99m} (SeaG39, HahO41a) descendant Mo ⁹⁹ (MotE47a)	יין	0.292 max no Y	fission (IngM47g, LincD51, SchumR51) Mo ⁹⁸ (n, Y) Mo ⁹⁹ (β ⁻) (MotE47a)
	T c ^{99m}	6.049 h (GleG64) 6.00 h (ByeD58) others (GleL51d, BaiK53, PortR60, CreT65)		IT (SeaG39) -87.18 (LHP, MTW)	A	chem, genet (SeaG39) daughter Mo ⁹⁹ (SeaG39, SagR40a, MedH49, GleL51d, MihJ51) parent Tc ⁹⁹ (SeaG39, HahO41a)		Tc X-rays, 0.140 (90%) 0.001, 0.119	daughter Mo ⁹⁹ (SeaG39, SagR40a, MedH49, GleL51d, MihJ51)
	Tc ¹⁰⁰	15.8 s (BoydG52a) 17.5 s (HouR52) 17 s (CsiG63)		β¯ (HouR52) -85.9 (MTW)	A	sep isotopes (HouR52) sep isotopes, n-capt (BoydG52a)	ı.	3.38 max 0.540 (strong), 0.60 (strong), 0.71, 0.81, 0.89, 1.01, 1.31, 1.49, 1.8	Tc ⁹⁹ (n, Y) (BoydG52a, OKelG58) Mo ¹⁰⁰ (p, n) (HouR52) Rh ¹⁰³ (n, a) (CsiG63)
	Tc ¹⁰¹	14.0 m (OKelG57, MauW41, HahO41b) 14.3 m (WileDR54) 14.5 m (PerlmM48) 16.5 m (MacD48)		β ⁻ (SagR40) -86.32 (MTW)	A	chem, genet (SagR40) daughter Mo ¹⁰¹ (BotW41, HahO41a, HahO41b, MauW41, SagR40)	γ	1.32 max 0.13 (3%, complex), 0.307 (Y 91%), 0.545 (Y 8%)	Mo ¹⁰⁰ (n, Y) Mo ¹⁰¹ (β ⁻) (SagR40, SagR40b, MauW41)
	Tc ¹⁰²	4.5 m (FleJ54, FleJ57)		β ⁻ (FleJ56a) -85 (MTW)	В	chem, genet energy levels (FleJ56a, FleJ57)	ı.	2 max 0.47	Ru ¹⁰² (n, p) (FleJ57) fission (FleJ56a)
	Tc ¹⁰²	5 s (FleJ54) others (HahO4la)	l l	β (HahO41a) -85 (MTW)	С	chem, genet (HahO41a, FleJ54) daughter Mo ¹⁰² (HahO41a, HahO41b, FleJ54)	β-	4.4 max	daughter Mo ¹⁰² (HahO41a, HahO41b, FleJ54)
	Tc ¹⁰³	50 s (KieP63a, VBaeA65) 72 s (FleJ57)		β ⁻ (KieP63b) -84.9 (MTW)	В	excit (FleJ57) chem, genet (KieP63a) [parent Ru ¹⁰³] (KieP63a) daughter Mo ¹⁰³ (KieP63a)		2.2 max 0.135 († 17), 0.21 († 10), 0.35	fission (KieP63a, KieP63b, VBaeA65) Ru ¹⁰⁴ (n,np) (FleJ57)
	Tc ¹⁰⁴	18 m (FleJ56a, KieP62)		β ⁻ (FleJ56a, KieP62) -82.2 (MTW)	В	chem (FleJ56a) chem, genet energy levels (KieP62) daughter Mo ¹⁰⁴ (KieP62)	ı.	[5.8 max] (weak), 4.6 max 0.36, 0.53, 0.89, 1.15, 1.25, 1.37, 1.6 (complex), 1.9, 2.2 2.7, 3.2, 3.4, 3.7, 4.0, 4.4, 4.7	fission (FleJ56a, KieP62) Ru ¹⁰⁴ (n,p) (FleJ57)
	. Tc ¹⁰⁵	7.7 m (KieP62a) 7.8 m (VBaeA65) 10 m genet (FleJ55a, FleJ56a)	1 -	β ⁻ (BornH43b) -82.6 (MTW)	В	chem, genet (BornH43b) parent Ru 105, daughter Mo 105 (BornH43b, FleJ55a, KieP62a) ancestor Rh 105 (KieP62a)		3.4 max 0.110 daughter radiations from Ru ¹⁰⁵	fission (BornH43b, FleJ55a, FleJ56a, KieP62a, VBaeA65)
1									

Isotope Z A	Half-life	Type of decay (**); % abundance; Mass exce (Δ=M-A), MeV (C'=(Thermal neutron cross section (σ), barn	ess O);	Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
43 ^{Tc} 106	37 s (VBaeA65)	Υ [β] (VBaeA65)	В	chem, genet (VBacA65) parent Ru ¹⁰⁶ (VBacA65)			fission (VBaeA65)
Tc ¹⁰⁷	29 s (VBaeA65) others (BornH43b)	☆ [β ⁻] (VBaeA65)	B	chem, genet (VBaeA65) ancestor Rh ¹⁰⁷ (VBaeA65)			fission (VBaeA65)
44 ^{Ru} 93	50 s (AteA55a)	* β ⁺ (?) (AteA55a)	E	chem, excit (AteA55a)			Mo ⁹² (a, 3n) (AteA55a)
Ru ⁹⁴	57 m genet (VWieA52)	☆ EC (VWieA52)	D	chem, genet (VWieA52) parent Tc ^{94m} (VWieA52)	Υ	[Tc X-rays] daughter radiations from Tc ^{94m}	Mo ⁹² (a, 2n) (VWieA52)
Ru ⁹⁵	1.65 h (SchaE56, EggD48) 1.7 h (KurcB55) 1.6 h (MocD48)	Υ EC 85%, β ⁺ 15% (Rie Δ -84.02 (MTW)	eP63) A	chem, cross bomb, sep isotopes (EggD48)		1.33 max Tc X-rays, 0.340 (70%), 0.511 (30%, Y [±]), 0.625 (13%), 1.09 (21%), 1.43 (5%) daughter radiations from Tc ⁹⁵	Mo ⁹² (a,n) (EggD48) Ru ⁹⁶ (n,2n) (EggD48, SchaE56, RieP63)
Ru 96		% 5.46 (OrdK60) 5.57 (WhiF56) 5.50 (FrieL53) 5.7 (EwaH44) Δ -86.07 (MTW) σ _c 0.2 (GoldmDT64)					
Ru ⁹⁷	2.88 d (KatcS58a) 2.8 d (MocD48, SulW46, AteA55b, ShpV56) 2.44 d (CorkJ55a)	# EC (SulW46) Δ -86 (MTW)	A	chem, excit (SulW46) chem, cross bomb, sep isotopes (EggD48) parent Tc ^{97m} (0.04%), parent Tc ⁹⁷ (99+%) (KatcS58a) daughter 32 m Rh ⁹⁷ (AteA55b	e ⁻	Tc X-rays, 0.215 (91%), 0.324 (8%) 0.194	Ru ⁹⁶ (n, Y) (SulW46, KatcS58a, CorkJ55a) Mo ⁹⁴ (a, n) (EggD48)
Ru ⁹⁸		% 1.868 (OrdK60) 1.86 (WhiF56) 1.91 (FrieL53) 2.2 (EwaH44) Δ -88.222 (MTW) σ _c <8 (GoldmDT64)					
Ru ⁹⁹		<pre>% 12.63 (OrdK60) 12.7 (WhiF56, Friel 12.8 (EwaH44) Δ -87.619 (MTW) σ_C 11 (GoldmDT64)</pre>	L53)				
Ru ¹⁰⁰		% 12.53 (OrdK60) 12.7 (FrieL53) 12.6 (WhiF56) Δ -89.219 (MTW) σ _c 10 (GoldmDT64)					
Ru ¹⁰¹		<pre>% 17.02 (OrdK60) 17.0 (EwaH44, FrieI 17.1 (WhiF56) Δ -87.953 (MTW) σ_c 3 (GoldmDT64)</pre>	L53)				
<u>Ru</u> ¹⁰²		% 31.6 (OrdK60, WhiF9 31.5 (FrieL53) 31.3 (EwaH44) Δ -89.098 (MTW) σ _C 1.4 (GoldmDT64)	56)				
Ru ¹⁰³	39.5 d (FlyK65a) 39.8 d (KondE50a) 39.4 d (CaliJ59) others (WriH57, SulW51d, BohE45, HoleN48a, GleL51e, MocD48, NisY42)	Φ β (NisY42) Δ -87.27 (MTW)	A	excit (LivJ36) chem (NisY42, GoldsB46) chem, excit (SulW51d, SulW51f) parent Rh ^{103m} (SulW51f) [daughter Tc ¹⁰³] (KieP63a)	1.	0.70 max (3%), 0.21 max 0.497 (88%), 0.610 (6%) daughter radiations from Rh ¹⁰³ m	Ru ¹⁰² (n, Y) (SulW51d, DVriH38) fission (NisY41, NisY42, GoldsB51a, SulW51e, FinB51c)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
44 ^{Ru} ¹⁰⁴		% 18.87 (OrdK60) 18.5 (WhiF56) 18.7 (FrieL53) 18.3 (EwaH44) Δ -88.090 (MTW) σ _c 0.48 (GoldmDT64)			
Ru ¹⁰⁵	4.44 h (RiccR60) 4.43 h (BranHW62) others (SIeN51, SulW51, SulW51b, BohE45, ShpV56)	# β (NisY41) Δ -86.00 (MTW) σ _c 0.2 (GoldmDT64)	A chem (SegE41) chem, excit (SulW51a) daughter Tc (BornH43b, FleJ55a, KieP62a) parent Rh (DufR51) parent Rh (25%) (BranHW62); (27%) (NeesJ65) descendant Mo (BornH43b, KieP62a) ancestor Rh (105) ancestor Rh (NisY41, BohE45, SleN51, SulW51a)	β- 1.87 max (11%), 1.15 max 9.263 (6%), 0.317 (11%, doublet), 0.40 (6%, doublet), 0.475 (20%, doublet), 0.67 (16%, doublet), 0.726 (48%) daughter radiations from Rh 105m Rh 105	Ru ¹⁰⁴ (n, Y) (DVriH38, SulW51a)
Ru ¹⁰⁶	368 d (FlyK65a) 367 d (SchumR56) 366 d (EasH60) 371 d (WyaE61) others (MerW57, GleL51e, SeeW46)	 β (GoldeB5la, GleL5le) Δ -86.33 (MTW) σ_c 0.15 (GoldmDT64) 	A chem (Golds B46, GleL46a) chem, mass spect (HaydR48) parent 30 s Rh 106 (SeeW46, Grum W46, GleL51e) not parent 130 m Rh 106 (BaraG55) daughter Tc 106 (VBaeA65)	β ⁻ 0.039 max γ no γ daughter radiations from 30 s Rh 106	fission (GleL51e, HaydR48, GrumW48, FinB51c)
Ru ¹⁰⁷	4.2 m (PierW62) 4.8 m (BaumF58) 4 m (GleL5if, BornH43b)	* β (BornH43b) Δ -83.7 (MTW)	B chem (BornH43b, GleL51f, BaumF58) chem, genet (PierW62) parent Rh 107 (PierW62, GleL51f, BornH43b, BaroG55a) [daughter Tc 107] (BornH43b)	β 3.2 max Y 0.195 (14%), 0.37 (weak), 0.48 (weak), 0.86 (7%), 0.93 (4%), 1.03 (4%), 1.29 (4%) daughter radiations from Rh 107	Pd ¹¹⁰ (n, a) (BaumF58, BaroG55a) fission (BormH43b, GleL51f, BaroG55a, BaumF58, PierW62)
Ru ¹⁰⁸	4.5 m (PierW62) 4.4 m (BaumF58) others (BaroG55a)		B chem, excit (BaroG55a) chem, genet (BaumF58, PierW62) parent Rh 108 (BaumF58, PierW62, BaroG55a)	β ⁻ 1.3 max γ 0.165 (28%) daughter radiations from Rh ¹⁰⁸	fission (BaroG55a, BaumF58, PierW62)
45 ^{Rh} ⁹⁷	32 m (BasuB62a, EggD49) 37 m (ChikV62) 35 m (AteA55b)	Υ β ⁺ (AteA52a, [EC] Δ −83 (MTW)	A chem, genet (AteA55b) chem, excit (ChikV62) excit, sep isotopes (BasuB62a) parent Ru 97 (AteA55b)	β [†] 2.47 max Y Ru X-rays, 0.08, 0.187, 0.255, 0.420, 0.511 (γ [±]), 0.86, 1.18, 1.57, 1.70, 1.96, 2.16 daughter radiations from Ru ⁹⁷	Ru ⁹⁶ (d, n) (AteA55b, AteA52a, ChikV62) Ru ⁹⁶ (p, Y) (BasuB62a)
Rh ⁹⁷	1.0 m (BasuB62a)	* β [†] ? (BasuB62a)	F sep isotopes (BasuB62a)	Y 0.75	Ru ⁹⁶ (p, Y) (BasuB62a)
Rh ⁹⁸	8.7 m (KatcS56a) 9 m (AteA55)	★ β ⁺ (AteA52a), [EC] Δ -84.0 (MTW)	B chem, excit (AteA52a, AteA53d, AteA55b) daughter Pd ⁹⁸ (AteA55b, KatcS56a)	β ⁺ 2.5 max Υ [Ru X-rays, 0.511 (Υ [±])], 0.65 (100%)	daughter Pd ⁹⁸ (AteA55b, KatcS56a)
Rh ⁹⁹	16.1 d (TownCW59) 15.0 d (FarmD55)	# β [†] , EC (FarmD55, MatthE65) Δ -85.57 (NDS, MTW)	B chem (FarmD55, HieK56) genet energy levels (TemG56a, MatthE65)	β ⁺ 1.03 max Y Ru X-rays, 0.090, 0.175, 0.31 (complex), 0.354, 0.444, 0.48 (complex), 0.511 (Y [±]), 0.529, others to 2.7	Ru ⁹⁹ (p,n) (FarmD55, MatthE65)
Rh ⁹⁹	4.7 h (KatcS56a) 4.5 h (ScoC52)	Y EC 90%, p ⁺ 10% (KatcS56a) △ -85.52 (LHP, NDS, MTW)	B chem, excit (EggD49) daughter Pd ⁹⁹ (KatcS56a, AteA55b)	β ⁺ 0.74 max Υ Ru X-rays, 0.34 (70%), 0.511 (20%, Υ [±]), 0.62 (20%), 0.89, 1.26, 1.41	Ru ⁹⁹ (p, n) (EggD49, ScoC52) Ru ⁹⁸ (d, n) (ScoC52, EggD49)
Rh ¹⁰⁰	20.8 h (MarqL53a) 19.4 h (LindnM48a) 18 h (AntoN64b) 21 h (SulW51k)	$ Arr$ EC 93%, $ ho^+$ 7% (KoiM64) $ ho$ -85.58 (MTW)	A chem (SulW51k, LindnM48a) excit, sep isotopes (BasuB62) daughter Pd 100 (LindnM48a)	β ⁺ 2.62 max e ⁻ 0.516 Υ Ru X-rays, 0.444 (8%), 0.511 (13%, Υ [±]), 0.540 (88%), 0.820 (25%), 1.11 (13%), 1.35 (20%), 1.55 (23%), 1.93 (10%), 2.37 (39%), all Y rays complex	daughter Pd ¹⁰⁰ (LindnM48a, KoiM64) Ru ¹⁰⁰ (p,n) (KoiM64) Ru ⁹⁹ (d,n) (SulW51e) Ru ⁹⁹ (p,Y) (BasuB62)

Z A	Half-life	(△ªM-A), M Thermal cross section	neutron	_	Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
15 ^{Rh} 101	3.0 y (HisK65) 5 y (FarmD55) 10 y (PerrN60)	❤ [EC] (Farm) △ -87.39 (MT)			chem (FarmD55) genet energy levels, excit (SharmB60)	_	[Ru X-rays], 0.127 (88%), 0.198 (75%), 0.325 (11%) 0.105, 0.124, 0.176	Ru ¹⁰¹ (p,n) (SharmB60, FarmD55, PerrN56)
	4.4 d (EvaJS65) 4.7 d (KatcS56a) 4.3 d (FarmD55, LindnM48a) 4.5 d (ScoC52) 5.9 d (SulW51j)	EC 90%, IT (EvaJS65) no β [†] (KatcS LindnM48a Δ -87.24 (LHI	556a,	1	chem, excit (SulW51j) genet energy levels, excit (SharmB60) daughter Pd ¹⁰¹ (LindnM48a, EvaJS65)		Ru X-rays, Rh X-rays, 0.307 (83%), 0.545 (6%) 0.134, 0.154	Ru ¹⁰¹ (p, n) (ScoC52, FarmD55, SharmB60) Ru ¹⁰⁰ (d, n) (SulW51j, ScoC52)
- 1	206 d (HisK61) 210 d (MinaO41) 205 d (MGowF61a) others (HoleN47)	¥ EC, β [†] , β ⁻ ; β [†] /β ⁻ 0.75 0.84 Δ -86.77 (MT)	(HisK61) (MarqL54)	A. (chem, excit (MinaO41)	β+	1.15 max 1.29 max Ru X-rays, 0.475 (57%), 0.511 (25%, Y*), 0.628 (4%), 1.103 (3%), 1.37 (0.5%), 1.57 (0.2%)	Ru ¹⁰² (p,n) (FarmD55, Hisk61, MGowF61a) Ru ¹⁰¹ (d,n), Ru ¹⁰² (d, 2n (BesD55, BornP61, SulW51i) Rh ¹⁰³ (n, 2n) (MinaO41, HoleN45a)
Rh ¹⁰²	2.9 y (BornP63a) others (MGowF61a, HisK65)	EC (MGowF BornP63a)		В	chem, excit (MGowF61a)	Y	Ru X-rays, 0.418 (13%), 0.475 (95%), 0.632 (54%, doublet), 0.698 (41%), 0.768 (30%), 1.05 (41%), 1.11 (22%, doublet)	Ru ¹⁰² (p,n) (MGowF6la) deuterons on Ru (BornP63a)
Rh 103		% 100 (CohAA· Δ -88.014 (MT σ _c 144 (to Rh 104) 11 (to Rh 104) (GoldmDT	(W)					
	57.5 m (JonG56) 57 m (GleL51e) 56 m (MeIJ50a) 45 m (WieM45b) others (FlaA47a, FlaA44)	Υ IT (FlaA44, Δ -87.974 (LH			chem, excit (FlaA44) chem (GleL46a, GleL51e) chem, genet (SulW51f) daughter Ru ¹⁰³ (SulW51f) daughter Pd ¹⁰³ (MeiJ50a, BrosA46)		Rh X-rays, 0.040 (0.4%) 0.017, 0.037	daughter Ru ¹⁰³ (SulW51f) daughter Pd ¹⁰³ (MeiJ50a)
	43 s (CsiJ63) 44 s (AmaE35, PonB38a) 42 s (CriE39)	# β (PonB38a EC 0.5% (Fr no β + , lim 5 (LanghH6) Δ -86.95 (MT σ 40 (GoldmD)	revL65a) 5 x 10 ⁻⁴ % 1b) W)	1 4	n-capt (AmaE35) genet (PonB38a) daughter Rh ^{104m} (PonB38a, FlaA47a)	ı	2.44 max Ru X-rays, 0.56 (2.0%), 1.24 (0.13%)	daughter Rh ¹⁰⁴ m, Rh ¹⁰³ (n, Y) (AmaE35, PoolM37, PoolM38, Grum W46, SerL47b, PonB38a, FlaA47a, HumV51)
	4.41 m (ElliJ59) 4.3 m (CsiG63) 4.4 m (CriE39) others (DMatE51, FlaA47a)	# IT 99+%, β (WieK63) Δ -86.82 (LH1) σ _c 800 (Goldmi	P, MTW)		n-capt (AmaE35) parent Rh ¹⁰⁴ (PonB38a, FlaA47a)	e-	Rh X-rays, 0.051 (47%), 0.078 (2.5%), 0.097 (2.6%), 0.56 (0.18%), 0.77 (0.24%, doublet) 0.028, 0.054, 0.074 [0.5 max] daughter radiations from Rh 104	Rh ¹⁰³ (n, Y) (AmaE35, PoolM37, PonB38a, GrumW46, SerL47b, HumV51)
	35.88 h (BranHW62) 36.2 h (DufR51) 36.5 h (SulW51a) others (BohE45, NisY41, KunD48, MandeC51)	φ β (Nis Y41) Δ -87.87 (MTV σ _c 6,000 (to 30 15,000 (to 1 (Goldm DT	W) s Rh 106 30 m Rh 106)		chem, genet (NisY41, SulW51a) daughter Rh ^{105m} (DufR51) descendant Ru ¹⁰⁵ (NisY41, BohE45, SleN51, SulW51a) descendant Tc ¹⁰⁵ , descendant Mo ¹⁰⁵ (KieP62a)	β ⁻ Υ	0.568 max 0.306 (5%), 0.319 (19%)	Ru ¹⁰⁴ (n, Y) Ru ¹⁰⁵ (β ⁻) (SulW5la)
Rh ¹⁰⁵ m	45 s (DufR51)	❤ IT (DufR51) △ -87.74 (LHF	l l	•	chem, genet (DufR51) daughter Ru ¹⁰⁵ , parent Rh ¹⁰⁵ (DufR51) daughter Ru ¹⁰⁵ (25%) (BranHW62); (27%) (NeesJ65)	l _ :	Rh X-rays, 0.129 0.106, 0.126	daughter Ru ¹⁰⁵ (DufR51)
Rh 106	30 s (GleL51e) 40 s (SeeW46)		·	- 1	chem, genet (GleL46a, GleL51e) laughter Ru ¹⁰⁶ (SeeW46, GrumW46, GleL51e)	ľ	3.54 max 0.512 (21%), 0.622 (11%, doublet), 1.05 (1.5%, doublet), 1.13 (0.5%, doublet), 1.55 (0.2%)	daughter Ru 106 (SeeW46, Grum W46, GleL51e)

Isotope Z A	Half-life	Type of dee % abundance (△≅M-A), M Thermal cross section	; Mass excess feV (C ¹² =0); neutron	,	Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
45 ^{Rh} 106	130 m (MayS58) 133 m (SegO60a) others (BaroG55, NerW55)	 β (BaroG5 Δ -86.3 (SegO 	. 1	ı	chem, excit (BaroG55, NerW55) genet energy levels (MayS58, SegO60a) not daughter Ru 106 (BaroG55)	1 :	1.62 max (10%), 1.1 max 0.220 (18%, complex), 0.406 (18%), 0.451 (35%), 0.512 (88%), 0.616 (29%), 0.735 (41%), 0.82 (35%), 1.046 (25%), 1.128 (12%), 1.223 (17%), 1.56 (18%)	Pd ¹⁰⁸ (d, a) (BaroG55, MayS58, SegO60a) Ag ¹⁰⁹ (n, a) (MayS58)
Rh ¹⁰⁷	21.7 m (PierW62) 24 m (BornH43b) 25 m (NerW55) 23.0 m (MallC56, BaroG55a) others (GleL51f)	β (BornH4 Δ -86.86 (MT)			chem (BornH43b) chem, sep isotopes, excit (PierW62) daughter Ru BornH43b, GleL51f, BaroG55a) descendant Tc	β ⁻ Υ	1.20 max 0.305 (73%), 0.390 (11%), 0.68 (3%)	Ru ¹⁰⁴ (a,p) (PierW46) fission (BornH43a, GleL51f, PierW62)
Rh ¹⁰⁸	16.8 s (PierW62) 17.5 s (Baum F58) 18 s (BaroG55a)	φ β (BaroG5 Δ -85 (MTW)	(55a) I	(chem (BaroG55a) chem, genet energy levels (Pierw62) daughter Ru ¹⁰⁸ (BaumF58, PierW62, BaroG55a)	יו :	4.5 max 0.434 (43%), 0.51 (10%, complex), 0.62 (22%)	fission, daughter Ru 108 (Baro 055a, Baum F58, Pier W62)
Rh ¹⁰⁹	<1 h (SeiJ51)	¥ [β] (SeiJ51 Δ -85 (MTW))		genet (SeiJ51) [parent Pd ¹⁰⁹] (SeiJ51)			fission (SeiJ51)
Rh110	5 s (KarrM63a)	β (KarrM6 Δ -83 (MTW)	3a)	c í	sep isotopes, genet energy levels (KarrM63a)	l* ;	5.5 max 0.374	Pd 110 (n, p) (KarrM 63a)
46 ^{Pd} ⁹⁸	17.5 m genet (KatcS56a) 17 m genet (AteA53b)	Y [EC] (AteA	53d) E	ì	chem, genet (AteA53d, AteA55b) parent Rh ⁹⁸ (KatcS56a, AteA53d)	Y	[Rh X-rays], 0.132 (?) daughter radiations from Rh ⁹⁸	Ru ⁹⁶ (a, 2n) (AteA55b, KatcS56a)
Pd 99	22 m (KatcS56a) 24 m (AteA55b)	 β⁺ (KatcS 56 Δ −81.7 (MTW 		1	chem, excit (AteA55b, KatcS56a) parent 4.7 h Rh ⁹⁹ (KatcS56a, AteA55b)		2.0 max Rh X-rays, 0.140, 0.275, 0.420, 0.511 (γ^{\pm}), 0.67 daughter radiations from 4.7 h Rh ⁹⁹	Ru ⁹⁶ (a, n) (KatcS56a)
Pd ¹⁰⁰	4.0 d (LindnM48a) 4.1 d (KurcB55) 3.7 d (AntoN64a)	Υ EC, no β [†] (Δ -85 (MTW)	LindnM48a) A		chem, excit, genet (LindnM48a) parent Rh ¹⁰⁰ (LindnM48a)		Rh X-rays, 0.074 (34%), 0.084 (49%), 0.126 (16%), 0.159 (4%) 0.010, 0.019, 0.052, 0.061, 0.071, 0.081 daughter radiations from Rh ¹⁰⁰	Rh ¹⁰³ (p, 4n) (KoiM64, EvaJS65a) Rh ¹⁰³ (d, 5n) (LindnM48a)
Pd ¹⁰¹	8.4 h (EvaJS65) 8.5 h (KatcS56a) others (LindnM50a)	★ EC 97.5%, β (EvaJ365) others (Kata Δ -85.40 (Eva.	cS56a)		chem, genet (LindnM48a, EvaJS65) parent Rh ^{101m} (LindnM48a, EvaJS65)	β ⁺	Rh X-rays, 0.270 (8%), 0.296 (30%), 0.511 (5%, Y [±]), 0.566 (7%), 0.590 (24%), 0.723 (5%), 0.993 (1.7%), 1.20 (3.3%, complex), 1.30 (3.3%, doublet) 0.78 max 0.021 daughter radiations from Rh 101m	Rh ¹⁰³ (p, 3n) (EvaJ65) Ru ⁹⁹ (a, 2n) (KatcS56a)
Pd 102		 0.96 (SitJ53 0.8 (SamM3 Δ -87.92 (MT) σ_c 4.8 (Goldming) 	6a) W)					
Pd ¹⁰³	17.0 d (MatthD47, BrosA46, MeiW53) 17.5 d (RieL54)	Σ EC (Bros A4 Δ -87.46 (MT	·	p	chem, genet (BrosA46) chem, excit (MatthD47) parent Rb ¹⁰³ m (BrosA46, MeiJ50a) laughter Ag ¹⁰³ (HaldB54)	γ	Rh X-rays, 0.297 (0.011%), 0.362 (0.06%), 0.498 (0.011%) daughter radiations from Rh ¹⁰³ m	Pd ¹⁰² (n, Y) (BrosA46) Rh ¹⁰³ (d, 2n) (MatthD47, LindnM48a) Rh ¹⁰³ (p, n) (MatthD47)
Pd 104		% 10.97 (SitJ5 9.3 (SamM3 Δ -89.41 (MT	6a)					
Pd 105		% 22.2 (SitJ53 22.6 (SamM Δ -88.43 (MT)	36a)					

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
46 ^{Pd} 106		% 27.3 (SitJ53) 27.2 (SamM36a) $Δ$ -89.91 (MTW) $σ$ 0.29 (GoldmDT64)			}
Pd ¹⁰⁷	≈7 x 10 ⁶ y sp act (ParkG49)	↑ β (ParkG49) Δ -88.368 (MTW).	B chem (ParkG49)	β 0.04 max Y no Y	fission (ParkG49)
Pd ^{107m}	21.3 s (StriT57a) 23 s (SchinU58, FlaA52a)	Υ IT (FlaA52a) Δ -88.16 (LHP, MTW)	A excit (FlaA52a) n-capt, sep isotopes (SchinU58, WeirW64) genet energy levels (CujB63)	Y Pd X-rays, 0.21 e 0.19, 0.21	Pd 106 (n, Y), Pd 108 (n, 2n) (SchinU58, WeirW64)
Pd ¹⁰⁸		% 26.7 (SitJ53) 26.8 (SamM36a) Δ -89.52 (MTW) σ _c 12 (to Pd ¹⁰⁹) 0.2 (to Pd ¹⁰⁹ m) (GoldmDT64)			
Pd ¹⁰⁹	13.47 h (BranHW62) 13.6 h (MeiW53, BonaG64) 13.1 h (WafH48) 14.1 h (MacD48) others (KraJD37, SeiJ51, KondE52, DzaB57)	 β (KraJD37) Δ -87.60 (MTW) 	A n-capt (AmaE35) chem, excit (KraJD37) chem, mass spect (RalW46, BergI49) parent Ag 10 9m (SegE41, SiegK49a, SeiJ51) [daughter Rh 10 9] (SeiJ51)	β 1.028 max e 0.062 (with Ag 10 9m), 0.084 (with Ag 10 9m) Y Ag X-rays, 0.088 (5%, with Ag 10 9m), 0.129 (0.013%), 0.31 (0.010%, doublet), 0.41 (0.010%, doublet), 0.60 (0.03%) 0.64 (0.010%)	0.000.7, 1.000.7,
Pd ^{109m}	4.69 m (StarJ59) 4.75 m (StriT57a) others (FlaA52a, MangS62, OkaM63)	↑ IT (KahJ51, FlaA52a) Δ -87.41 (LHP, MTW)	A n-capt (KahJ51) excit, cross bomb, n-capt (FlaA52a) n-capt, sep isotopes, excit (SchinU58) genet energy levels (CujB63)	Y Pd X-rays, 0.188 (58%) e 0.164, 0.185	Pd ¹⁰⁸ (n, Y) (FlaA52a, SchinU58)
Pd ¹¹⁰		 11.8 (SitJ53) 13.5 (SamM36a) Δ -88.34 (MTW) 0.2 (to Pd¹¹¹) 0.04 (to Pd^{111m}) (GoldmDT64) 			
Pd ¹¹¹	22 m (DzaB57, MGinC52) others (SegE41)	φ β (KraJD37) Δ -86.0 (MTW)	A n-capt (AmaE35) chem, genet (SegE41) parent Ag 11 (KraJD37, SegE41, JohaS50) parent Ag 111m (SchinU57)	β 2.2 max Y 0.38 († 5), 0.60 († 13, doublet), 0.81 († 1), 1.4 († 8, doublet) daughter radiations from Ag 111m	Pd ¹¹⁰ (n, Y), daughter Pd ^{111m} (AmaE35, KraJD37, SerL47b)
Pd ^{111m}	5.5 h (MGinC52, DzaB57)	1T 75%, β 25% (MGinC52) Δ -85.8 (LHP, MTW)	A chem, genet (MGinC52, DzaB57) parent Ag 111 (MGinC52, DzaB57)	β 2.0 max e 0.148, 0.169 Y Pd X-rays, 0.17 daughter radiations from Pd 111, Ag 111m, Ag 111	Pd ¹¹⁰ (n, Y) (DzaB57, PraW60) Pd ¹¹⁰ (d, p) (MGinC52, EccS62)
Pd ¹¹²	21.0 h (GirR59k) 21 h (SeiJ51)	* β (Nis Y40b) Δ -86.27 (MTW)	A chem, genet (NisY40b, SegE41) parent Ag 112 (NisY40b, NisY40, SegE41, SeiJ51)	β- 0.28 max e- [0.016] Y [Pd L X-rays], 0.019 (20%) daughter radiations from Ag 112	fission (SegE41, TurA51a, KatcS48, NisY40b, NisY40, SeiJ51, GoeR49, NewA49)
Pd ¹¹³	1.4 m (AlexJ58) 1.5 m (HicH54, PouA60)	☆ [β¯] (HicH54)	A chem, genet (HicH54, AlexJ58) parent 5.3 h Ag 113 (HicH54, AlexJ58) parent 1.2 m Ag 113 (AlexJ58)	y no y daughter radiations from 5.3 h Ag 113 and 1.2 m Ag 113	fission (AlexJ58, HicH54) Cd ¹¹⁶ (n,a) (PouA60)
Pd ¹¹⁴	2.4 m (AlexJ58)	Υ [β¯] (AlexJ58)	D chem, genet (AlexJ58) parent 5 s Ag 114 (AlexJ58) not parent 2 m Ag 114 (AlexJ58)	Y до Y	fission (AlexJ58)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
46 ^{Pd¹¹⁵}	45 s genet (AlexJ58)	♀ [β¯] (AlexJ58)	B chem, genet (AlexJ58) parent 20 m Ag 115, parent 20 s Ag 115 (AlexJ58)		fission (AlexJ58)
47 ^{Ag¹⁰²}	15 m (AmeO60) 16 m (EnnT39)	Ψ [EC, β [†]] (EnnT39, AmeO60) Δ -83 (MTW)	C excit (EnnT39) excit, sep isotopes (AmeO60)		Pd ¹⁰² (p,n) (AmeO60, EnnT39)
Ag ¹⁰³	66 m (PatA62b, HaldB54, BendW53) 69 m (PreiI60a) 59 m (JohnFA55)	‡ β [†] , EC (HaldB54) EC(K) ≈70% (KuzM57) Δ -84.9 (MTW)	A chem (BendW53) chem, genet (HaldB54) chem, excit (GirR59e) excit, sep isotopes (AmeO60, PatA62b) parent Pd 103 (HaldB54) daughter Cd 103 (PreiI60a)	β [†] 1.6 max Y Pd X-rays, 0.12 († 26, doublet), 0.15 († 23), 0.24 († 10), 0.27 († 34), 0.511 († 100, γ [±]), 1.01 († 10, complex), 1.16 († 9), 1.28 († 13) daughter radiations from Pd ¹⁰³	Rh ¹⁰³ (a, 4n) (GirR59e) Pd ¹⁰⁴ (p, 2n) (AmeO60) Pd ¹⁰² (d, n) (BendW53) Pd ¹⁰² (p, Y) (PatA62b)
Ag ^{103m}	5.7 s (WhiW62)	₩ IT (WhiW62) Δ -84.7 (LHP, MTW)	C excit (WhiW62)	Y Ag X-rays, 0.138 e [0.113, 0.135]	Pd 104 (p, 2n) (WhiW 62)
Ag ¹⁰⁴	66 m (NutH60) 70 m (GirR59e) 69 m (AmeO60) others (EnnT39)	φ ρ ⁺ , EC (LindnM50a) Δ -85.14 (MTW)	A excit (EnnT39) chem, excit (GirR59e) sep isotopes, excit (AmeO60)	β [†] 0.99 max e ⁻ 0.532, 0.743 Y Pd X-rays, 0.511 (Y [±]), 0.556 (84%), 0.764 (48%), 0.854 (30%), 1.34 (8%), 1.53 (7%), 1.62 (8%), 1.81 (7%)	Rh ¹⁰³ (a, 3n) (GirR59e, NutH60, EwbW59)
Ag ¹⁰⁴ m	29.8 m (NutH60) 27 m (GirR59e, AmeO60, JohnFA55)	# β ⁺ , EC (JohnFA55, GirR59e) IT 20-40% (AmeO60) Δ -85.12 (LHP, MTW)	A chem (JohnFA55) excit (GirR59) excit, sep isotopes (AmeO61) daughter Cd 104 PreiI60a)	β ⁺ 2.70 max e ⁻ 0.532 Y Pd X-rays, 0.511 (120%, Y [±]), 0.556 (100%) daughter radiations from Ag ¹⁰⁴	Rh 103 (a, 3n) (GirR59e, NutH60, EwbW59) daughter Cd 104 (JohnFA55, PreiI60a)
Ag ¹⁰⁵	40 d (GumJ50) others (EnnT39)	Υ EC, no β [†] (GumJ50) Δ −87 (MTW)	A excit (EnnT39) chem, excit (BradH47a)	Pd X-rays, 0.064 (10%), 0.280 (32%), 0.344 (42%, complex), 0.443 (10%), 0.62-0.68 (12%, complex), 1.088 (2%) e- 0.040, 0.060, 0.256, 0.320	Rh 103 (a, 2n) (BradH47a, GumJ50, MeiJ50b) protons, deuterons on Pd (EnnT39, GumJ50, MeiJ50b, SutT61a, BoeR58, EwbW63)
Ag 106	23.96 m (EbrT65) 24.3 m (MocD48) 24.0 m (BendW51, BendW53) others (PoolM38, ForS52, DubL38, EnnT39)	φ [†] (KraJD37) β [†] , EC, β ⁻ (?) ≈1% (BendW53) Δ -86.94 (MTW)	A chem, excit (BotW37, HeyF37) chem, excit, cross bomb (KraJD37, PoolM38)	β [†] 1.96 max Υ Pd X-rays, 0.511 (140%, 0.512 Υ + Υ [±])	Rh ¹⁰³ (a, n) (PoolM38, BradH47a)
Ag ^{106m}	8.5 d (SmiW61b) 8.2 d (PoolM38) 8.4 d (RobiR60)	FC (HurL44) no β [†] , lim 0.1% (BendW53) Δ -86.6 (LHP, MTW)	A chem, excit, cross bomb (KraJD37, PoolM38)	Y Pd X-rays, 0.221 (9%), 0.451 (9%), 0.512 (86%), 0.616 (23%) 0.717 (31%, complex), 0.748 (13%), 0.80 (41%, complex), 1.046 (29%), 1.128 (9%), 1.199 (9%), 1.528 (15%), 1.58 (8%), 1.83 (3%) e 0.197, 0.382, 0.405, 0.426, 0.487, 0.508, 0.592, 0.693	Rh ¹⁰³ (a,n) (PoolM38, BradH47a, MeiJ50b, SmiW6lb)
Ag 107		% 51.35 (WhiJ48) Δ -88.403 (MTW) σ _c 35 (to Ag ¹⁰⁸) (GoldmDT64)			
Ag ^{107m}	44.3 s (BradH47a, BradH45b) others (WoliEJ51, AlvL40a)	TI (AlvL40a) Δ -88.310 (LHP, MTW)	A chem, genet (AlvL40a, HelmhA41b) daughter Cd ¹⁰⁷ (AlvL40a, HelmhA41b, BradH45a, HelmhA46, BradH47a)	Y Ag X-rays, 0.094 (5%) e- 0.068, 0.090	daughter Cd 107 (AlvL40a, HelmhA41b, BradH45a, HelmhA46, BradH47a)
Ag ¹⁰⁸	2.42 m (WahM60) 2.41 m (EbrT65) others (SehM57, AmaE35, PerimM48, MocD48, BotW39, FlaA44)	φ ρ 97.5%, EC 2.2%, ρ 0.28% (FrevL65, FrevL62) ρ 95.7%, EC 3.9%, ρ 0.36% (WahM60) Δ -87.61 (MTW)	A chem, n-capt (AmaE35) excit, cross bomb (PoolM38) daughter Ag 108m (WahM60)	β ⁻ 1.64 ma β ⁺ 0.90 max Υ Pd X-rays, 0.434 (0.45%), 0.511 (0.56%, Y [±]), 0.615 (0.18%), 0.632 (1.7%)	daughter Ag 108m (WahM60) Ag 107(n, Y) (FlaA44b, AmaE35, FlaA44, SerL47b)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
47 ^{Ag 108} m	>5 y (WahM60)	₩ EC 90%, IT 10% (WahM 60) Δ -87.50 (LHP, MTW)	A chem, n-capt, genet (WahM 60) parent Ag 108 (WahM 60)	Pd X-rays, Ag X-rays, 0.080 (5%), 0.434 (89%), 0.614 (90%) 0.722 (90%) e ⁻¹ 0.027 daughter radiations from Ag 108	Ag 107(n, Y) (WahM60)
Ag ¹⁰⁹	·	% 48.65 (WhiJ48) Δ -88.717 (MTW) σ _c 89 (to Ag 110) 3 (to Ag 110m) (GoldmDT64)			
Ag ¹⁰⁹ m	39.2 s (BradH46, BradH47a) 40 s (WoliEJ51, WieM45, SchinU57)	Y IT (HelmhA4lb) △ -88.630 (LHP, MTW)	A chem, genet (HelmhA4lb) daughter Pd 109 (SegE41, SiegK49a, SeiJ51) daughter Cd 109 (HelmhA4lb), BradH46, HelmhA46, BradH45a)	Y Ag X-rays, 0.088 (5%) e 0.062, 0.084	daughter Cd 109 (HelmhA41b, BradH46, HelmhA46) daughter Pd 109 (SegE41, SiegK49a, SeiJ51)
Ag ¹¹⁰	24.4 s (MalmS62) 24.5 s (HirzC46) others (SehM57, BolF54, ThieP62, AmaE35, PoolM38, FlaA44, GaeE36, SerL47b, HirzC47a)	F (PoolM38) EC 0.3% (FrevL65) no β [†] , lim 10 ⁻³ % (BereD62b) β [†] ≈6 x 10 ⁻⁴ % (BadN62) Δ -87.47 (MTW)	A n-capt (AmaE35) sep isotopes, n-capt (FlaA44b) chem, genet (MiskJ50) daughter Ag ^{110m} (MiskJ50)	β ⁻ 2.87 max Y 0.658 (4.5%)	daughter Ag 110m (MiskJ50) Ag 109 (n, Y) (AmaE35, GaeE36, FlaA44, SerL47b, FrevL63)
Ag ¹¹⁰ m	255 d (EasH60) 253 d (GeiKW57, ThirH57) 249 d (NilR62) others (CaliJ59, SchinJ64, GumJ50, ColoJ64, CorkJ50h, LivJ38c, CorkJ48b)	γ β 98.7%, IT 1.3% (calc from SutT63, NewW64, GeiJ65 by LHP) Δ -87.35 (LHP, MTW) σ _C 80 (GoldmDT64)	A chem, n-capt (RedH38) resonance neutron activation (GoldhM46) chem, mass spect (BergI49) parent Ag 110 (MiskJ50)	β 1.5 max (0.6%), 0.53 max (31%), 0.087 max e 0.090, 0.113 y 0.658 (96%), 0.68 (16%, doublet), 0.706 (19%), 0.885 (71%), 0.937 (32%), 1.384 (21%), 1.505 (11%) daughter radiations from Ag 110	Ag 109(n, Y) (RedH38, LivJ38c, AlexK38, MitA38, SerL47b)
Ag ¹¹¹	7.5 d (JohaS50, KraJD37, PoolM38, StorA50) 7.6 d (SteinE51b) 7.3 d (DzaB57) others (KunD47, HirzO47a, DufR49, LindmM50a, GoeR49, DConP48, NisY40b, TurA51a, FinB51c)	β (KraJD37) Δ -88.20 (MTW)	A chem, excit (KraJD37) chem, excit, cross bomb (PoolM38) daughter Pd ¹¹¹ (KraJD37, SegE41, JohaS50) daughter Pd ^{111lm} (MGinC52, DzaB57)	β 1.05 max average β energy: 0.38 ion ch (BrabJ53) Y 0.247 (1%), 0.342 (6%)	Pd ¹¹⁰ (n, Y)Pd ¹¹¹ + Pd ^{111m} (β ⁻) (KraJD37) Pd ¹¹⁰ (d, n) (KraJD37, PoolM38, ZimK49)
Ag ^{111m}	74 s (SchinU57)	Y IT, no β ⁻ , lim 1% (SchinU57) Δ -88.13 (LHP, MTW)	B chem, genet (SchinU57) daughter Pd ¹¹¹ (SchinU57)	Y [Ag X-rays], 0.065 e [0.040, 0.062]	daughter Pd ¹¹¹ (SchinU57)
Ag ¹¹²	3.14 h (InoH62) 3.2 h (PoolM38, HirzO47a)	 β⁻ (PoolM38a) Δ -86.57 (MTW) 	A chem, excit, cross bomb (PoolM38) daughter Pd ¹¹² (NisY40b, NisY40, SegE41, SeiJ51)	β 3.94 max Y 0.617 (41%), 1.40 (5%), 1.63 (3%), 2.11 (3%), 2.55 (2%), many others between 0.3 and 3.3	daughter Pd 112 (Nis Y40b, Nis Y40, SegE41, SeiJ51) In 115(n, a) (PoolM 38) Cd 114(d, a) (InoH62)
Ag ¹¹³	5.3 h (AlexJ58, TurA47, DufR49, VasiI58)	φ β (TurA47) Δ -87.04 (MTW)	A chem (TurA47) chem, sep isotopes, excit (DufR49) daughter Pd 113 AlexJ58)	β ⁻ 2.0 max Y 0.12 († 10), 0.30 († 100), 0.58 († 5), 0.67 († 17), 0.88 († 4), 0.98 († 5), 1.18 († 4)	fission (TurA47, FolR51) Cd ¹¹⁴ (Y,p) (DufR49)
Ag ¹¹³	1.2 m (AlexJ58)	r β (AlexJ58)	B chem, genet (AlexJ58) daughter Pd ¹¹³ (AlexJ58)	β <2.0 max Y 0.14, 0.30, 0.39, 0.56, 0.70	fission (AlexJ58)
Ag ¹¹⁴	4.5 s (PouA60) 5s (AlexJ58)	Υ β ⁻ (AlexJ58) Δ -85.4 (MTW)	C chem, genet (AlexJ58) daughter Pd 114 (AlexJ58)	β-4.6 max Y 0.57	fission, daughter Pd ¹¹⁴ (AlexJ58) Cd ¹¹⁴ (n,p) (PouA60)
Ag ¹¹⁴	2 m (DufR49) 3 m (SeeW47)	☆ β (DufR49)	E chem (TurA47, SeeW47) chem, excit, sep isotopes (DufR49) not daughter Pd 114 (AlexJ58)	β hard β ard β	Cd ¹¹⁴ (n, p) (DufR49) fission (TurA47, See W47) not observed in Cd ¹¹⁴ (n, p) (AlexJ58)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≥M-A), MeV (C"=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
47 ^{Ag} 115	20.0 m (BahE64) 21.1 m (AlexJ58) others (DufR49, SeeW47, WahA52)	Υ β (TurA47) Δ -84.8 (MTW)	A chem (TurA47, SeeW47) chem, excit, sep isotopes (DufR49) parent Cd ¹¹⁵ (91%), parent Cd ^{115m} (9%) (WahA52) parent Cd ¹¹⁵ (92%), parent Cd ^{115m} (8%) (HicH55) daughter Pd ¹¹⁵ (AlexJ58)	β ⁻ 3.2 max Y 0.14 (12%, complex), 0.22 (49%, complex), 0.28 (13%), 0.36 (11%), 0.47 (10%), 0.64 (4%, complex), 1.48 (11%) 1.66 (8%), 1.89 (10%, complex) 2.12 (13%)	fission (TurA47, See W47, BahE64, AlexJ58) Cd ¹¹⁶ (Y,p) (DufR49)
Ag ¹¹⁵	≈20 s (AlexJ58)	Υ [β¯] (AlexJ58)	B chem, genet (AlexJ58) daughter Pd ¹¹⁵ , parent Cd ¹¹⁵ (AlexJ58)		fission (AlexJ58)
Ag ¹¹⁶	2.5 m (AlexJ58)	φ β (AlexJ58) Δ -83 (MTW)	D chem (AlexJ58)	β ⁻ 5.0 max γ 0.52, 0.70	fission (AlexJ58)
Ag ¹¹⁷	1.1 m (AlexJ58)	Υ [β¯] (AlexJ58)	B chem, genet (AlexJ58) parent Cd ¹¹⁷ and/or Cd ¹¹⁷ m (AlexJ58)		fission (AlexJ58)
48 ^{Cd¹⁰³}	10 m (PreiI60a)	Υ β [†] , [EC] (PreiI60a)	A chem, genet (PreiI60a) parent Ag ¹⁰³ (PreiI60a)	Y Ag X-rays, 0.22, 0.511 (Y*), 0.63, 0.85 daughter radiations from Ag 103	O ¹⁶ on Mo (PreiI60a)
Cd ¹⁰⁴	57 m (PreiI60a) 54 m (KurcB55) 59 m (JohnFA55)	Υ EC, no β [†] (JohnFA55) Δ -84 (MTW)	A chem, genet, excit (JohnFA55) parent Ag 104m (JohnFA55, PreiI60a)	Y Ag X-rays, 0.084 e 0.041, 0.058, 0.080 daughter radiations from Ag 104m Ag 104	Ag ¹⁰⁷ (p, 4n) (JohnFA55) O ¹⁶ on Mo (PreiI60a)
Cd ¹⁰⁵	55 m (JohnFA53) 57 m (GumJ50)	Υ EC, β [†] (GumJ50) Δ -84 (MTW)	chem, excit (JohnFA53)	 β⁺ 1.69 max e⁻ 0.282, 0.295, 0.321, 0.408, others Y [Ag X-rays, 0.308, 0.320, 0.347, 0.433, 0.511 (Y[±]), others to 2.3] daughter radiations from Ag 105 	Pd ¹⁰² (a, n) (GumJ50) Ag ¹⁰⁷ (p, 3n) (JohnFA53)
Cd 106		% 1.22 (Le1W48) Δ -87.128 (MTW) σ _c 1 (GoldmDT64)			
Cd ¹⁰⁷	6.49 h (LarN62) 6.7 h (DelL39, HelmhA41b) 6.4 h (ValleG39)	★ EC 99+%, β ⁺ 0.28% (LarN62) △ -86.99 (MTW)		β ⁺ 0.302 max Y Ag X-rays, 0.511 (0.56%, Y [±]), 0.796 (0.08%), 0.829 (0.21%) daughter radiations from Ag ¹⁰⁷ m	Cd ¹⁰⁶ (n, Y) (HelmhA46) Ag ¹⁰⁷ (d, 2n) (AlvL40a, KriR39, KriR40a, HelmhA41b) Ag ¹⁰⁷ (p, n) (DelL39, ValleG39)
Cd 108		% 0.88 (Le1W48) Δ -89.248 (MTW) σ _c 3 (GoldmDT64)			
Cd ¹⁰⁹	453 d (LeuH65) 470 d (GumJ50) others (MangS62, BradH46)	# EC (HelmhA41b) no β [†] (DreB51) Δ -88.55 (MolR65, MTW)	A chem (KriR40a) chem, n-capt, sep isotopes (HelmhA46) parent Ag 109m (HelmhA41b, BradH45a, HelmhA46, BradH46)	Y Ag X-rays, 0.088 (with Ag 10 9m), 0.062 (with Ag 10 9m), 0.084 (with Ag 10 9m)	Cd ¹⁰⁸ (n, Y) (HelmhA46, CorkJ50g) Ag ¹⁰⁹ (d, 2n) (KriR40a, HelmhA41b, GumJ50)
Cd 110		% 12.39 (LelW48) Δ =90.342 (MTW) σ _c 0.1 (to Cd ^{111m}) (Goldm DT 64)			
Cd ¹¹¹		% 12.75 (LelW48) \[\triangle -89.246 \text{ (MTW)} \]			
Cd ^{111m}	48.6 m (MGinC51) 48.7 m (WieM45)	T (FelJ41, WieM45) Δ -88.850 (LHP, MTW)	chem, sep isotopes, n-capt	Y Cd X-rays, 0.150 (30%), 0.247 (94%) e ⁻ 0.123, 0.146	Cd ¹¹⁰ (n, Y) (GoldhM48a, DodM38, HoleN48b) daughter In 111 (MGinC51a)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
48 ^{Cd¹¹²}		Δ 24.07 (LelW48) Δ -90.575 (MTW) σ _c 0.03 (to Cd ^{113m}) (GoldmDT64)			
<u>Cd</u> ¹¹³	t _{1/2} >1.3 x 10 ¹⁵ y sp act (WatD62a)	% 12.26 (Le1W48) Δ -89.041 (MTW) σ _c 20,000 (GoldmDT64)			
Cd ^{113m}	13.6 y (FlyK65a) 14 y (WahA59) 5 y (CarsW50)	β (CarsW50) IT weak (DMatE56) Δ -88.77 (LHP, MTW)	A chem, excit, sep isotopes (CarsW50)	β 0.58 max Y [Cd X-rays], 0.265 (≈0.1%)	Cd ¹¹² (n, Y)+Cd ¹¹³ (n, n') (Cars W50) fission (WahA52, WahA59)
<u>Cd¹¹⁴</u>		% 28.86 (LelW48) Δ -90.018 (MTW) σ _c 1.1 (to Cd ¹¹⁵) 0.14 (to Cd ¹¹⁵ m) (GoldmDT64)			
Cd ¹¹⁵	53.5 h (WyaE61) 53 h (WahA52, VasiI58) 54 h (CorkJ50g, BedaA64) others (LawJL40, MetR51a)	☆ β ⁻ (CorkJ37) Δ -88.09 (MTW)	A chem (CorkJ37) chem, genet (GoldhM38) chem, sep isotopes, n-capt (CorkJ50g) parent In 115m (GoldhM38, CorkJ39, NisY40, MetR51a, WahA52, LangeL52a) daughter 20 m Ag 115 (91%) (WahA52) daughter 20 m Ag 115 (92%) (HicH55) daughter ≈20 s Ag 115 (AlexJ58)	β 1.11 max Y In X-rays, 0.230 (0.6%), 0.262 (2%), 0.49 (10%), 0.53 (26%) daughter radiations from In 115m	Cd 114 (n, Y) (GoldhM38, MitA37, SerL47b)
Cd ^{115m}	43 d (SerL47, CorkJ50g) 44 d (GleL51g, WahA59)	★ β (CorkJ39) Δ -87.91 (LHP, MTW)	A chem, excit (SerL47) chem, sep isotopes, n-capt (CorkJ50g) daughter 20 m Ag 115 (WahA52) daughter 20 m Ag 115 (HicH55)	β 1.62 max Y 0.485 (0.31%), 0.935 (1.9%), 1.29 (0.9%)	Cd ¹¹⁴ (n, Y) (SerL47b, SerL47, CorkJ50g)
Cd ¹¹⁶	t _{1/2} (ββ) >10 ¹⁷ y sp act (WintR55)	 7.58 (LelW48) Δ -88.712 (MTW) σ_c (GoldmDT64) 0.7 (to Cd¹¹⁷m) (TanC66a, GoldmDT64) 			
Cd ¹¹⁷	2.4 h (TanC66) ≈3 h (SharmR64, MancR65) others (CoryC53, AteA52, LawJL40, MetR51b)	 β⁻ (SharmR64) Δ -86.41 (MTW) 	A chem, genet, n-capt (SharmR64, TanC66) parent In 117m (93%), parent In 117 (7%) (TanC66) not daughter Cd 117m (SharmR64) others (CorkJ39, GoldhM38, LawJL40, MetR51b, MGinC55)	β-2.23 max e-0.286 (with In 117m) Y In X-rays (with In 117m), 0.089 (7%), 0.273 (31%), 0.314 (16%, with In 117m), 0.345 (18%), 0.434 (11%), 0.832 (4%), 0.880 3%), 0.95 (4%, doublet), 1.052 (5%), 1.303 (19%), 1.577 (17%) daughter radiations from In 117m, In 117	Cd ¹¹⁶ (n, Y) (TanC66a) Cd ¹¹⁶ (d, p) (TanC66a)
Cd ^{117m}	3.4 h (TanC66) ≈3 h (SharmR64, MancR65) others (CoryC53, AteA52, LawJL40, MetR51b)	Υ β (SharmR64) Δ -86.27 (LHP, MTW)	A chem, genet, n-capt (SharmR64, TanC66) parent In 17 (56%), parent In 117m (44%) (TanC66) not parent Cd 117 (SharmR64) others (CorkJ39, GoldhM38, IawJL40, MetR51b, MGinC55)	β [1.91 max (weak)], 0.67 max e 0.286 (with In 117m) Y In X-rays (with In 117m), 0.273 (18%), 0.314 (8%, with In 117m) 0.345 (4%), 0.434 (4%), 0.565 (6%), 0.715 (4%), 0.880 (10%), 1.065 (9%), 1.117 (4%), 1.24 (11%, complex), 1.338 (8%), 1.408 (8%), 1.433 (10%), 1.562 (6%), 1.998 (15%), 2.319 (3%)	Cd ¹¹⁶ (n, Y) (TanC66a) Cd ¹¹⁶ (d, p) (TanC66a)
Cd ¹¹⁷	≈50 m (CoryC53)		G chem, genet (CoryC53) activity not observed (SharmR64, TanC66)		
-					

Isotope Z A	Hälf-life	Type of decay (♣♠); % abundance; Mass excess (△■M-A), MeV (C ¹² =0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
48 ^{Cd¹¹⁸}	49 m (GleC61)	φ β (CoryC53) Δ -87 (MTW)	B chem, excit (CoryC53) chem, genet (GleC61) parent 5.0 s In 118 (CoryC53, GleC61) not parent 4.4 m In 118 (CoryC53, GleC61)	daughter radiations from 5.0 s In 118	fission (CoryC53, GleC61)
Cd ¹¹⁹	2.7 m (GleC6la)	Υ β (GleC6la) Δ -84.1 (MTW)	B chem, genet (GleC6la) parent In 119, parent In 119m (GleC6la)	β 3.5 max daughter radiations from In 119m, In 119	fission (GleC6la)
Cd ¹¹⁹	10 m (NusN57, GleC61a)	γ β (NusN57, GleC6la) Δ -84.1 (MTW)	B chem, genet (NusN57, GleC61a) parent In 119m (NusN57, GleC61a)	β 3.5 max daughter radiations from In 119m, In 119	Sn ¹²² (d, ap) (NusN57) fission (GleC61a)
Cd ¹²¹	12.8 s (WeisH65)	☆ [p¯] (WeisH65)	B chem, genet (WeisH65) ancestor Sn ¹²¹ (WeisH65)		fission (WeisH65)
Cd (121?)	3.5 m (NueN57)	☆ [β¯] (NueN57)	G chem, excit (NusN57) parent 11.5 m In(121?) and 32 m In(121?) (NusN57) Daughter In isotopes are probably incorrectly assigned (NDS, YutH60)		deuterons on Sn (NusN57)
49 ^{In 106}	5.3 m (CatR62) others (CatR65)	φ β (CatR62), [EC] Δ -80.6 (MTW)	A chem, excit, sep isotopes (CatR62)	β ⁺ 4.9 max Y [Cd X-rays], 0.511 (Y [±]), 0.63, 1.65, 1.85, many others	Cd ¹⁰⁶ (p, n) (CatR62)
In ¹⁰⁷	33 m (MallE49) 31 m (BasuB63) 30 m (MaclK52)	 p[†], EC (BasuB63) Δ −83.5 (MTW) 	A chem, sep isotopes (MallE49) mass spect (MaclK52)	β ⁺ 2.2 max Y Cd X-rays, 0.22 (46%), 0.32, 0.511 (γ [±]), 0.73, 0.84, 0.94, 1.05, 1.25 daughter radiations from Cd ¹⁰⁷ , Ag ¹⁰⁷ m	Cd ¹⁰⁶ (d, n) (MallE49, CassW55a) Cd ¹⁰⁶ (p, Y) (MallE49, BasuB63)
In 108	57 m (KatoT63) 55 m (MeaS55, MallE49) others (KatoT62b, MGinC51)	Υ EC, β [†] (KatoT62b) Δ -84.14 (KatoT62b, MTW)	A chem, sep isotopes (MallE49) mass spect (MaclK52)	β ⁺ 1.29 max e ⁻ 0.123, 0.147, 0.216, 0.238, 0.260, 0.606, 0.845 Y Cd X-rays, 0.150, 0.175, 0.243, 0.511 (Y [±]), 0.633, 0.872	Ag ¹⁰⁷ (a, 3n) (KatoT62a, KatoT62b)
In 108	39 m (KatoT63) 40 m (MeaS55, KatoT62b)	 EC, β[†] (KatoT62b) Δ -84.10 (KatoT62b, MTW) 	B chem, excit (MeaS55) genet energy levels (KatoT62b) daughter Sn ¹⁰⁸ (MeaS55)	β ⁺ 3.50 max e ⁻ 0.606 Y Cd X-rays, 0.383, 0.511 (Y [±]), 0.633, 0.842	Ag ¹⁰⁷ (a, 3n) (Kato T 62a, Kato T 62b)
In 109	4.3 h (MallE49, No2M62) 4.2 h (MGinC51) 5.2 h (GhoS48) others (TenD47a)	± EC 94%, β ⁺ 6% (PetrM56a) Δ -86.53 (MTW, MolR65)	A chem, excit (TenD47a) chem, mass spect (GhoS48) chem, excit, sep isotopes (MalIE49) descendant Sn 109 (PetrM56a)	β ⁺ 0.79 max e ⁻ 0.033, 0.056, 0.178, 0.201 Y Cd X-rays, 0.205, 0.28 (complex), 0.35 (complex), 0.65 (complex), 0.91 (complex)	Ag ¹⁰⁷ (a, 2n) (NozM62, KatoT62a, TenD47a)
In 109m 1	1.3 m (AlexKF65) <2m (PetrM56a)	★ IT (PetrM56a) △ -85.87 (LHP, MTW)	C genet (PetrM56a) daughter Sn ¹⁰⁹ (PetrM56a)	Y 0.658 e ⁻ 0.630	daughter Sn 109 (PetrM 56a)
In ^{109m} 2	0.20 s (AlexKF65) 0.21 s (DemiA65) 0.22 s (PoeG63)	T (AlexKF65, DemiA65) Δ -84.42 (LHP, MTW)	C excit, cross bomb (AlexKF65, DemiA65, PoeG63)	Y 0.17 (12%), 0.21 (12%), 0.40 (20%), 0.68 (100%), 1.04 (20%) 1.43 (77%)	Ag ¹⁰⁷ (a, 2n) (AlexKF65, DemiA65) Rh ¹⁰³ (C ¹² , a2n) (AlexKF65)
In ¹¹⁰	66 m (KatoT62a, BarnS39a) 69 m (HamiJ63) 65 m (GhoS48)	φ β [†] 71%, EC 29% (NaiT64) Δ −86.41 (MTW)	A chem (BarnS39a) chem, excit, mass spect (GhoS48) daughter Sn 110 (MeaS55)	β [†] 2.25 max e ⁻ 0.631 Y Cd X-rays, 0.511 (142%, Y [±]), 0.658 (95%)	daughter Sn 110 (NaiT64) Ag 107 (a, n) (KatoT62a) Ag 109 (a, 3n) (FukS65)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C'=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities	Principal means of production
49 ^{In 110}	4.9 h (BleE51, KatoT62a) 5.0 h (MGinC51) others (GhoS48)	* EC, β [†] ? (weak) (KatoT62a) no IT, 1im 0.008% (HamiJ63)	chem (GhoS48) chem, genet energy levels (MGinC51a, BleE51) not daughter Sn 110 (MeaS55) (MGaS55) T Cd X-rays, 0.66 († 160, complex), 0.91 († 110, complex) 0.094, 0.558, 0.615, 0.631, 0	Ag ¹⁰⁹ (a, 3n) (FukS65, KatoT62a)
In ¹¹¹	2.81 d (MaiA57) 2.84 d (MGinC51) others (BarnS39a, CorkJ39)	EC (LawJL40) no β [†] , lim 0.06% (MGinC51) Δ -88.2 (MTW)	chem (CorkJ39) chem, excit (TenD47, GhoS48) mass spect (GhoS48) parent Cd 111m (0.01%) (MGinC51a)	Ag ¹⁰⁹ (a, 2n) (FukS65, LawJL40, TenD47, GhoS48, MGinC51)
In ¹¹²	14.4 m (FukS65) 12 m (RuaJ62a) 11 m (GirR59i) 15 m (BleE53)	β 44%, β 22%, EC 34% (calc) (RuaJ62a) others (BleE53) Δ -87.98 (MTW)	chem, cross bomb, excit (SmiRN42) chem, excit (TenD47) daughter In 112m (SmiRN42, TenD47, GoldsG50) β 0.66 max 1.56 max Cd X-rays, 0.511 (44%, Y [±]), 0.617 (6%)	Ag ¹⁰⁹ (a,n) (FukS65, SmiRN42, TenD47, RuaJ62a, KatoT62a)
In ^{112m}	20.7 m (BleE53) others (RuaJ62a, GirR59i, BarnS39a, TenD47)		chem (BarnS39a) chem, cross bomb, excit (SmiRN42) chem, excit (TenD47) parent In 112 (SmiRN42, TenD47, GoldsG50) Y In X-rays, 0.156 (9%) 0.128, 0.152 daughter radiations from In 11	Ag ¹⁰⁹ (u,n) (SmiRN42, TenD47, RuaJ62a, KatoT62a)
<u>In 113</u>		% 4.23 (WhiJ48) 4.33 (WhiF56) Δ -89.34 (MTW) σ _c 4 (to In 114) 8 (to In 114m) (GoldmDT64)		
In ^{113m}	99.8 m (GleG64) 104 m (LawJL40) 103 m (GirR58) others (Barn539a, CatR65)	 IT (BarnS39a) Δ -88.95 (LHP, MTW) 	chem, excit, genet (BarnS39a) daughter Sn 113 (BarnS39a) Y e 0.365, 0.389	daughter Sn ¹¹³ (GirR58, BarnS39a)
In 114	72 s (LawJL37, BarnS39a)	φ β 98%, EC 1.9%, β 0.004% (GrodL56) β 0.0039% (DzhB57c) Δ -88.58 (MTW)	excit (ChanW37, BotW37, LawJL37) n-capt, sep isotopes (GoldhM48a) daughter In 114m (GoldsG50)	daughter In 114m (GoldsG50) In 113 (n, Y) (GoldhM48a)
In 114m	50.0 d (WriH57) 50.1 d (CaliJ59) others (BendW58, BoeF49a, HoffK57, BarnS39a, MaiF49, LawJL40)	↑ IT 96.5%, EC 3.5% (GrodL56) △ -88.39 (LHP, MTW)	(LawJL37, MitA38) parent In 114 (GoldsG50) parent In 114 (GoldsG50) The X-rays, 0.192 (17%), 0.55 (3.5%), 0.724 (3.5%) Color of the X-rays (0.192 (17%), 0.55 (17%), 0.55 (17%), 0.724 (3.5%) Color of the X-rays (0.192 (17%), 0.55 (17%), 0.55 (17%), 0.724 (3.5%) Color of the X-rays (0.192 (17%), 0.55 (17%), 0.724 (17%), 0.55 (17%), 0.724 (17	MitA38, MaiF49)
<u>In 115</u>	6 x 10 ¹⁴ y sp act (MarteE50) 5.1 x 10 ¹⁴ y sp act (WatD62a) 7 x 10 ¹⁴ y sp act (BearG61a) others (CohS51)	φ β (MarteE50, CohS51) 95.77 (WhiJ48) 95.67 (WhiF56) Δ -89.54 (MTW) σ _c 45 (to In ¹¹⁶) 154 (to In ^{116m} 1) 4 (to In ^{116m} 2) (GoldmDT64)	chem, sep isotopes β 0.48 max (MarteE50) γ no γ	
In 115m	4.50 h (DunwJ47) 4.53 h (LawJL40) 4.48 h (SalS65)	T 95%, β 5% (Lange L52a) Δ -89.21 (LHP, MTW)	chem, excit (GoldhM38) daughter Cd ¹¹⁵ (GoldhM38, e ⁻ 0.308, 0.331 CorkJ39, NisY40, MetR5la, WahA52, LangeL52a) Y In X-rays, 0.335 (50%)	Cd ¹¹⁴ (n, Y) Cd ¹¹⁵ (β ⁻) (GoldhM38, SehM62) In ¹¹⁵ (n, n') (GoldhM38, CohS48) In ¹¹⁵ (p, p') (BarnS39a, BarnS39) In ¹¹⁵ (a, a') (LarK39)
In 116	13.4 s (DomF60) 14.0 s (DucA60) 14.5 s (CapP57) 15.6 s (BrzJ65) 13 s (AmaE35, CorkJ39, WilhZ53, LawJL37)	 ♣ β⁻ (LawJL37) △ -88.20 (MTW) 	n-capt (AmaE35) excit, n-capt (LawJL37) β 3.3 max γ 0.434 (0.12%), 0.95 (0.1%), 1.293 (1.2%)	In 115 (n, Y) (Ama E 35, Law JL 37, Ser L 47b)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), McV (G'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
49 ^{In 116} m1	54.0 m (LocE53, GravA47) 53.9 m (SilL51, DomF60) 55.1 m (CapP57) 57 m (BrzJ65)	f (LawJL37) no IT, lim 0.5% (ColaJ60) Δ -88.14 (LHP, MTW)	A chem, n-capt (AmaE35) chem, excit, n-capt (LawJL37)	β-1.00 max 9.138 (3%), 0.417 (36%), 0.819 (17%), 1.09 (53%), 1.293 (80%), 1.508 (11%), 2.111 (20%)	In 115 (n, Y) (Ama E35, MitA38a, SerL47b, Hum V51, BolH64)
In 116m2	2.16 s (AlexKF63) 2.2 s (HecP61) 2.5 s (AlexKF60, FetP62a) 2.3 s (WhiW62)	☆ IT (AlexKF60, FetP62a) Δ -87.98 (LHP, MTW)	A n-capt, sep isotopes (AlexKF60, HecP61, FetP62a) excit, sep isotopes, cross bomb (WhiW62)	Y In X-rays, 0.164 e 0.138, 0.160	In 115 (n, Y) (AlexKF60, HecP61, FetP62a, WhiW62, AlexKF63)
In ¹¹⁷	45 m (NeedJ63, BrzJ65) 38 m (DudN61) 43 m (WolfeJ61) others (MGinC55, CoryC53)	β (MGinC55) Δ -88.93 (MTW)	115	β 0.74 max e 0.132 Y Sn X-rays, 0.158 (87%), 0.565 (100%)	Cd ¹¹⁶ (n, γ) Cd ¹¹⁷ , 117m (β¯); daughter Cd ¹¹⁷ⁿ (TanC66a)
In 117m	1.93 h (DudN61, BrzJ65) 1.96 h (NeedJ63) 1.90 h (MGinC55, MetR51b) 1.95 h (LawJL40) others (WolfeJ61, CoryC53)	T 1T 47%, β 53% (TanC66b) IT 28%, β 72% (WolfeJ61) IT 22%, β 78% (MGinC55) Δ -88.61 (LHP, MTW)	A chem, excit (CorkJ39) daughter Cd ¹¹⁷ , daughter Cd ^{117m} (TanC66, MGinC55) parent In ¹¹⁷ (MGinC55)	β 1.78 max e 0.286 Y In X-rays, 0.158 (14%), 0.314 (31%) daughter radiations from In 117	Cd ¹¹⁶ (n, Y) Cd ¹¹⁷ , 117m (β ⁻) (TanC66a)
In 118	5.7 s (BrzJ65) 5.0 s (KantJ64a) 5.1 s (GleC61)	φ β (CoryC53) Δ -87.5 (MTW)	B genet (CoryC53) chem, genet energy levels (GleC61) excit, sep isotopes (KantJ64a) daughter Cd 118 (CoryC53, GleC61)	β 4.2 max Υ 1.230 (15%)	daughter Cd ¹¹⁸ (CoryC53, GleC61) Sn ¹¹⁸ (n,p) (KantJ64a)
In 118	4.35 m (KantJ64a) 4.5 m (WilhZ53, DufR49a) 4.7 m (MeyP65) 4.9 m (BrzJ65)	φ ρ (DufR49a) Δ -87.4 (KantJ64a, MTW)	B excit, sep isotopes (DufR49a) excit, sep isotopes, genet energy levels (KantJ64a) not daughter Cd 118 (CoryC53, GleC61)	β- 2.0 max Y 0.69 (41%), 1.05 (80%), 1.230 (97%), 2.04 (3%)	Sn ¹¹⁸ (n,p) (KantJ64a)
In 119	2.1 m (KuoC60) 2.0 m (GleC61a) 2.3 m (YutH60) 2.8 m (BrzJ65)	p − (KuoC60, YutH60, GleC61a) Δ −87.6 (MTW)	B sep isotopes, excit (KuoC60, YutH60) chem, genet (GleC61a) daughter In 119m (GleC61a) daughter 2.7 m Cd 119 (GleC61a)	β 1.6 max Y 0.82 (95%)	Sn ¹²⁰ (Y, p) (KuoC60, YutH60) daughter In 119m, fission (GleC61a)
In 119m	17.5 m (KuoC60) 18 m (DufR49a, GleC61a) 22.6 m (BrzJ65)	φ 95%, IT 5% (GleC6la) Δ -87.3 (LHP, MTW)	B chem, excit, sep isotopes (DufR49a) parent In 119 (GleC61a) daughter 10 m Cd 119 (NusN57, GleC61a) daughter 2.7 m Cd 119 (GleC61a)	β 2.7 max Y [In X-rays, Sn L X-rays], 0.024, 0.30, 0.91 (doublet) daughter radiations from In 119	Sn ¹²⁰ (Y,p) (DufR49b, KuoC60) fission (GleC61a)
In 120	3.2 s (KantJ64a) 3 s (PouA60)	φ ρ (KantJ64a) Δ -86 (KantJ64a, MTW)	B sep isotopes, cross bomb (PouA60)	β ⁻ 5.6 max γ 1.171 (15%)	Sn ¹²⁰ (n, p) (PouA60, KantJ64a) Sb ¹²³ (n, a) (PouA60)
In ¹²⁰	44 s (KantJ64a) 48 s (MeyP65) 50 s (PouA60) ≈55 s (MGinC58)	* β (PouA60) Δ -85.8 (KantJ64a, MTW)	B excit (MGinC58) sep isotopes, genet energy levels (PouA60)	β 3.1 max Y 0.090 (12%), 0.198 (9%), 0.71 (12%), 0.86 (34%), 0.94 (12%), 1.02 (61%), 1.171 (100%), 1.28 (14%), 1.47 (6%), 1.87 (7%), 2.01 (6%)	Sn ¹²⁰ (n, p) (MGinC58, PouA60, KantJ64a)
In ¹²¹	30 s (YutH60)	† [β¯] (YutH60) Δ -86 (MTW)	C excit, sep isotopes (YutH60)	Y 0.94	Sn ¹²² (Y,p) (YutH60)
In ¹²¹	3.1 m (YutH60, WeisH65a)	φ β (YutH60) Δ -86 (MTW)	C excit, sep isotopes (YutH60)	β 3.7 max	Sn ¹²² (Y,p) (YutH60)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
49 ^{In (121?)}	11.5 m (NusN57)	★ ρ (NusN57)	G chem, genet (NusN57) daughter 3.5 m Cd (121?) (NusN57) Assignment probably incorrect (NDS, YutH60)	Υ 0.85	deuterons on Sn (NusN57)
In (121?)	32 m (NusN57)	Φ β (NusN57)	G chem, genet (NusN57) daughter 3.5 m Cd (121?) (NusN57) Assignment probably incorrect (NDS, YutH60)	Y 0.52	deuterons on Sn (NusN57)
In 122	8 s (KantJ63a)	 β (KantJ63a) Δ -83 (MTW) 	B sep isotopes, genet energy levels (KantJ63a)	β 5 max Y 0.99, 1.14	Sn ¹²² (n, p) (KantJ63a)
In ¹²³	36 s (YutH60)	φ β (YutH60) Δ -83 (MTW)	E excit, sep isotopes (YutH60)	β 4.6 max	Sn ¹²⁴ (Y,p) (YutH60)
In ¹²³	10 s (YutH60)	Υ [β ⁻] (YutH60) Δ -83 (MTW)	F excit, sep isotopes (YutH60) May be identical to 8 s In 122 (LHP)	Υ 1.1	Sn 124 (Y, p) (YutH60)
In 124	≈3.6 s (KarrM64)	Υ ρ (KarrM64) Δ -81 (MTW)	B sep isotopes, genet energy levels (KarrM64)	β- 5 max γ 0.99 († 3), 1.13 († 10), 3.21 († 3)	Sn 124 (n,p) (KarrM 64)
50 ^{Sn108}	9.2 m (HahR65) 9 m genet (MeaS55)	★ [EC] (MeaS55)	A genet (MeaS55) chem, excit (HahR65) parent 39 m In ¹⁰⁸ (MeaS55)	Y In X-rays, 0.28, 0.42 daughter radiations from 39 m In 108	Cd ¹⁰⁶ (a, 2n) (HahR65)
Sn ¹⁰⁹	18.1 m (PetrM 56a)	Υ EC, β [†] (PetrM56a)	100	 β⁺ 1.6 max e⁻ 0.305, 0.491, 0.86, 1.09 Y In X-rays, 0.335, 0.521, 0.89, 1.12 daughter radiations from In 109m1, In 109 	Cd ¹⁰⁶ (a, n) (PetrM 56a
Sn ¹¹⁰	4.0 h (MeaS55, MGinC51) 4.5 h (MallE49)	★ EC (MallE49)	A chem, sep isotopes (MallE49) chem, genet (MeaS55, NaiT64) parent 67 m In 110, not parent 4.9 h In 110 (MeaS55, NaiT64)	Y In X-rays, 0.283 (95%) e 0.255 daughter radiations from 67 m In 110	In 115 (p, 6n) (NaiT64) Cd 108 (a, 2n) (MeaS55, MallE49)
Sn ¹¹¹	35.0 m (HinR49) 35 m (MGinC51, SnyJ65)	EC 73%, β ⁺ 27% (SnyJ65) EC 71%, β ⁺ 29% (MGinC51) Δ -85.6 (MTW)	A chem, sep isotopes (HinR49) excit, cross bomb (SnyJ65)	β ⁺ 1.51 max Y In X-rays, 0.511 (54%, Y [±]), 0.75 (1.1%), 0.97 (0.7%), 1.14 (1.8%), 1.54 (0.5%), 1.59 (0.6%) (0.9%), 1.89 (1.0%), 2.11	Cd ¹¹⁰ (a, 3n) (MGinC5)
<u>Sn</u> 112		% 0.95 (BaiK50) Δ -88.64 (MTW) σ _c 0.9 (to Sn 113) 0.4 (to Sn 113m) (GoldmDT64)		(0.3%), 2.32 (0.2%) daughter radiations from In 111	
Sn ¹¹³	115 d (GleG64) 118 d (CorkJ51f) 119 d (AviP56) 130 d (GardG56) others (DesY53, BarnS39a)	 EC, no β⁺ (BarnS39a) Δ −88.32 (MTW) 	A chem, excit (BarnS39a, LivJ39b) parent In ^{113m} (BarnS39a)	Y In X-rays, 0.255 (1.8%) daughter radiations from In 113m	Sn ¹¹² (n, y) (NelC50, CorkJ51f, SerL47b, BoweJ51) In ¹¹³ (p, n) (BarnS39a) In ¹¹³ (d, 2n) (ColeK47, GirR58)
Sn ^{113m}	20 m (SchmM61) 27 m (Sell60)	1T 91%, EC 9%, no β ⁺ , lim 10 ⁻³ % (SchmM61) Δ -88.24 (LHP, MTW)	A chem, genet (SelI60) crit abs (SchmM61) daughter Sb ¹¹³ (SelI60)	Y Sn X-rays, In X-rays, 0.079 (0.6%) e 0.050, 0.075	Sn ¹¹² (n, y) (SchmM61) Sn ¹¹² (d, n) Sh ¹¹³ (EC), Sn ¹¹⁴ (p, 2n) Sh ¹¹³ (EC) (Sel160, Sel159)
<u>5n¹¹⁴</u>		% 0.65 (BaiK50) Δ -90.57 (MTW)			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C''=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
50 ^{Sn} 115		% 0.34 (BaiK50) Δ -90.03 (MTW)			
<u>Sn</u> 116		% 14.24 (BaiK50) Δ -91.523 (MTW) σ _c 0.006 (to Sn 117m) (GoldmDT64)			
<u>Sn</u> 117		% 7.57 (BaiK50) Δ -90.392 (MTW)			
Sn ^{117m}	14.0 d (CorkJ51f, MihJ50)	Υ IT (MallE50) Δ -90.075 (LHP, MTW)	A chem (LivJ3%) chem, sep isotopes, cross bomb (MallE50) not daughter In ¹¹⁷ (MGinC55)	Y Sn X-rays, 0.158 (87%) e 0.130, 0.155	Sn ¹¹⁶ (n, Y) (MihJ50) Cd ¹¹⁴ (a, n) (LivJ39b)
<u>Sn</u> 118		 24.01 (BaiK50) -91.652 (MTW) 0.01 (to Sn 119m) (GoldmDT64) 			
<u>Sn</u> 119		% 8.58 (BaiK50) Δ -90.062 (MTW)			
Sn ^{119m}	≈250 d (MihJ50)	★ IT (MihJ50) △ -89.973 (LHP, MTW)	A chem, n-capt, sep isotopes (MihJ50)	Y Sn X-rays, 0.024 (16%) e 0.020, 0.026, 0.061	Sn ¹¹⁸ (n, Y) (MihJ50, NelC50, SchaG51a, BoweJ51)
<u>Sn</u> 120		% 32.97 (BaiK50) Δ -91.100 (MTW) σ _C 0.14 (to Sn ¹²¹) ≈0.001 (to Sn ^{121m}) (GoldmDT64)			
Sn ¹²¹	27.5 h (NelC50) 27 h (MajN63) others (LeeJ49, LivJ39b)		A chem, excit (LivJ39b) chem, sep isotopes (LindnM48) descendant 13 s Cd ¹²¹ (WeisH65)	β 0.383 max	Sn ¹²⁰ (n, Y) (LeeJ49, DufR49c, NelC50, LivJ39b, SerL47b) Sb ¹²³ (d, a) (LindnM50a)
Sn ^{121m}	76 y (FlyK65a) ≈25 y (DroB62)	p β (NelC50) Δ -89.14 (LHP, MTW)	D sep isotopes, n-capt (NelC50) chem (DroB62)	β 0.42 max e [0.007, 0.033] Y Sb X-rays, 0.037	Sn ¹²⁰ (n, Y) (NelC50, SnyR65) fission (DroB62)
<u>Sn</u> ¹²²		 % 4.71 (BaiK50) Δ -89.943 (MTW) σ_c 0.001 (to Sn ¹²³) 0.2 (to Sn ¹²³m) (GoldmDT64) 			
Sn ¹²³	125 d (CorkJ51f) 130 d (LeeJ49, LeadG51) 126 d (NelC50) 136 d (GrumW46)	β (LeadG51) Δ -87.80 (MTW)	A chem (LeadG46, LeadG51) chem, sep isotopes, cross bomb (LeeJ49)	β 1.42 max Y 1.08 ? (weak)	Sn ¹²² (n, Y) (LeeJ49, NelC50)
Sn ^{123m}	39.5 m (DufR49c) 40 m (LivJ39b, LeeJ49, NelC50, MajN63) 41.5 m (MocD48)		A chem (LivJ39b) chem, sep isotopes, excit (LeeJ49, NelC50)	β 1.26 max e [0.130] Y Sb X-rays, 0.160 [84%]	Sn ¹²² (n, Y) (SerL47b, DufR49c, LeeJ49, NelC50) Sn ¹²⁴ (n, 2n) (PoolM37, LeeJ49)
<u>Sn¹²⁴</u>	t _{1/2} (ββ) >2 x 10 ¹⁷ y sp act (KalkM52, FireE52, HogB52)	% 5.98 (BaiK50) Δ -88.237 (MTW) σ _C 0.004 (to Sn ¹²⁵) 0.1 (to Sn ^{125m}) (GoldmDT 64)			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△sM-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
50 ^{Sn} 125	9.4 d (NelC50) 10.0 d (LeeJ49)	p (LivJ39b) Δ -85.93 (MTW)	chem, excit, sep isotopes (Lee149) chem, sep isotopes, n-capt, genet (NelC50) parent Sb ¹²⁵ (NelC50)	.34 max .342 (0.3%), 0.468 (0.4%), 0.811 (1.5%), 0.904 (1.4%), 1.068 (4%), 1.17 (0.14%), 1.41 (0.14%), 1.97 (0.6%), 2.23 (0.05%) aughter radiations from Sb ¹²⁵	Sn ¹²⁴ (n, Y) (LeeJ49, NelC50, LivJ39b, SerL47b)
Sn 125m	9.5 m (Ne1C50) 9.8 m (LeeJ49) 9.7 m (MajN63)	β (LivJ39b) Δ -85.91 (LHP, MTW)	/T:T2 0h-)	.04 max .325 (97%)	Sn ¹²⁴ (n, Y) (LeeJ49, NelC50, DufR50a, LivJ39b, SerL47b)
Sn ¹²⁶	≈10 ⁵ y yield (DroB62)	Υ [β¯] (DroB62) Δ -86 (MTW)	B chem, genet (DroB62) parent 19 m Sb 126, ancestor 12.5 d Sb 126 (DroB62)	.060, 0.067, 0.092	fission (DroB62)
Sn ¹²⁶	~50 m yield (BarnJ51)	Φ β (BarnJ51)	G chem, genet (BarnJ51) reassigned to Sn 128 (DroB62)	,	fission (BarnJ51)
Sn ¹²⁷	2.05 h (CarmH56) 2.10 h (UhlJ62) 2.2 h (DroB62, HageE62) others (DMarP62, MajN63)	‡ ρ (BarnJ51) Δ -84 (MTW)	CarmH56, DroB62, HageE62)	.45 max ? .44, 0.49, 0.82, 1.10, 2.00, 2.32, 2.58, 2.68, 2.82 aughter radiations from Sb ¹²⁷	fission (BarnJ51, DroB62, HageE62, UhJJ62) Te ¹³⁰ (n, a) (CarmH56, MajN63)
Sn ¹²⁷	4.1 m (KauP65) 4.6 m genet (HageE62) =2.5 m genet (DroB62)	φ β (KauP65) Δ -83.5 (KauP65, MTW)	DD(3)	.7 max .49 (100%)	fission (HageE62, DroB62) Te ¹³⁰ (n, a) (KauP65)
Sn ¹²⁸	59 m (UhlJ62) 57 m (Frant55, HageE62) 62 m (DMarP62) 58 m (DroB62)	Φ ρ̄ (DMarP62) Δ -83.4 (MTW)	Hage E62, DroB62) chem, mass spect (UhlJ62) Y Sb parent 11 m Sb 128 (Fran155, da	.80 max b X-rays, 0.044 (7%), 0.072 (19%), 0.50 (61%), 0.57 (22%) aughter radiations from 11 m Sb ¹²⁸	fission (FranI55, DroB62, HageE62, DMarP62, UhIJ62)
Sn ¹²⁹	9 m genet (HageE62) 6 m (DroB62)	★ [β ⁻] (HageE62, DroB62)	B chem (DroB62) Y 1. chem, genet (HageE62) da parent Sb ¹²⁹ (HageE62)	.15, others aughter radiations from Sb ¹²⁹	fission (HageE62, DroB62)
Sn ¹²⁹	1.0 h genet (HageE62)	☆ [β ⁻] (HageE62)	B chem, genet (HageE62) da parent Sb ¹²⁹ (HageE62)	aughter radiations from Sb ¹²⁹	fission (HageE62)
Sn ¹³⁰	2.6 m (PapA56)	★ [β¯] (PapA56)		aughter radiations from 7.1 m Sb 130	fission (PapA56, FranI55, DroB62)
Sn ¹³¹	3.4 m (PapA56) <2 m (DroB62)	★ [β¯] (PapA56)	E chem, genet (PapA56) activity not observed (DroB62) parent Sb ¹³¹ (PapA56)		fission (PapA56)
Sn ¹³²	2.2 m genet (PapA56)	☆ [β¯] (PapA56)	B chem, genet (PapA56) parent Sb ¹³² (PapA56)		fission (PapA56)
51 ^{Sb¹¹²}	0.9 m (SelI59)	★ ρ ⁺ , EC (SelI59)	B chem, excit (SelI59) γ Sn	n X-rays, 0.511 (Y [±]), 1.27	Sn 112 (p, n) (SelI59)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass exc (△sM-A), MeV (C''= Thermal neutron cross section (σ), barr	cess 0);		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
51 ^{Sb} 113	6.4 m (PatA62) 7 m (SelI58, SelI59)	¥ EC, β [†] (Sel158, Sel1 Sel160) Δ -83.85 (MTW)	59,	A	chem (RhoA57) chem, excit, sep isotopes cross bomb (SelI60, SelI59, SelI58) excit, sep isotopes (PatA62) parent Sn 113m (SelI60)	β ⁺ Υ	2.42 max Sn X-rays, 0.32, 0.511 (Y [±]), 0.6-0.9 (complex), 1.03, 1.2 (complex), 1.52? daughter radiations from Sn ¹¹³ m	Sn ¹¹² (d,n) (SelI58, SelI60, RhoA57) Sn ¹¹⁴ (p,2n) (SelI59)
Sb ¹¹⁴	3.3 m (SelI59)	φ ⁺ , EC (Sel159) Δ -84.3 (MTW)		в	chem, excit, sep isotopes (Sell59)	1. :	2.7 max Sn X-rays, 0.9, 1.30	Sn ¹¹⁴ (p,n), Sn ¹¹⁵ (p,2n) (SelI59)
Sb ¹¹⁵	31 m (Sell58, Sell59) 36 m (FinR61) 32 m (SehM62)			A	chem (RhoA57) chem, sep isotopes, excit, cross bomb (SeII58, SeII59, SeII61) chem, mass spect (FinR61) daughter Te ¹¹⁵ (SeII60a, ReisR65)	le i	1.51 max Sn X-rays, 0.499 (100%), 0.511 (67%, Y [±]), 0.98 (5%), 1.24 (5%), 2.22 (1%)	Sn ¹¹⁴ (d,n) (SelI58, SelI61) Sn ¹¹⁶ (p,2n) (SelI59) In ¹¹³ (a,2n) (SehM62)
Sb ¹¹⁶	16 m (StahP53a) 14 m (AteA54) 15 m (KuzM58)	Υ EC 72%, β [†] 28% (Find Δ −87.0 (MTW)	nR61)	A	chem, excit (StahP53a) genet (FinR61) daughter Te ¹¹⁶ (FinR61)	1.	2.3 max Sn X-rays, 0.511 (Y [±] , 56%), 0.93 (26%), 1.293 (85%), 2.23 (14%)	daughter Te 116 (FinR61) In 115 (a, 3n) (AteA54)
Sb ^{116m}	60 m (TemG49, AteA54)	Υ EC 81%, β [†] 19% (BolH64a) Δ -86.5 (LHP, MTW)			chem, excit, mass spect (TemG49) not daughter Te ¹¹⁶ (FinR61)	e ⁻	1.16 max 0.070, 0.095, 0.111 Sn X-rays, 0.099 (30%), 0.140 (30%), 0.406 (36%), 0.511 (38%, Y [±]), 0.545 (68%), 0.96 (75%), 1.06 (27%), 1.293 (100%)	In 115 (a, 3n) (Tem G49) In 113 (a, n) (Jens B60)
sb ¹¹⁷	2.8 h (FinR61, ColeK47, TemG49, KuzM58)	Υ EC 97.4%, β ⁺ 2.6% (MGinC55) EC 97.7%, β ⁺ 2.3% (BaskK64) Δ =88.57 (MTW)		A	chem (LivJ39) chem, excit, mass spect (TemG49) daughter Te ¹¹⁷ (FinR61)	1"	0.57 max Sn X-rays, 0.158 (87%), 0.511 (5%, Y [±])	In ¹¹⁵ (a, 2n) (TemG49)
Sb ¹¹⁷ m	1.6 x 10 ⁻⁴ s delay coinc (GhoA63)	*			crit abs (GhoA63) same as 0.726 level of Sn ¹¹⁵ ?	٧	0.080 († 10), 0.17 († 8), 0.24 († 9), 0.46 († 24) scint spect (GhoA63)	protons on Sb (GhoA63) not produced by protons on Sn (GritV65a)
sb ¹¹⁸	3.5 m (LindnM48, FinR61) 3.6 m (RisJ40)	¥ EC, β ⁺ (FinR61) Δ -87.96 (MTW)		A	excit (RisJ40) chem (LarK39) genet (FinR61, LindnM48) daughter Te ¹¹⁸ (LindnM48, LindnM50a, FinR61)	1	2.67 max Sn X-rays, 0.511 (150%, Y [±]), 0.83 (0.4%), 1.230 (3%, doublet)	daughter Te ¹¹⁸ (LindnM48a, FinR61) In ¹¹⁵ (a,n) (LarK39, RisJ40)
Sb ^{118m} 1	5.1 h (ColeK47, TemG49)	Y EC 994%, β [†] 0.16% (BolH61) no β [†] , lim 0.1% (JensB60) Δ -87.77 (LHP, MTW)		A	chem, cross bomb (ColeK47) chem, excit, mass spect (TemG49) not daughter Te ¹¹⁸ (FinR61)		Sn X-rays, 0.041 (29%), 0.254 (93%), 1.049 (100%), 1.230 (100%) 0.012, 0.036, 0.223	In 115 (a, n) (ColeK47, TemG49, BolH61, RamasM61a, BodE62a)
Sb ^{118m} 2	0.87 s (WhiW62)	☆ [IT] (WhiW62)		E	excit (WhiW62)	٧	0.14 († 4), 0.30 († 10), 0.38 († 10)	protons on Sb (WhiW62)
Sb ¹¹⁹	38.0 h (OlsJ57) others (ZaitN60a, ColeK47, LindnM48)	¥ EC (ColeK47) Δ -89.48 (MTW)		A	chem, cross bomb (ColeK47) chem, genet energy levels (OlsJ57) daughter Te ^{119m} (LindnM48, LindnM50a, FinR61) daughter Te ¹¹⁹ (FinR61)		Sn X-rays, 0.024 (16%) 0.020	Sb ¹²¹ (p, 3n) Te ¹¹⁹ (EC) (FinR61) Sn ¹¹⁹ (p, n), Sn ¹¹⁸ (d, n) (ColeK47)
Sb ¹²⁰	15.89 m (EbrT65) 16.4 m (JohnH50) 16.6 m (PerlmM48, StahP53a) 17 m (HeyF37, LivJ38c)	p ⁺ , EC (BlasJ50) Δ -88.42 (MTW)		A	chem, excit (BotW39, HeyF37, ChanW37) chem, excit, cross bomb (LivJ37)	β ⁺ Y	1.70 max Sn X-rays, 0.511 (87%, Y [±]), 1.171 (1.3%)	Sn ¹²⁰ (p,n) (BlasJ50) Sn ¹²⁰ (d, 2n) (LindnM48) Sn ¹¹⁹ (d,n) (LivJ39)
SP ₁₅₀	5.8 d (MGinC55a) 6.0 d (LindnM48)	₩ EC (LindnM48) no β [†] or IT, lim 0.3' (MGinC55a)	- 1	A	chem, sep isotopes (LindnM48) chem, cross bomb (MGinC55a) chem, mass spect (JensB60)		Sn X-rays, 0.090 (81%), 0.200 (88%), 1.03 (99%), 1.171 (100%) 0.061, 0.096, 0.171, 0.196	Sn ¹¹⁹ (d,n) (JensB60) Sn ¹²⁰ (d,2n) (LindnM48)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
51 ^{Sb¹²¹}		% 57.25 (WhiJ48) Δ -89.593 (MTW) σ _c 6 (to Sb ¹²²) 0.06 (to Sb ¹²² m) (GoldmDT64)			
Sb ¹²²	2.80 d (BlasJ51a) 2.75 d (CorkJ54) 2.73 d (PerlmM58)	p 97%, EC 3.0%, p [†] 0.006% (GlauM55, PerlmM58) ρ 97%, EC 3.1% (FarrB55) Δ -88.32 (MTW)	A chem (AmaE35) chem, cross bomb (LivJ39)	β 1.97 max β 0.56 max Υ Sn X-rays, 0.564 (66%), 0.686 (3.4%), 1.140 (0.7%), 1.26 (0.7%)	Sb ¹²¹ (n, Y) (AmaE35, LivJ39, SerL47b, HumV51)
Sb ^{122m}	4.2 m (DMatE63, EngeR62) others (DMatE47, VanJ62)	T (DMatE47) no β ⁺ , no β ⁻ , lim 0.5% (DMatE62) Δ -88.16 (LHP, MTW)	A chem, n-capt, sep isotopes (DMatE47)	Y Sb X-rays, 0.061 (50%), 0.075 (17%) e- 0.021, 0.030, 0.045, 0.056, 0.071	Sb ¹²¹ (n, Y) (DMatE51)
<u>sb¹²³</u>	t _{1/2} >1.3 x 10 ¹⁶ y sp act (WatD62a)	$ \begin{cases} \% & 42.75 \text{ (WhiJ48)} \\ \Delta & -89.224 \text{ (MTW)} \\ \sigma_{\text{c}} & 3.3 \text{ (to Sb}^{124}\text{)} \\ 0.03 \text{ (to Sb}^{124m}\text{1)} \\ 0.015 \text{ (to Sb}^{124m}\text{2)} \\ \text{(GoldmDT64)} \end{cases} $			
Sb ¹²⁴	60.4 d (MackR57a) 60.9 d (WriH57) 60.1 d (CaliJ59) 59.9 d (JohnCH58) others (BrzJ65)	φ ρ (LivJ39) no EC, no β [†] (LangeL50c) Δ -87.58 (MTW) σ _c 2000 (GoldmDT64)	A chem (LivJ37) chem, excit, cross bomb (LivJ39)	β- 2.31 max γ 0.603 (97%), 0.644 (7%), 0.72 (14%, doublet), 0.967 (2.4%), 1.048 (2.4%), 1.31 (3%, doublet), 1.37 (5%, doublet), 1.45 (2%), 1.692 (50%), 2.088 (7%)	Sb ¹²³ (n, Y) (LivJ39, SerL47b)
Sb ^{124m} 1	93 s (VanJ62a) 96 s (BrzJ63, BrzJ65) =78 s (DMatE47)	 TIT 80%, β 20% (VanJ62a) Δ -87.57 (LHP, MTW) 	A chem, n-capt, sep isotopes (DMatE47) genet energy levels (VanJ62a) daughter Sb ^{124m2} (VanJ62a)	β-1.19 max e-0.006, 0.009 Y Sb L X-rays, 0.505 (20%), 0.603 (20%), 0.644 (20%)	Sb ¹²³ (n, Y) (VanJ62a, DMatE47)
Sb ^{124m} 2	21 m (VanJ62a, DMatE47, BrzJ65)	☆ IT (VanJ62a) △ -87.55 (LHP, MTW)	A chem, n-capt, sep isotopes (DMatE47) genet (VanJ62a) parent Sb ^{124m} 1 (VanJ62a)	e ⁻ 0.021, 0.024 Y Sb L X-rays daughter radiations from Sb ^{124m} 1	Sb ¹²³ (n,p) (VanJ62a, DM at E57)
sb ¹²⁵	2.71 y (FlyK65a) 2.78 y (WyaE61) 2.6 y (KlehE60) 2.0 y (LazN56a) others (LeadG51a)	φ β (CamG51) Δ -88.28 (MTW) σ _c <20 (GoldmDT64)	A chem (LivJ39) chem, n-capt (StanlC51) daughter Sn 125 parent Te 125m (FrieG48, KerB49)	β- 0.61 max e- 0.004, 0.030, 0.144, 0.395 Y Te X-rays, 0.176 (6%), 0.427 (31%), 0.463 (10%), 0.599 (24%, doublet), 0.634 (11%), 0.66 (3%, doublet) daughter radiations from Te ^{125m}	Sn ¹²⁴ (n, γ) Sn ¹²⁵ (β ⁻) (SiegK49, FrieG48, StanlC51)
Sb ¹²⁶	12.5 d (DroB62) others (GrumW46, BarnJ51)	♀ β (DroB62) Δ -86.3 (MTW)	B chem, genet (DroB62) descendant Sn 126 (DroB62)	β-1.9 max Y 0.41, 0.69 (complex, 3 Y rays)	fission, descendant Sn ¹²⁶ (DroB62)
Sb ¹²⁶	19.0 m (DroB62) 19 m (FranI56a, FranI58)	* β (Fran156a) β , [IT] (DroB62)	B chem (Fran156a) chem, sep isotopes (Fran158) chem, genet (DroB62) daughter Sn ¹²⁶ (DroB62)	β-1.9 max Y 0.41, 0.67 (complex, 2 Y rays)	Te ¹²⁶ (n,p) (FranI56a, FranI58) fission, daughter Sn ¹²⁶ (DroB62)
sь ¹²⁶	9 h (BarnJ51)	Υ β (BarnJ51)	G chem, excit (BarnJ51) reassigned to Sb 128 (DroB62)		fission (BarnJ51)
Sb ¹²⁷	93 h (DroB62, SeiJ51b) 94 h (UhlJ62) 88 h (BosH57) 95 h (GrumW46) others (AbeP39)	φ (AbeP39) Δ -86.70 (MTW)	A chem, genet (AbeP39) chem, mass spect (UhlJ62) parent Te ¹²⁷ (AbeP39, GleL51h) parent Te ¹²⁷ (84%), parent Te ^{127m} (16%) (BeydJ48) daughter 2.1 h Sn ¹²⁷ (BarnJ51, CarmH56, DroB62, HageE62) daughter 4 m Sn ¹²⁷ (HageE62, DroB62)	β 1.5 max Y 0.060, 0.25, 0.41, 0.46, 0.68, 0.77, 0.92, 1.10, 1.34 daughter radiations from Te ¹²⁷ , Te ^{127m}	fission, daughter Sn 127 (AbeP39, SleN51b, GrumW46, BarnJ51, DroB62, UhlJ62, KatcS48)

Isotope Z A	Half-life		Type of decay (♣♠); % abundance; Mass excess (△=M-A), MeV (C¹²=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
51 ^{Sb?}	6.2 d (BosH57)	*	(BosH57)	G	chem (BosH57) activity is probably a mixture of Sb ¹²⁶ (12.5 d) and Sb ¹²⁷ (LHP)			fission (BosH57)
sb ¹²⁸	10.8 m (DMarP62) 10.1 m (DroB62) 10.3 m (FranI56, BrzJ63) 10.7 m (Hage E62) others (UhlJ62, BarnJ51, BrzJ65)		β ⁻ (FranI55) -84.7 (MTW)	A	chem (FranI56) chem, sep isotopes, genet energy levels (HageE62) chem, mass spect (UhIJ62) daughter Sn ¹²⁸ (FranI55, DroB62, HageE62, UhIJ62, DMarP62)		2.6 max 0.320 (83%), 0.75 (200%, doublet), 1.07 (4%)	fission, daughter Sn 128 (Fran155, DroB62, HageE62, UhlJ62, DMarP62) Te 128(n, p) (HageE62, BrzJ63)
Sb ¹²⁸	8.6 h (UhlJ62) 8.9 h (DroB62) 9.6 h (Fran156, BrzJ65) 9.9 h (HageE62)	*	β (FranI56)	A	chem (FranI56) chem, sep isotopes, genet energy levels (HageE62) chem, mass spect (UhIJ62) descendant Sn ¹²⁸ (FranI56, DroB62) not descendant Sn ¹²⁸ (HageE62)	β - Y	1 max 0.314, 0.53, 0.64, 0.75 (complex)	fission (FranI55, UhlJ62) Te 128(n,p) (HageE62)
sb ¹²⁹	4.3 h (UhlJ62) 4.2 h (DroB62, AbeP39, VasiI58)		ρ ⁻ (AbeP39) -85 (MTW)	A	chem, genet (AbeP39) chem, mass spect (UhlJ62) parent Te ¹²⁹ (AbeP39) daughter 9 m Sn ¹²⁹ , daughter 1.0 h Sn ¹²⁹ (HageE62)	Y	1.87 max 0.073, 0.34, 0.460, 0.540, 0.81, 0.91, 1.04, 1.24 daughter radiations from Te ¹²⁹	fission (AbeP39, KatcS48, DroB62, HageE62, UhlJ62)
Sb ¹³⁰	33 m (HageE62) 36 m (BrzJ63, BrzJ65) 37 m (DrcB62) others (BarnJ62)	ı	β (BarnJ52) -82 (MTW)	A	chem, excit (fission yield) (BarnJ52) chem, sep isotopes (HageE62, BrzJ63) chem, genet energy levels (DroB62) not daughter Sn 130, lim 10% (DroB62)	Y	0.19, 0.33, 0.82 (complex), 0.94	Te 130(n,p) (HageE62, BrzJ63) fission (BarnJ52, DroB62)
Sb ¹³⁰	7.1 m (HageE62) 6 m (DroB62) 10 m (BarnJ52) 12 m (BrzJ65)	١.	β ⁻ (BarnJ52) -82 (MTW)	A	chem (PapA56, BarnJ52) chem, sep isotopes (HageE62, BrzJ63) chem, genet energy levels (DroB62) daughter Sn 130 (PapA56, DroB62)		0.20, 0.82 (complex), 1.03, 1.16	Te ¹³⁰ (n, p) (HageE62, BrzJ63) fission (BarnJ52, DroB62) daughter Sn ¹³⁰ (PapA56, DroB62)
Sb ¹³¹	26 m (CoopJ64, UhlJ62, DMarP62) 23 m (PapA51) others (CookG51)	*	β (PapA51)	A	chem, genet (PapA51, CookG51) parent Te ¹³¹ , parent Te ¹³¹ m (PapA51, CookG51) parent Te ¹³¹ (93%), parent Te ^{131m} (7%) (SaraD65) daughter Sn ¹³¹ (PapA56)	Y	0.64 (37%), 0.95 (48%) daughter radiations from Te ¹³¹ , Te ¹³¹ m	fission (PapA51, CookG51, CoopJ64)
Sb ¹³²	2.1 m (PapA56) others (AbeP39, CookG51)	*	β (AbeP39)	В	chem, genet (AbeP39) parent Te 132 (AbeP39) daughter Sn 132 (PapA 56)			fission (AbeP39, PapA56, CookG51)
Sb ¹³³	4.2 m (CookG51) 4.4 m (PapA51)	*	β (PapA51)	В	chem, genet (PapA51) parent Te 133m (PapA51)			fission (PapA51, CookG51)
Sb ¹³⁴	<1.5 s (BemC64)			F	genet (activity not observed) (BemC64)			fission (BemC64)
Sb ¹³⁴ ?	≈50 s (PapA51) 45 s (CookG51)	*	β~ (PapA51)	G	chem (PapA51) not ancestor I ¹³⁴ ; may be an isomer of Sb ¹³² (BemC64)			fission (PapA51, CookG51)
sь ¹³⁵	2 s genet (BemC64)	*	[β¯] (BemC64)	В	chem, genet (BemC64) ancestor I ¹³⁵ (BemC64)			fission (BemC64)
52 ^{Te¹⁰⁷}	2.2 s (MacfR65)	*	a (MacfR65)	В	excit, cross bomb, sep isotopes (MacfR65)	a	3.28	Ru ⁹⁶ (O ¹⁶ , 5n) (MacfR65)
Te 108	5.3 s (MacfR65)		a (MacfR65) [β [†] , EC], p (SiiA65)	В	excit, cross bomb, sep isotopes (MacfR65, SiiA65)	1	3.08 2.6 (broad peak), 3.4, 3.7	Ru ¹⁹⁶ (O ¹⁶ , 4n) (MacfR65, SiiA65)

52 ^{Te (<113})		Thermal neutron cross section (σ), barns	Genetic relationships	approximate energies (MeV) and intensities	Principal means of production
52	16 m (RhoA57)	* β ⁺ , [EC] (RhoA57)	F chem (RhoA57)		alphas on Sn (RhoA57)
Te ¹¹⁵	6.0 m (ReisR65) 6 m (SelI60a) 5-6 m (FinR61)	 p⁺ ≈80%, EC ≈20% (ReisR65) Δ −82.5 (ReisR65, MTW) 	B chem, excit, sep isotopes, genet (Self60a, ReisR65) parent Sb 115 (Self60a, ReisR65)	th 2.8 max Y Sb X-rays, 0.511 (160%, Y [±]), 0.72 (34%), 0.96 (6%), 1.08 (24%), 1.28 (32%), 1.38 (32%), 1.58 (6%) daughter radiations from Sb ¹¹⁵	Sn ¹¹² (a,n) (Sel160a, ReisR65)
e ^{114,115?}	1.4 h (RhoA57)	Υ β [†] , [EC] (RhoA57)	F chem (RhoA57) may be Te ¹¹⁶ + Sb ¹¹⁶ (+ Te ¹¹⁷ ?) (LHP)	Y 0.10 (?), 0.12 (?), 0.511 (Y [±]), 0.75, 1.0 (?), 1.3 (?)	alphas on Sn (RhoA57)
Te?	8 h (RhoA57)	*	F chem (RhoA57)	y 0.67	alphas on Sn (RhoA57)
Te ¹¹⁶	2.50 h (FinR61) others (LindnM48, KuzM58)	EC, β [†] (?) (FinR61) β [†] (LindnM48) no α, lim 1 x 10 ⁻⁷ % (KarrM63) Δ -85.4 (MTW)	chem, mass spect (FinR61)	Sb X-rays, 0.094 - 0.063, 0.089 + 0.44 max (?) daughter radiations from Sb 116	protons on Sb (FinR61, LindnM48, KuzM58)
Te ¹¹⁷	61 m (FinR61) 65 m (KhuD62) 66 m (VarN61, ButeF65a)	 ★ EC 70%, β⁺ 30% (FinR61, KhuD62) no a, lim 0.005% (KarrM63) △ -85.1 (MTW) 		th 1.81 max Y Sb X-rays, 0.511 (60%, Y [±]), 0.72 (65%), 0.93 (6%), 1.78 (9%) daughter radiations from Sb 117	Sn ¹¹⁴ (a,n) (VarN61, KhuD62) protons on Sb (FinR61)
те ¹¹⁷	1.9 h (ButeF65a)	☆ β [†] (ButeF65a)	E chem, decay charac (ButeF65a) daughter 14.5 m I ¹¹⁷ (ButeF65a)	[†] 1.7 max	daughter 14.5 m I ¹¹⁷ (ButeF65a)
Te ¹¹⁸	6.00 d (FinR61) others (LindnM48, AndeG65)	Y EC (LindnM48) no a, lim 2 x 10 ⁻⁶ % (KarrM63) △ -88 (MTW)	A chem (LindnM48) chem, mass spect (FinR61) parent Sb 118 (LindnM48, LindnM50a, FinR61) not parent Sb 118m1 (FinR61) daughter I 118 (ZaitN60a)	Y Sb X-rays daughter radiations from Sb ¹¹⁸	protons on Sb (FinR61) Sb ¹²¹ (d,5n) (LindnM48, LindnM50a)
Te ¹¹⁹	15.9 h (FinR61) others (ZaitN60, ZaitN60a, KocC60)	₩ EC (FinR61) β [†] 5% (KocC60) Δ -87.19 (MTW)	1 175 9(0)	o [†] 0.627 max Y Sb X-rays, 0.645 (85%), 0.70 (11%), 1.76 (3.6%) daughter radiations from Sb ¹¹⁹	Sb ¹²¹ (p, 3n) (FinR61) Sn ¹¹⁶ (α, n) (KocC60)
Te ^{119m}	4.68 d (KantJ63) others (SorA60, FinR61, KocC60, ZaitN60, ZaitN60a, LindnM48)	 EC (LindnM48) β[†] ≤0.5% (KantJ63) no α, lim 4 x 10⁻⁵% (KarrM63) Δ -86.9 (LHP, MTW) 	chem, genet, mass spect (FinR61)	(25%), 0.153 (62%), 0.270 (25%), 0.92-1.14 (36%, complex), 1.221 (67%), 2.09 (4%) 0.122, 0.133, 0.148, 0.240, 0.266 daughter radiations from Sb 119	Sb ¹²¹ (p, 3n) (FinR61) Sb ¹²¹ (d, 4n) (LindnM48, LindnM50) Sn ¹¹⁶ (a, n) (KocC60)
<u>Te¹²⁰</u>		% 0.089 (BaiK50) Δ -89.40 (MTW) σ _c 0.3 (to Te ¹²¹) 2.0 (to Te ¹²¹ m) (GoldmDT64)			
Te ¹²¹	17 d (EdwJ46, ZaitN60a, BhaR63) others (BursS46)	EC (EdwJ46) no β ⁺ , 1im 0.1% (ChuY64) Δ -88.31 (MTW)	BursS46)	Y Sb X-rays, 0.508 (18%), 0.573 (80%) - 0.007, 0.033, 0.543	Sb 121 (a, 4n) 1121 (β ⁺) (MarqL50) Sb 121 (d, 2n) (EdwJ46, AubR64) Sb 121 (p, n) (EdwJ46, AubR64) Te 120 (n, γ) (HillR49a, AubR64) daughter Te 121m (BursS46)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△■M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
52 ^{Te 121m}	154 d (HillR51, BhaR63) 143 d (EdwJ46) 125 d (SeaG40) 140 d (CorkJ51f)	T 90%, EC 10% (ChuY64) β [†] ≈0.003% (AubR64) Δ -88.01 (LHP, MTW)	(SeaG40)	Te X-rays, Sb X-rays, 0.212 (82%), 1.10 (3%) e 0.007, 0.050, 0.077, 0.180 daughter radiations from Te 121	Sb ¹²¹ (d, 2m) (SeaG40, EdwJ46, AubR64) Sb ¹²¹ (p, n) (SeaG40, EdwJ46, AubR64) Te ¹²⁰ (n, Y) (CorkJ51f, AubR64)
Te ¹²²		% 2.46 (BaiK50) Δ -90.29 (MTW) σ _c 2 (to Te ¹²³) 1 (to Te ^{123m}) (GoldmDT64)			
Te ¹²³	$t_{1/2}$ (EC _K) 1.2 x 10 ¹³ y sp act (WatD62a) $t_{1/2}$ (EC) >10 ¹³ y sp act (HeiJ55)	# EC (WatD62a) % 0.87 (BaiK50) Δ -89.16 (MTW) σ _c 400 (GoldmDT64)	B chem (WatD62a)	Y Sb X-rays	
Te ¹²³ m	117 d (AndeG65) 104 d (HillR51) 121 d (CorkJ51f)	☆ IT (HillR49a) △ -88.92 (LHP, MTW)	1 4111111111111111111111111111111111111	Y Te X-rays, 0.159 (84%) e 0.057, 0.084, 0.127	Te ¹²² (n, Y) (HillR4%, KatzR50, HammB51, CorkJ51f) Sb ¹²³ (d, 2n) (KatzR50)
Te ¹²⁴		% 4.61 (BaiK50) Δ -90.50 (MTW) 2 (to Te ¹²⁵) 5 (to Te ^{125m}) (GoldmDT64)			
Te ¹²⁵		 % 6.99 (BaiK50) Δ -89.03 (MTW) σ_c 1.5 (GoldmDT64) 			
Te 125m	58 d (HillR51, AndeG65)	☆ IT (FrieG48) △ -88.89 (LHP, MTW)	136	e 0.004, 0.030, 0.078, 0.105 Y Te X-rays, 0.035 (7%), 0.110 (0.3%)	daughter Sb ¹²⁵ (FrieG4 KerB49) Te ¹²⁴ (n, Y) (HillR49a)
Te 126		% 18.71 (BaiK50) Δ -90.05 (MTW) σ _c 0.9 (to Te ¹²⁷) 0.1 (to Te ^{127m}) (GoldmDT64)			
Te ¹²⁷	9.4 h (KniJD56, MajN63) 9.3 h (SeaG40, MangS62) 9.5 h (BonaG64)	☆ β [−] (AbeP39) Δ −88.30 (MTW)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	β- 0.70 max Y IX-rays, 0.058 (0.010%), 0.21 (0.03%, doublet), 0.360 (0.05%), 0.417 (0.3%)	Te ¹²⁶ (n, Y), daughter Te ^{127m} (SeaG40, Ser147b) fission (AbeP39, SeaG40, WilliRR48, GleL51h)
Te ¹²⁷ m	109 d (AndeG65) 105 d (KniJD56) 115 d (CorkJ51f) 90 d (SeaG40)	# IT 99.2%, β 0.8% (AubR65) IT 98%, β 2% (KniJD56) Δ -88.21 (LHP, MTW)	parent Te 127 (SeaG40, GleL51h, WilliRR51)	Y Te X-rays, 0.059 (0.19%), 0.089 (0.08%), 0.67 (0.004%) e ⁻ 0.057, 0.084 β ⁻ [0.73 max] daughter radiations from Te ¹²⁷	Te 126 (n, Y) (HillR49a, SeaG40, SerL47b) fission (GrumW46, GleL51h, WilliRR48, GrumW48)
Te ¹²⁸		% 31.79 (BaiK50) Δ -88.98 (MTW) σ _c 0.14 (to Te ¹²⁹) 0.017 (to Te ^{129m}) (GoldmDT64)			

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
₅₂ Te ¹²⁹	68.7 m (BrzJ63, BrzJ65) 67 m (WaIH48, MajN63) 72 m (SeaG40, BonaG64) 70 m (AbeP39, GleL51h, MangS62) 74 m (GravW56)		β¯ (SeaG40) -87.02 (MTW)	A	chem, excit (BotW39, SeaG40) daughter Te ^{129m} (SeaG40, GrumW46, WilliRR51) daughter Sb ¹²⁹ (AbeP39)	e -	1.45 max 0.022, 0.026 I X-rays, 0.027 (19%), 0.275 (1.7%, doublet), 0.455 (15%), 0.81 (0.5%, complex), 1.08 (1.5%)	daughter Te (SeaG40, GrumW46, WilliRR51) Te ¹²⁸ (n, Y) (MangS62, SeaG40, SerL47b) fission (AbeP39, HahO43a, GrumW46, WilliRR48, NoveT51a)
Te ^{129m}	34.1 d (AndeG65) 33.5 d (CorkJ51f) 33 d (MajN63) 32 d (BrzJ65) others (SeaG40, NoveT51b, GravW56, WafH48)		IT 64%, β ⁻ 36% (DevaS64a) IT 68%, β ⁻ 32% (AndeG62) -86.92 (LHP, MTW)	A	chem, genet (SeaG40) parent Te ¹²⁹ (SeaG40, Grum W46, WilliRR51)	e_	1.60 max 0.074, 0.102 Te X-rays, 0.69 (6%) daughter radiations from Te ¹²⁹	Te ¹²⁸ (n, Y) (HillR49a, SeaG40, SerL47b) fission (HahO43a, GrumW46, WilliRR48, NoveT51b, PapA51a, GrumW48)
<u>Te¹³⁰</u>	Xe ratios mass spect	Δ	34.49 (BaiK50) -87.34 (MTW) 0.2 (to Te ¹³¹) 0.04 (to Te ^{131m})					
Te ¹³¹	24.8 m (GeiK52) others (MangS62, SeaG40, AbeP39)	l	β ⁻ (SeaG40) -85.16 (MTW)	A	chem, excit (SeaG40) daughter Te ¹³ lm (AbeP39, SeaG40, WilliRR51) parent I ¹³¹ (AbeP39, SeaG40, PapA51, CookG51, LivJ38e, HahO39c) daughter Sb ¹³¹ (PapA51, CookG51, SaraD65)	e_	2.14 max 0.116, 0.144 I X-rays, 0.150 (68%), 0.453 (16%), 0.493 (5%), 0.603 (4%), 0.95 (3%, complex), 1.00 (4%, doublet), 1.147 (6%)	Te ¹³⁰ (n, Y) (SeaG40, SerL47b, GeiK52) daughter Te ¹³ lm (AbeP39, SeaG40, WilliRR51)
Te ^{131m}	30 h (AbeP39, SeaG40)		β ⁻ 82%, IT 18% (BedeA61, DevaS65) β ⁻ 78%, IT 22% (HebE55) -84.98 (LHP, MTW)	A	chem, genet (SeaG40) parent Te ¹³¹ (AbeP39, SeaG40, William(R51) daughter Sb ¹³¹ (CookG51, PapA51, SaraD65)	e ⁻	2.46 max (5%), 0.9 max 0.048, 0.069, 0.149, 0.177 Te X-rays, I X-rays, 0.081 (2%), 0.102 (5%), 0.200 (8%), 0.241 (8%), 0.336 (9%), 0.78 (60%, complex), 0.85 (31%, doublet), 1.127 (13%), 1.206 (11%), 1.629 (3%), 1.860 (1%), 1.965 (2%) daughter radiations from Te 131 131	Te ¹³⁰ (n, Y) (SeaG40, SerL47b) fission (SaraD65, AbeP39, HahO39c, Katc551d, WilliRR51, PapA51a)
Te ¹³²	77.7 h (PapA51a) 78 d (AndeG65) others (AbeP39, CheeG58, FleW56, HahO39b)	l	β (AbeP39) -85.21 (MTW)	A	chem, genet (AbeP39) fission fragment range (KatcS48) parent 1 ¹³² (AbeP39, HahO39c, HahO39b, NoveT51a, WinsW51) daughter Sb ¹³² (AbeP39)	e-	0.22 max 0.020, 0.048, 0.197 I X-rays, 0.053 (17%), 0.230 (90%) daughter radiations from I ¹³²	fission (AbeP39, HahO39a, HahO39b, PapA51a, KatcS48)
Te ¹³³	12.5 m (PruS65)	*	[β¯] (PruS65)	В	chem, genet (PruS65) daughter Te ^{133m} , parent I ¹³³ (PruS65)	Υ	0.15, 0.31, 0.41, 0.73, 1.02, 1.33, 1.71, 1.85	fission, daughter Te ¹³³ m (PruS65, SaraD65)
Te ^{133m}	50 m (FergJ62) 63 m (PapA52) 53 m (AlvT57) 60 m (AbeP39, WuC40)	*	β ⁻ 87%, IT 13% (AlvT57)	A	chem, genet (AbeP39) parent 12.5 m Te ¹³³ (PruS65) daughter Sb ¹³³ (PapA51) ancestor I ¹³³ (AbeP39, HahO39c, SegE40, WuC40, WuC45, PapA51)	e-	2.4 max 0.303 Te X-rays, 0.31 (21%), 0.432 (50%), 0.47 (22%), 0.557 (35%), 0.63 (18%), 0.70 (24%), 0.754 (85%), 0.91 (57%), 1.01 (10%), 1.33, 1.71, 1.85 daughter radiations from I ¹³³ daughter radiations from Te I ¹³³ included in above listing	fission (AbeP39, HahO39c, SegE40, WuC40, PapA51, KatcS48, SaraD65)
Te ¹³³	2 m (PapA52)	¥	β¯ (PapA52)	G	chem, genet (PapA52) activity not observed (PruS65)			daughter Te ¹³³ m (PapA52)
Te ¹³⁴	42 m (FergJ62) 44 m (PapA51a) 43 m (AbeP39)	*	β¯ (AbeP39)	A	chem, genet (AbeP39) parent I ¹³⁴ (AbeP39, HahO39c, PapA51a) others (KatcS48, PolA40a)	Υ	I X-rays, 0.08 (13%), 0.17 (16%), 0.204 (21%), 0.262 (19%) daughter radiations from I ¹³⁴	fission (KatcS48, HahO39c, AbeP39, PolA40a, PapA51a, FergJ62)

Isotope Z A	Half-life		Type of decay (♠); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
₅₂ Te ¹³⁵	<2 m (GleL5li, DodR40, KatcS5lf)	*	β (DodR40)	E	genet (DodR40) parent I ¹³⁵ (GleL5li, KatcS51f)			fission (GleL5li, DodR40, KatcS5lf)
Te?	≈l m (HahO43a)	*	β (HahO43a)	E	chem (HahO43a)			fission (HahO43a)
53 ^I 117	7 m (AndeG65)	*	β^+ (AndeG65), [EC]	С	mass spect, [chem] (AndeG65)	γ	0.16, 0.34, 0.522 (Y [±])	protons on La (AndeGé
1117	14.5 m genet (ButeF65a)	*	[β ⁺] (ButeF65a)	F	chem, genet (ButeF65a) parent 61 m Te ¹¹⁷ , parent 1.9 h Te ¹¹⁷ (ButeF65a)			protons on I (ButeF65a
1118	13.9 m (AndeG65) 17 m (ZaitN60a, ButeF65a) others (AagP57)		β ⁺ ≈54%, EC ≈46% (AndeG65) -81 (ButeF65a, AndeG65, MTW)	В	mass spect (AagP57) chem, genet (ZaitN60a) parent Te ¹¹⁸ (ZaitN60a) daughter Xe ¹¹⁸ (AndeG65)	Y	Te X-rays, 0.511 (108%, Y [±]), 0.55, 0.60, 1.15	protons on I (ZaitN60a ButeF65a)
1119	19.5 m (AndeG65) 18 m (RosG54) 21 m genet (ZaitN60, ZaitN60a) 19 m (AagP57) 26 m (ButeF65a)	*	β [†] 51%, EC 49% (AndeG65)	A	chem (MarqL50) mass spect (AagP57) chem, genet (ZaitN60, ZaitN60a) parent Te ¹¹⁹ (ZaitN60, ZaitN60a) daughter Xe ¹¹⁹ (AndeG65)	Y	Te X-rays, 0.26, 0.511 (102%, γ^{\pm}), 0.78 daughter radiations from Te 119 , Sb 119	N ¹⁴ on Pd (RosG54) protons on I (ZaitN60, ZaitN60a)
I ¹²⁰	1.35 h (AndeG65) 1.30 h (ButeF65) 1.4 h (AagP57)		EC 54%, β [†] 46% (AndeG65) -83.8 (ButeF65, AndeG65, MTW)	A	mass spect, chem (AagP57, AndeG65) chem, genet (ButeF65) daughter Xe ¹²⁰ (ButeF65)	1.	4.0 max Te X-rays, 0.511 (92%, Y [±]), 0.56, 0.62, 1.52	protons on I, daughter Xe 120 (ButeF65)
1120	30 m (MarqL50, KuzM58a)	*	β ⁺ (MarqL50)	G	chem (MarqL50, KuzM58a) activity not observed (AndeG65)			alphas on Sb (MarqL5 protons on I (KuzM58a
1121	2.12 h (AndeG65) 2.0 h (AagP57, ButeF65) 1.5 h (MathH54a, DroB52) 2.1 h (ZaitN60) 1.4 h (RosG54) 1.8 h (MarqL50, KuzM58a)		EC 91%, β ⁺ 9% (AndeG65) -86.0 (MTW)	. A	chem, genet (MarqL50) mass spect (AagP57) parent Te ¹²¹ (MarqL50) daughter Xe ¹²¹ (MathH54a, DroB52)	١.	1.2 max Te X-rays, 0.212 (90%), 0.27 (3%), 0.32 (6%), 0.511 (18%, Y [±])	Sb ¹²¹ (a,4n) (MarqL5
I ¹²²	3.5 m (MathH54a) 3.4 m (DroB52) 3.6 m (YouJ51) 4 m (MarqL50)	1 1	β ⁺ (MarqL50), [EC] -86.15 (MTW)	A	chem, excit (MarqL50) sep isotopes (YouJ51) daughter Xe ¹²² (TilDE52, DroB52)		3.1 max Te X-rays, 0.511 [130%, Y [±]], 0.564, 0.69, 0.78	Sb ¹²¹ (a, 3n) (MarqL5 Te ¹²² (p, n) (YouJ51)
I ¹²³	13.3 h (AndeG65) 13.0 h (MitA49a) 13 h (MarqL50, MathH54a, KuzM58a)		EC (MarqL50) no β [†] (MitA59) -88 (MTW)	A	chem, excit (MarqL50) chem, sep isotopes (MitA49a) daughter Xe ¹²³ (DroB52, MathH54a, TilDE52)	Y e	Te X-rays, 0.159 (83%) 0.127	Sb ¹²¹ (a, 2n) (MarqL5: MitA49a, MitA59, GupR60b)
1124	4.15 d (AndeG65) 4.2 d (Dysn58, MitA59) 4.1 d (GirR59g) 4.0 d (LivJ38e) 4.5 d (MarqL50) 3.4 d (AagP57)		EC 74%, β ⁺ 26% (DyaN58) EC 75%, β ⁺ 25% (GirR59g) EC 71%, β ⁺ 29% (MitA59) no β ⁻ , lim 0.1% (MerC61) EC(K)/EC(L) 9 (MitA59) -87.33 (MTW)	A	chem, excit, cross bomb (LivJ38e)	١.	2.14 max Te X-rays, 0.511 (50%, Y*), 0.605 (67%), 0.644 (12%), 0.73 (14%), 1.37 (3%), 1.51 (4%), 1.69 (14%), 2.09 (2.0%), 2.26 (1.5%)	Sb ¹²¹ (a,n) (MarqL50, LivJ38e) Sb ¹²³ (a,3n) (MarqL50
I ¹²⁵	60.2 d (LeuH64, GleG64) 60.0 d (FrieG51a) 57.4 d (MatthC60) others (KuzM58a, ReidA46a)	Δ	EC, no β [†] (ReidA46a, GleL47) EC(L+M+)/EC(K) 0.254 (LeuH64) -88.88 (MTW) 900 (GoldmDT64)	A	chem (ReidA46a) chem, excit (GleL47) genet (BergI51c) daughter Xe ¹²⁵ (BergI51c) not parent Te ^{125m} , lim 0.05% (FrieG51a)	e ⁻	Te X-rays, 0.035 (7%)	Sb ¹²³ (a, 2n) (MarqL5 daughter Xe ¹²⁵ (BergI51c) deuterons on Te (ReidA46a, GleL47, FleP58)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
53 ¹ 126	12.8 d (AndeG65) 13.3 d (PerlmM54) 13.0 d (LivJ38e) 13.1 d (MocD48, AagP57)	EC 55%, β ⁻ 44%, β ⁺ 1.3% (PerlmM54) EC 55%, β ⁻ 44%, β ⁺ 1.2% (KoerL55) EC (K) 51% (EroJ57a) Δ -87.90 (MTW)	chem, excit, cross bomb	β ⁻ 1.25 max β ⁺ 1.13 max Y Te X-rays, 0.386 (34%), 0.667 (33%)	Sb ¹²³ (a,n) (LivJ38e, MarqL50) Te ¹²⁵ (d,n) (LivJ38e) Te ¹²⁶ (p,n) (DubL40a)
1 ¹²⁶	2.6 h (AagP57)		G mass spect (AagP57) activity not observed (NaraV65)		fission (AagP57)
1127		% 100 (NierA37a) Δ -88.984 (MTW) σ _C 6.4 (GoldmDT64)			
I ¹²⁸	24.99 m (HulO41) others (AagP57, LivJ38e)	β 93.6%, EC 6.4% (BencN56) β 3 x 10 ⁻³ % (LanghH61b) Δ -87.71 (MTW)	A chem, n-capt (AmaE35)	β 2.12 max Y Te X-rays, 0.441 (14%), 0.528 (1.4%), 0.743 (0.2%), 0.969 (0.3%)	I ¹²⁷ (n, Y) (AmaE35, TapG38, SerL47b, SiegK46c, OrsA49, HumV51)
1129	1.7 x 10 ⁷ y sp act (KatcS51k) others (PurB56)	 φ⁻ (KatcS47)	A chem, n-capt (KatcS47) chem, mass spect (KatcS51k)	β- e- 0.005, 0.034 Y Xe X-rays, 0.040 (9%)	fission (KatcS47, KatcS5lk)
I ¹³⁰	12.3 h (AndeG65) 12.5 h (AagP57) 12.6 h (LivJ38e)	Φ β (LivJ38e) Δ -86.89 (DaniH65, MTW) σ _C 18 (GoldmDT64)	A chem, cross bomb (LivJ38e) chem, mass spect (AagP57)	β 1.7 max (0.4%), 1.04 max Y 0.419 (35%), 0.538 (99%), 0.669 (100%), 0.743 (87%), 1.15 (12%)	I ¹²⁹ (n, Y) (SmiW59) Te ¹³⁰ (d, 2n) (LivJ38e) Te ¹³⁰ (p, n) (GarvH58b) Cs ¹³³ (n, a) (WuC40)
1131	8.05 d (BurkL58, BarthR53, GleG64) 8.07 d (KeeJ58, SelH53) 8.06 d (LocE53) 8.14 d (SreJ51a) 8.04 d (SinW51)	 β (LivJ38e) Δ -87.441 (MTW) σ_c ≈0.7 (GoldmDT64) 	A chem (LivJ38e) chem, genet (SeaG40) daughter Te ¹³¹ (LivJ38e, AbeP39, HahO39c, SeaG40, PapA51, CookG51) parent Xe ^{131m} (*1%) (BrosA49, BergI50c)	β 0.806 max (0.6%), 0.606 max average β energy: 0.19 ion ch (CaswR52) e 0.46, 0.330 Y Xe X-rays, 0.080 (2.6%), 0.284 (5.4%), 0.364 (82%), 0.637 (6.8%), 0.723 (1.6%) daughter radiations from Xe 131m	fission (AbeP39, HahO39c, Grum W46, Sul W51g, YafL47, Grum W48, FinB51c)
I ¹³²	2,26 h (EmeE54) 2,34 h (AndeG65) 2,30 h (WahA55) 2,5 h (WillaD62) others (AagP57, AbeP39, HahO39b)		A chem, genet (AbeP39) chem, mass spect (AagP57) daughter Te ¹³² (AbeP39, HahO39c, HahO39b, NoveT51a, WinsW51)	β 2.12 max Y 0.24 (1%), 0.52 (20%, complex), 0.67 (144%, complex), 0.73 (89%), 0.955 (22%), 1.14 (6%, doublet), 1.28 (7%), 1.40 (14%, complex), 1.45 (1%), 1.91 (1.3%), 1.99 (1.3%)	daughter Te ¹³² , from fission (AbeP39, HahO39c, HahO39b, NoveT51a, WinsW51)
1133	20.3 h (AndeG65) 20.8 h (KatcS53) 20.9 h (WahA55) 20.5 h (VasiI58) 22.4 h (PapA51a)	φ β (AbeP39, HahO39c) Δ -85.9 (MTW)	A chem (AbeP39) chem, genet (WuC40) descendant Te 133m (AbeP39, HahO39c, SegE40, WuC40, WuC45, PapA51) daughter 12.5 m Te 133 (PruS65) parent Xe 133 (SegE40, WuC40, WuC45) parent Xe 133m (2.4%) (ZelH51, KetB51a)	β 1.27 max Y 0.53 (90%) daughter radiations from Xe ¹³³ , Xe ^{133m}	fission (AbeP39, HahO39c, SegE40, WuC40, PapA51, SulW51h, FinB51c, HolmG59)
1 ¹³⁴	52.0 m (AndeG65) 52.8 m (JohnN61) 52.5 m (PapA51a) 52.4 m (WahA55) others (AbeP39, AagP57)	Υ β (AbeP39) Δ -84.0 (MTW)	A chem (AbeP39) fission fragment range (KatcS48) chem, mass spect (AagP57) daughter Te ¹³⁴ (HahO39c, AbeP39, PapA51a)	β 2.43 max Y 0.135 (3%), 0.41 (8%, complex), 0.55 (8%), 0.61 (18%), 0.85 (95%), 0.89 (65%), 1.07 (1.4%) 1.15 (10%), 1.46 (4%), 1.62 (5%), 1.79 (5%)	fission (YafL47, HahO39c, AbeP39, PolA40a, PolA40, LidL49, KatcS5le, PapA5la, KatcS48, FinB5lc)
I ¹³⁵	6.68 h (PeaW47a) 6.7 h (GleL5li, KatcS5lf) 6.8 h (WahA55) others (DodR40)	↑ β (WahA55) Δ -84 (MTW)	A chem, genet (DodR40, SegE40) parent Xe ^{135m} (30%), parent Xe ¹³⁵ (70%) (PeaW47a) daughter Te ¹³⁵ (GleL5li, KatcS5lf) descendant Sb ¹³⁵ (BemC64) others (SegE40, DodR40, GotH40, WuC45, BallN5lh, WuC40, FinB5lc, AagP57)	β 1.4 max Y 0.42 (7%), 0.86 (11%), 1.04 (9%) 1.14 (37%), 1.28 (34%), 1.46 (12%), 1.72 (19%), 1.80 (11%) daughter radiations from Xe 135m Xe 135	KatcS5lf, FinB5lc)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C³=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
53 ^I 136	83 s (JohnN59) 86 s (StanlC49) others (StraF40)	1	β ⁻ (StraF40) -79.4 (MTW)	В	chem (StraF40) chem, decay charac (JohnN59)		7.0 max (≤6%), 5.6 max 0.20 (12%), 0.27 (18%), 0.39 (19%), 1.32 (95%, complex), 2.3 (19%, complex), 2.63 (10%), 2.8 (8%), 3.2 (5%)	fission (StraF40, SeeW43, StanlC49, JohnN59)
1 ¹³⁷	22.0 s (n) (HugD48) 24.4 s (n) (PerloG59) 22.5 s (n) (RedW47) 19.3 s genet (SugaN49) others (CoxS58, KeeG57, SneA47a)	*	β¯, β¯n (≈6%) (LeviJ51)	A	chem (StraF40) chem, genet (SeeW43, SugaN49) parent Xe ¹³⁷ (SeeW43, SugaN49)	n	average energy 0.6 daughter radiations from Xe ¹³⁷	fission (StraF40, SeeW43, RedW47, SugaN49, HugD48, PerloG59, SneA47a, SugaN47)
1 ¹³⁸	5.9 s (SugaN49) others (PerloG59, KeeG57)	*	β (SugaN49) n (KeeG57, PerloG59)	В	chem, genet (SugaN49) ancestor Cs ¹³⁸ (SugaN49)			fission (SugaN49, PerloG59, KeeG57)
r ¹³⁹	2.7 s (SugaN49) 2.0 s (PerloG59, CoxS58)	*	β (SugaN49) n (PerloG59, CoxS58)	В	chem, genet (SugaN49) parent Xe ¹³⁹ , ancestor Ba ¹³⁹ (SugaN49)		daughter radiations from Xe ¹³⁹	fission (SugaN49, CoxS58, PerloG59)
54 ^{Xe¹¹⁸}	6 m (AndeG65)	*	β ⁺ , [EC] (AndeG65)	В	chem, mass spect (AndeG65) parent I ¹¹⁸ (AndeG65)	Y	0.05, 0.511 (Y*) daughter radiations from I ¹¹⁸	protons on La (AndeG65)
Xe ¹¹⁹	6 m (AndeG65)	*	β ⁺ , [EC] (AndeG65)	В	chem, mass spect (AndeG65) parent I ¹¹⁹ (AndeG65)	Y	[I X-rays), 0.10, 0.511 (Y [±]) daughter radiations from I ¹¹⁹	protons on La (AndeG65)
Xe ¹²⁰	40 m (AndeG65) 43 m (ButeF65)	*	[EC] (AndeG65)	A	chem, mass spect (AndeG65) chem, genet (ButeF65) parent I ¹²⁰ (ButeF65)	Y	I X-rays, 0.055, 0.073, 0.176, 0.76 daughter radiations from I ¹²⁰	protons on I (ButeF65)
Xe ¹²¹	39 m (AndeG65) 40 m (DroB52, MooR60, MathH54a) others (TilDE52, ButeF65)	1	p ⁺ (MathH54a), [EC] -82.2 (MTW)	A	chem, genet (DroB52, TilDE52) chem, mass spect (AndeG65) parent I ¹²¹ (MathH54a, DroB52)	1.	2.8 max [I X-rays], 0.080, 0.096, 0.132, 0.437, 0.511 (Y [±]) daughter radiations from I ¹²¹	I ¹²⁷ (p, 7n) (TilDE52, DroB52, MooR60)
Xe ¹²²	20.1 h (AndeG65) 19.5 h (TiDE52) 18.5 h (MooR60) 20.0 h (DroB52) 19 h (MathH54a)	*	EC (MathH54a)	A	chem, genet (TilDE52, DroB52, MathH54a) chem, mass spect (AndeG65) parent 1 ¹²² (TilDE52, DroB52)	Į.	IX-rays, 0.060, 0.090, 0.110, 0.148, 0.180, 0.345 0.058, 0.116 daughter radiations from I ¹²²	I ¹²⁷ (p, 6n) (TilDE52, DroB52)
Xe ¹²³	2.08 h (AndeG65) 1.85 (MooR60, ButeF65) 1.8 h (MathH54a, PreiI62) 1.7 h (DroB52) 2.1 h (TilDE52)	Į.	EC, β [†] (MathH54a) 85 (MTW)	A	chem, genet (TilDE52, DroB52, MathH54a) chem, mass spect (AndeG65) parent I ¹²³ (TilDE52, DroB52, MathH54a) daughter Cs ¹²³ (MathH54a, MathH54, PreiI62)	e ⁻	1.51 max 0.115, 0.144, 0.295 I X-rays, 0.090, 0.110, 0.149, 0.178, 0.329, 0.511 (\frac{\pi}{a}), 0.68, 0.90, 1.10 daughter radiations from I 123	I ¹²⁷ (p, 5n) (TilDE52, DroB52, MathH54a)
<u>Xe¹²⁴</u>		Δ	0.096 (NierA50a) -87.5 (MTW) 110 (GoldmDT64)					
Xe ¹²⁵	16.8 h (AndeG65) 18.0 h (Berg152) 17 h (MooR60) 20 h (AndeDL50)		EC, no \$\begin{align*} (BergI51c, AndeDL50)	A	chem, sep isotopes (AndeDL50) chem, mass spect (BergI51c) parent I ¹²⁵ (BergI51c) daughter Cs ¹²⁵ (MathH54)	l	I X-rays, 0.055, 0.188, 0.242 0.022, 0.050, 0.154, 0.182, 0.209 daughter radiations from I ¹²⁵	I ¹²⁷ (p, 3n) (MooR60) Xe ¹²⁴ (n, Y) (BergI51c)
Xe ^{125m}	55 s (MathH54) 60 s (MooR60)	*	IT (?) (MathH54)	В	genet (MathH54) daughter Cs ¹²⁵ (≈0.1%) (MathH54)	٧	[Xe X-rays], 0.075, 0.111	daughter Cs 125 (MathH54) I 127(p, 3n) (MooR60)
<u>Xe¹²⁶</u>		Δ	0.090 (NierA50a) -89.15 (MTW) ≈2 (GoldmDT64)				•	
					,			

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
54 ^{Xe¹²⁷}	36.41 d (BaleS54) others (BresM64, ForR58, CreEC40a, ArteK50, BergI51)	 EC, no β[†] (MathH55a, ForR58) Δ -88.54 (WintG65a, MTW), 	A chem (CreEC40a) chem, sep isotopes (ArteK50) mass spect (BergI51a) daughter Cs 127 (FinR50a)	Y I X-rays, 0.058 (1.4%), 0.145 (4.2%), 0.172 (22%), 0.203 (65%), 0.375 (20%) e 0.024, 0.112, 0.139, 0.170, 0.198	I ¹²⁷ (p,n) (CreEC40a, MathH55a, ForR58) I ¹²⁷ (d, 2n) (BaleS54, ForR58) Xe ¹²⁶ (n, Y) (CamM44, BergI51a)
Xe ^{127m}	75 s (CreEC40a)	Y IT (CreEC40a, MathH54)	B chem (CreEC40a) genet (MathH54) daughter Cs ¹²⁷ (0.01%) (MathH54)	Y Xe X-rays, 0.125, 0.175	I ¹²⁷ (p, n) (CreEC40a) daughter Cs ¹²⁷ (MathH54)
Xe ¹²⁸		% 1.919 (NierA50a) Δ -89.85 (MTW) σ _c <5 (GoldmDT64)			
Xe ¹²⁹		% 26.44 (NierA50a) Δ -88.692 (MTW) σ _c 25 (GoldmDT64)			
Xe ^{129m}	8.0 d (BergI5la)		A chem, mass spect (BergI51a)	Y Xe X-rays, 0.040 (9%), 0.197 (6%) e 0.005, 0.034, 0.162, 0.191	Xe ¹²⁸ (n, Y) (BergI5la)
Xe ¹³⁰		% 4.08 (NierA50a) Δ -89.88 (MTW) σ _c <5 (GoldmDT64)			
Xe ¹³¹		% 21.18 (NierA50a) Δ -88.411 (MTW) σ _c 85 (GoldmDT64)			
Xe ^{131m}	11.8 d (AndeG65) 12.0 d (BergI50c, PerlmM53) others (BrosA49, CamM44)	Y IT (BrosA49, CamM44) △ -88.247 (LHP, MTW)	A chem (CamM44) chem, genet (BrosA49) mass spect (BergI50c) daughter I ¹³¹ (=1%) (BrosA49, BergI50c) not daughter Cs ¹³¹ (CanR51b, SaraB54)	Y Xe X-rays, 0.164 (2%) e ⁻ 0.129, 0.159	Xe ¹³⁰ (n, Y) (CamM44, BergI50c)
Xe ¹³²	٠.	% 26.89 (NierA50a) Δ -89.272 (MTW) σ _c 0.2 (to Xe ¹³³) <5 (to Xe ^{133m}) (GoldmDT64)			
Xe ¹³³	5.270 d (Macn.J50) 5.4 d (BergI52)	β (DodR40) Δ -87.73 (MTW) σ _c 190 (GoldmDT64)	SegE40) chem, excit (WuC40)	β 0.346 max e 0.045, 0.075 γ Cs X-rays, 0.081 (37%)	fission (SegE40, DodR40, WuC40, BornH43a, WuC45, ThodH47, BehH51, EngeD51b) Xe ¹³² (n, y) (RieW43, AlvT58, ThieP62, BrowF61)
Xe ^{133m}	2.26 d (ErmP61) 2.35 d (BergI52) 2.1 d (KetB51a) others (BergI51b)	☆ IT (KetB50a) △ -87.50 (LHP, MTW)	A chem (KetB50a) mass spect (BergI51b) daughter I ¹³³ (2.4%) (ZelH51, KetB51a)	Y Xe X-rays, 0.233 (14%) e 0.198, 0.227 daughter radiations from Xe ¹³³	fission (KetB5la, BergI50b) Xe ¹³² (n, Y) (BergI5lb, ErmP61)
Xe ¹³⁴		% 10.4 (NierA50a) Δ =88.121 (MTW) σ _c 0.2 (to Xe ¹³⁵) <5 (to Xe ¹³⁵ m) (GoldmDT64)			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≡M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
₅₄ Xe ¹³⁵	9.14 h (AndeG65) 9.13 h (BrowF53) 9.19 h mass spect (ClarW64) 9.2 h (NewA51, HoaE51c, BergI52, GleL51i) others (RieW43, DodR40, WuC40, ClanE41)		1 177 040	β 0.92 max e 0.214 Y 0.250 (91%), 0.61 (3%)	Xe ¹³⁴ (n, Y) (RicW43) fission (SegE40, DodR40, BehH51) Ba ¹³⁸ (n, a) (WuC40, SecW43a, WuC45)
Xe ^{135m}	15.6 m (KotK60, RieW43) 15.8 m (AlvT60) 15.3 m (PeaW47a) others (NoveT51c)	IT (WuC45) no β, lim 10% (AlvT60) Δ -86.1 (MTW, LHP)	A chem, genet (GotH40, WuC45) daughter I ¹³⁵ (30%) (PeaW47a) parent Xe ¹³⁵ (WuC45) others (GotH40, WuC45, RieW46, SeeW43a, ThodH47)	Y Xe X-rays, 0.527 (80%) e 0.493, 0.522 daughter radiations from Xe 135	daughter I ¹³⁵ (PeaW47a, GotH40, WuC45, AlvT60) Xe ¹³⁴ (n, Y) (RieW43) fission (GotH40, WuC45, ThodH47, KotK60, AlvT60) Ba ¹³⁸ (n, a) (SeeW43a)
Xe ¹³⁶		% 8.87 (NierA50a) Δ -86.42 (MTW) σ _c 0.15 (GoldmDT64)			
Xe ¹³⁷	3.9 m (SugaN49, OnegR64, HolmGB63) 3.8 m (SeeW43) 3.4 m (RieW43)	Υ β (SeeW43) Δ -82.8 (MTW)	A chem (SeeW43) mass spect (ThuS49) daughter I ¹³⁷ (SeeW43, SugaN49) parent Cs ¹³⁷ (TurA51, GleL51k)	β 4.1 max Y 0.455 (33%)	Xe ¹³⁶ (n, Y) (RieW43, SeeW43a, SugaN49) fission (SeeW43, SugaN49, GleL51k)
Xe ¹³⁸	17.5 m (OckD62) 14.0 m (ClarW64) 17 m (GlasG40) others (HahO40, AndeG65)	 β (HahO39c) Δ -80.9 (NDS, MTW) 	A chem (HahO39c) mass spect (ThuS49) parent Cs ¹³⁸ (HahO39c, HahO40, GlasG40, SeeW43a)	β 2.4 max Y 0.16 († 33), 0.26 († 100), 0.42 († 40), 0.51 († 8), 1.78 († 66), 2.02 († 58) daughter radiations from Cs 138	fission (HahO39c, HahO40, GlasG40, SeeW43a, ThuS49, ThuS55, NasS55)
Xe ¹³⁹	43 s (OckD62) 41 s (DilC51a)	 p (HahO39c, HeyF39) Δ −76.5 (MTW) 	A chem, genet (HahO39c, HeyF39) daughter I ¹³⁹ (SugaN49) parent Cs ¹³⁹ (HahO39c, HeyF39, HahO40a, HahO40) ancestor Ba ¹³⁹ (HahO39c, HeyF39, DilC51a)	Y 0.18 († 41), 0.22 († 100), 0.30 († 57), 1.15 († 23) daughter radiation from Cs 139	fission (HahO39c, HeyF39, HahO40a, HahO40, SugaN49, DilC51a, OckD62)
Xe ¹⁴⁰	16.0 s (DilC51a) 10 s (OveR51) ≈15 s (OckD62) others (HahO40a)	¥ β (HahO40)	A chem, genet (HahO40) ancestor Ba 140 (HahO40, DilC51, DilC51a, OveR51, BradE51)	Y 0.13 daughter radiations from Cs ¹⁴⁰	fission (HahO40a, HahO40, DilC51, DilC51a, OveR51, BradE51, OckD62)
Xe ¹⁴¹	1.7 s (KatcS46, OveR51) 3 s (DilC51a)	∵ β (BradE51)	B chem, genet (BradE51) ancestor La 141 (BradE51) ancestor Ce 141 (DilC51, DilC51a, OveR51) ancestor Ba 141 (BradE51, OveR51, DilC51a)	a	fission (BradE51, DilC51, DilC51a, OveR51)
Xe ¹⁴²	≈1.5 s (WolfsK60)	Υ [β ⁻] (WolfsK60)	B chem, genet (WolfsK60) ancestor La 142 (WolfsK60)		fission (WolfsK60)
Xe ¹⁴³	1.0 s (DilC5la)	Υ β (BradE51)	B chem, genet (BradE51) ancestor Ce 143 (BradE51, DilC51a)		fission (DilC51a, BradE51)
Xe ¹⁴⁴	≈l s (DilC5la)	Ψ β (DilC51)	B chem, genet (DilC51) ancestor Ce 144 (DilC51, DilC51a)		fission (DilC51, DilC51a)
55 ^{Cs} ¹²³	8.0 m (PreiI62) 6 m (MathH54)	* β ⁺ (MathH54), [EC]	B chem, genet (MathH54, PreiI62) parent Xe ¹²³ (MathH54, MathH54a, PreiI62) daughter Ba ¹²³ (PreiI62)		In 115 (C12, 4n) (PreiI62) I 127 (a, 8n) (MathH54)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△ ■ M – A), MeV (C' = 0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
₅₅ Cs ¹²⁵	45 m (MathH54) 49 m (PreiI62)	★ EC 51%, β ⁺ 49% (FrieG62) Δ -84 (MTW).		β ⁺ 2.05 max e ⁻ 0.077, 0.107 Y Xe X-rays, 0.112, 0.511 (98%, Y [±]) daughter radiations from Xe ¹²⁵ Xe ^{125m}	I ¹²⁷ (α, 6n) (MathH54) In ¹¹⁵ (N ¹⁴ , 4n) Ba ¹²⁵ (β ⁺) (PreiI62)
Cs 126	1.6 m (KalkM54)	φ β 82%, EC 18% (KalkM 54) Δ -84.4 (MTW)	A chem, mass spect (KalkM54) daughter Ba ¹²⁶ (KalkM54)	β [†] 3.8 max Υ Xe X-rays, 0.386 (38%), 0.511 (164%, Υ [±])	daughter Ba ¹²⁶ (KalkM 54)
Cs ¹²⁷	6.2 h (MathH54, PreiI63) 6.1 h (MicM54, NijG55) 5.5 h (FinR50a)	± EC 96.5%, β [†] 3.5% (FrieG62) Δ -86.4 (MTW, WintG65a)	A chem, mass spect (FinR50a, MicM54) parent Xe 127 (FinR50a) parent Xe 127m (0.01%) (MathH54) daughter Ba 127 (LindnM52, PreiI62) descendant La 127 (YafL63)	Y Xe X-rays, 0.125 (10%), 0.406 (72%), 0.511 (7%, Y [±]) e ⁻ 0.090, 0.119, 0.371 β ⁺ 1.08 max daughter radiations from Xe ¹²⁷	I ¹²⁷ (a, 4n) (FinR50a, MicM54, MathH54)
Cs 128	3.8 m (LindnM52) 3.9 m (WapA53a) 3.5 m (FinR53) 2.5 m (MurA55)	φ		β [†] 2.9 max e 0.407 Υ Xe X-rays, 0.441 (27%), 0.511 110%, γ [±]), 0.528, 0.576, 0.97 (1%), 1.12 (1%) See also Y's of Ba ¹²⁸	daughter Ba ¹²⁸ (FinR51, LindnM52, HollaJ55)
Cs ¹²⁹	32.1 h (SheraE65) 30.7 h (NijG55) 31 h (FinR50a)	 EC, no β[†] (FinR50a) Δ -88 (MTW) 	A chem, mass spect (FinR50a, MicM54) daughter Ba 129 (ThomC50, FinR50)	Y Xe X-rays, 0.040 (2%), 0.280 (3%), 0.320 (4%), 0.375 (48%), 0.416 (25%), 0.550 (5%) e ⁻ 0.005, 0.034, 0.057, 0.336, 0.376	I ¹²⁷ (α, 2n) (FinR50a, JhaS60a, NierW58) daughter Ba ¹²⁹ (ThomC50, FinR50)
Cs ¹³⁰	30 m (SmiA52a, MicM54) others (FinR50a)	 φ[†], EC, β[−] (β⁺/β[−] 27.5) Δ -86.89 (MTW) 	A chem, excit (SmiA52a) chem, mass spect (MicM54)	β ⁺ 1.97 max β ⁻ 0.442 max Y Xe X-rays, 0.511 (Y [±])	I ¹²⁷ (a,n) (FinR50a, SmiA52a, NierW58)
Cs ¹³¹	9.70 d (GleG64) 9.69 d (LarN60) others (LyoW63, YafL49, KatcS47a, YuF49, KondE50, JosB60)		A chem, genet (KatcS47a) chem, mass spect (KarrD49) daughter Ba 131 (KatcS47a, YuF47, YafL49, CanR51b) not parent Xe 131m (CanR51b, SaraB54)	Y Xe X-rays	Ba ¹³⁰ (n, Y) Ba ¹³¹ (EC) (Katc547a, YuF47, YafL49, CanR51b)
Cs ¹³²	6.59 d (DeaP64) 6.54 d (RobiR62a) 6.48 d (WhyG60) others (CamM44)	★ EC 97%, β ⁺ 0.6%, β ⁻ 2% (RobiR62a, TayH63) β ⁺ 1.2% (JhaS61b) Δ -87.19 (MTW)	A chem, excit (CamM44) genet energy levels (BhaK56, RobiR62a)	β ⁺ 0.40 max β ⁻ [0.7 max] Y Xe X-rays, 0.48 (4%, complex), 0.668 (99%), 1.138 (0.5%), 1.320 (0.6%)	Cs ¹³³ (p,pn) (JhaS61b, RobiR62a, TayH63) Xe ¹³² (p,n) (NierW58) Cs ¹³³ (n,2n) (CamM44, LangeL51a)
Cs 133		% 100 (NierA37a, WhiF56) Δ -88.16 (MTW) $\sigma_{\rm c}$ 28 (to Cs ¹³⁴) 2.6 (to Cs ¹³⁴ m) (GoldmDT64)			
Cs 134	2.046 y (DieL63) 2.05 y (EasH60) 1.99 y (FlyK65a) 2.07 y (WyaE61, GeiKW57) 2.19 y (MerW57) 2.26 y (EdwJ58) others (BayJ58, GleL5lm, KalbD40, ScheiH38, SerL47b)	F (KalbD40) no EC, lim 1% (KeiG55) no β ⁺ , lim 0.009% (Mim W51) Δ -86.79 (MTW) σ _c 136 (GoldmDT64)	A n-capt (AlexK38) chem, n-capt, excit (KalbD40)	β 0.662 max 9 0.57 (23%, complex), 0.605 (98%), 0.796 (99%, complex), 1.038 (1.0%), 1.168 (1.9%), 1.365 (3.4%)	Cs ¹³³ (n, Y) (AlexK38, ScheiH38, KalbD40, SerL47b)
Cs ^{134m}	2.895 h (KeiB61) 2.91 h (BaeA60, WarhH64) others (SlaH45, KalbD40, SerL47b)	 T (GoldhM48a, CaldR50) β = 1% (KeiG55) Δ = 86.65 (MTW, LHP) 	A chem, n-capt (AmaE35, MLenJ35a) chem, excit, n-capt (KalbD40)	Y Cs X-rays, 0.128 (14%) e- 0.005, 0.009, 0.092, 0.122 β- 0.55 max	Cs 133 (n, Y) (AmaE35, MLenJ35a, KalbD40, SerL47b)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass exc (△≅M-A), MeV (C'= Thermal neutron cross section (σ), barr		Major radiations: - approximate energies (MeV) - and intensities	Principal means of production
55 ^{Cs} 135	3.0 x 10 ⁶ y sp act (Ze1H49) 2.1 x 10 ⁶ y yield (SugaN49a)	* β (SugaN49a) Δ -87.8 (MTW) σ _c 8.7 (GoldmDT64)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.21 max no Y	daughter Xe ¹³⁵ (SugaN49a) fission (ZelH49)
Cs ^{135m}	53 m (WarhH62, HalleI64)	Υ IT (WarhH62) Δ -86.2 (MTW, LHP)	bomb, crit abs (WarhH62)	Cs X-rays, 0.781 (100%), 0.840 (96%) 0.745, 0.775, 0.804	Xe ¹³⁴ (d, n) (WarhH62) Xe ¹³² (a, p) (WarhH62) Ba ¹³⁵ (n, p) (WarhH62) protons on Ba (HalleI64)
Ca ¹³⁶	13.7 d (GleL49) 12.9 d (OlsJ54a) 13.5 d (WilleR60)	Υ β (GleL51ℓ) Δ -86.6 (LHP, MTW)	A chem (GleIA6, GleL51£) β-chem, excit (GleIA9) chem, mass spect (OlsJ54a) γ		La ¹³⁹ (n, a) (CamM44, GleL49, BernsH61) Ba ¹³⁸ (d, a) (GirR59, GrabZ60b)
Cs ¹³⁷	30.0 y (weighted average by FlyK65) 29.7 y (GorbS63) 30.4 y mass spect (FarrH61, DieL63) 29.2 y mass spect (RideB63) 30.0 y sp act, mass spect (BrowF55) others (FlyK65, FleD62a, WileDM55a, GlazM61, WileDR53, GleL51j)	φ ρ (MelhM41) Δ -86.9 (MTW) σ _c 0.11 (GoldmDT64)	chem, mass spect e-	1.176 max (7%), 0.514 max 0.624, 0.656 Ba X-rays, 0.662 (85%) daughter radiations from Ba ¹³⁷ m included in above listing	fission (HaydR48, IngM49, GleL5ij, GrumW48, FinB51c)
Cs 138	32.2 m (BarthR56) 32.1 m (BunkM56) others (GlasG40, WilleR60, EvaHB51, AteA39, HahO39a, GleL51k, OckD62, LangeL53a)	β (HahO39c) Δ -83.7 (NDS, MTW)	1 -1 ' (FFC40)	3.40 max 0.463 (23%), 0.55 (8%), 1.01 (25%), 1.426 (73%), 2.21 (18%), 2.63 (9%)	fission (HahO39c, HahO40a, HeyF39, HahO40, BunkM56) Ba ¹³⁸ (n,p) (WilleR60, SeeW43a)
Cs ¹³⁹	9.5 m (SugaN50, ZheE63) others (AteA39, HeyF39, OckD62, HahO40)	β (HahO39c) Δ -81.1 (MTW)	A chem, genet (HahO39c, HeyF39) daughter Xe ¹³⁹ (HahO39c, HeyF39, HahO40a, HahO40) parent Ba ¹³⁹ (HahO39c, HeyF39, HahO40a, HahO40, SugaN50)	0.50, 0.63, 0.80, 1.28 (strong), 1.65 (complex), 1.90, 2.08 daughter radiations from Ba 139	fission (HahO39c, HeyF39, HahO40a, AteA39, SugaN50, HahO40a, HahO40, AksV62, ZheE63, OckD62)
Cs 140	66 s (SugaN50) 63 s (ZheE63)	Υ β (HahO40) Δ -77 (MTW)	A chem (HahO40) chem, genet (SugaN50) parent Ba ¹⁴⁰ (SugaN50)	0.59, 0.88, 1.14, 1.62, 1.85, 2.06, 2.32, 2.72, 3.15	fission (HahO40, SugaN50, ZheE63)
Cs ¹⁴¹	24 s (FritK62a) 25 s (WahA62)	Υ [β¯] (BradE51)	A chem, genet (WahA62, FritK62a) parent Ba 141 (WahA62, HahO42a) ancdstor Ce 141 (FritK62a)		fission (BradE51, DilC51a, OveR51, WahA62, FritK62a)
Cs ¹⁴²	2.3 s (FritK62a) others (WahA62, HahO42a)	Υ [β¯] (FritK62a)	B chem, genet (FritK62a) ancestor La ¹⁴² (FritK62a)		fission (FritK62a)
Ca ¹⁴³	2.0 s (FritK62a)	Υ [β¯] (BradE51)	B genet (BradE51) chem, genet (FritK62a) ancestor La 143 (FritK62a)		fission (BradE51, DilC51a)
Cs 144	short (DilC51, DilC51a)	♣ [b_] (Di1Ċ21)	F genet (DilC51) [descendant Xe ¹⁴⁴ , ancestor Ce ¹⁴⁴] (DilC51)		descendant Xe ¹⁴⁴ from fission (DilC51, DilC51a)
56 ^{Ba} ¹²³	2.0 m (PreiI62)	* [β [†] , EC] (PreiI62)	B chem, cross bomb, genet (Preil62) parent Cs 123 (Preil62)		O ¹⁶ on In, Sn (PreiI62) N ¹⁴ on In (PreiI62) C ¹² on Sn (PreiI62)

Isotope Z A	Half-life	Type of decay (♥); % abundance; Mass excess (△■M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
56 ^{Ba} 125	6.5 m (PreiI62)	* [EC, β [†]] (PreiI62)	B chem, cross bomb, genet (PreiI62) parent Cs 125 (PreiI62)		In 115 (N 14, 4n) C 12 on Sn, O 16 on In (PreiI62)
Ba ¹²⁶	97 m (KalkM54) 103 m (Prell62)	❤ EC (KalkM54)	A chem, genet (KalkM54) chem, cross bomb (PreiI62) parent Cs ¹²⁶ (KalkM54) daughter La ¹²⁶ (PreiI63, ShelR61)	Y 0.23 († 100), 0.70 († 33), 0.9 (weak) daughter radiations from Cs 126	In 115 (N 14, 3n) (KalkM 54, Prei162) C 12, O 16 on Sn (Prei162)
Ba ¹²⁷	10.0 m genet (PreiI62) 12 m (KalkM54, LindnM52)	 p⁺ (LindnM52), [EC] Δ −83 (MTW) 	A chem, genet (LindnM52) chem, genet, cross bomb (Preil62) parent Cs ¹²⁷ (LindnM52, Preil62) daughter La ¹²⁷ (Preil63)		O ¹⁶ . N ¹⁴ on In; C ¹² , O ¹⁶ on Sn (Preii62) Cs ¹³³ (d, 8n) (LindnM52)
Ba ¹²⁸	2.43 d (YafL63) 2.4 d (Preii63, FinR50, Thom C50)	★ EC (FinR53, LindnM52) Δ -85 (MTW)	B chem (FinR50, ThomC50) parent Cs ¹²⁸ (FinR51, LindnM52, HollaJ55) daughter La ¹²⁸ (YafL63, PreiI63)	Y Cs X-rays, 0.134, 0.278 e ⁻ 0.128, 0.242 (above radiations with Ba ¹²⁸ or Cs ¹²⁸) daughter radiations from Cs ¹²⁸	Cs ¹³³ (p,6n) (FinR50, Thom C50, LindnM52) Cs ¹³³ (d,7n) (LindnM52)
Ba ¹²⁹ , Ba ¹²⁹ m?	2.61 h (p ⁺) (ArbE61) 2.0 to 2.4 h (conv, e ⁻) (ArbE61) 2.20 h (YafL63) 2.45 h (HenkW59)	★ EC 94%, β ⁺ 6% (ArbE61) Δ -85 (MTW)	A chem, genet (ThomC50, FinR50) parent Cs 129 (ThomC50, FinR50) probable isomerism shown by different half-lives of electron lines (ArbE61) daughter La 129 (PreiI63, LavA63, YafL63)	β [†] 1.42 max e ⁻ 0.017, 0.048, 0.093, 0.142, 0.171 others to 1.5 Y Cs X-rays, 0.129 († 26), 0.182 († 100), 0.21 († 65, complex), 0.511 (Y [±]), 1.45 († 42) daughter radiations from Cs ¹²⁹	Cs ¹³³ (p, 5n) (ThomC50, FinR50, ArbE61)
Ba 130		% 0.101 (NierA38b) 0.13 (AkiP56) Δ -87.33(MTW) σ _c 8.8 (GoldmDT64)			
Ba ¹³¹	12.0 d (KatcS47a, WriH57, LyoW63, SmiKM63) 11.5 d (BegW56) 11.8 d (CorkJ53c) 11.7 d (YuF47)	# EC (KatcS47a) no β ⁺ (YuF47, FinB47) Δ -86.89 (MTW)	A chem, n-capt, excit (KatcS47a) parent Cs 131 (KatcS47a, YuF47, YafL49, CanR51b) daughter La 131 (YafL63) daughter Ba 131m (TilR63)	Y Xe X-rays, 0.124 (28%, complex), 0.216 (19%), 0.25 (5%, complex), 0.373 (13%), 0.496 (48%, complex), 0.60 (3%, doublet), 0.924 (0.8%), 1.048 (1.3%) e	Ba ¹³⁰ (n, Y) (KatcS47a, YuF47, Yaf149, DalE50, ZimE50, CanR51b) Cs ¹³³ (p, 3n) (HiroT64)
Ba 131m	14.6 m (HoreD63a) 14.5 m (TilR63)	 TT, no EC, lim 0.1% (TilR63) △ -86.71 (LHP, MTW) 	A chem, excit, cross bomb, genet (TilR63) parent Ba 131 (TilR63) not daughter La 131, lim 1% (HoreD63a)	P Ba X-rays, 0.107 (40%)	Cs ¹³³ (p, 3n) (TilR63)
Ba ¹³²		% 0.097 (NierA38b) 0.19 (AkiP56) Δ -88.4 (MTW) 7 (to Ba ¹³³) <0.2 (to Ba ¹ 33m) (GoldmDT64)			
Ba ¹³³	7.2 y (KatcS56a) 10.7 y (WyaE61)	EC (KatcS47a) no β [†] , lim 0.1% (LangeM56) Δ -87.67 (MTW)	A chem, n-capt, excit (KatcS47a) chem, genet (YuF48) daughter Ba 133m (YuF48)	Y Cs X-rays, 0.080 (36%, complex), 0.276 (7%), 0.302 (14%), 0.356 (69%), 0.382 (8%) e ⁻ 0.045, 0.075, 0.266, 0.319	Ba ¹³³ (n, Y) (KatcS47a, CrasB57) Cs ¹³³ (p, n) (GupR58)
Ba ¹³³ m	38.9 h (WilleR 60, YuF48) others (MocD48)	☆ IT (CorkJ41) △ -87.39 (LHP, MTW)	A chem, excit (CorkJ41, DubL40a) parent Ba 133 (YuF48)	Pa X-rays, 0.276 (17%) e 0.006, 0.011, 0.238, 0.270	Cs ¹³³ (p,n) (DubL40a) Cs ¹³³ (d,2n) (CorkJ41, HiIIR51b, HiIR51d) Ba ¹³² (n,Y) (YuF48)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C"=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
56 ^{Ba 134}		 % 2.42 (NierA38b) 2.60 (AkiP56) Δ -88.85 (MTW) <4 (to Ba¹³⁵) 0.16 (to Ba^{135m}) (GoldmDT64) 			
Ba ¹³⁵		% 6.59 (NierA38b) 6.7 (AkiP56) Δ -88.0 (MTW) σ _c 5 (GoldmDT64)			
Ba ^{135m}	28.7 h (WilleR60, YuF48)	 T (WeimK43a, YuF48) Δ −87.7 (MTW, LHP) 	A chem (KalbD40) chem, n-capt, sep isotopes (HillR51b) not daughter La 135 (MoriS65)	Y Ba X-rays, 0.268 (16%) e 0.231, 0.262	Ba ¹³⁴ (n, Y) (HillR51b, KalbD40)
Ba 135	0.32 s (FetP62a) others (CamE59)		G sep isotopes (FetP62a) assigned to Ba 136m (RudF65)		neutrons on Ba 135 (FetP62a, CamE59)
Ba ¹³⁶		% 7.81 (NierA38b) 8.1 (AkiP56) Δ -89.1 (MTW) σ _c <1 (to Ba ¹³⁷) 0.010 (to Ba ¹³⁷ m) (GoldmDT64)			
Ba ¹³⁶ m	0.32 s (FetP62a) 0.37 s (RudF65) others (CamE59)	★ IT (RudF65) △ -87.1 (LHP, MTW)	B chem, genet, genet energy levels (RudF65)	Y Ba X-rays, 0.164 (40%), 0.818 (100%), 1.05 (100%) e [0.126, 0.158]	daughter Cs ¹³⁶ (RudF65)
Ba ¹³⁷		% 11.32 (NierA38b) 11.9 (AkiP56) Δ -88.0 (MTW) σ _c 4 (GoldmDT64)	·		
Ba ¹³⁷ m	2.554 m (MerJ65) 2.60 m (MitA49) 2.6 m (TownJ48, WilleR60)	☆ IT (TownJ48) △ -87.4 (LHP, MTW)	A n-capt (AmaE35) chem, genet (TownJ48) daughter Cs 137 (TownJ48)	Y Ba X-rays, 0.662 (89%) e 0.624, 0.656	daughter Cs ¹³⁷ (TownJ48)
Ba 138		% 71.66 (NierA38b) 70.4 (AkiP56) -88.5 (MTW) σ _C 0.4 (GoldmDT64)			
Ba ¹³⁹	82.9 m (ButiJP58, FritK62) 84.0 m (BaeA57) 85.0 m (DilC51c) others (WilleR60, ShepL48, HahO40, KellWH60, PoolM37a)	φ ρ (PoolM37a) Δ -85.1 (MTW) σ _c 4 (GoldmDT64)	A chem, n-capt (AmaE35) chem, excit (PoolM38a) daughter Ca 139 (HahO39c, HeyF39, HahO40a, HahO40, SugaN50) descendant Xe 139 (HahO39c, HeyF39, DilC51a) descendant I 139 (SugaN49)	β 2.3 max e 0.126, 0.159 Y La X-rays, 0.166 (23%), 1.43 (0.4%)	Ba ¹³⁸ (n, Y) (AmaE35, PoolM37, SerL47b, YafL49a) fission (HeyF39, HahO39c, DilC51a, KatcS48, FinB51c)
Ba ¹⁴⁰	12.80 d (EngeD51c) 12.8 d (VasiI58)	# β (HahO39c) Δ -83.31 (MTW) σ _c <20 (Goldm DT64)	A chem, genet (HahO39, HahO39c) parent La 40 (HahO39, HahO39c, HahO40, GlasG40, HahO42a, GrumW46, FinB51b) daughter Cs 140 (SugaN50) descendant Xe 140 (HahO40, BradE51, DilC51a, DilC51, OveR51)	β 1.02 max e 0.024, 0.029 Y La X-rays, 0.030 (11%), 0.163 (6%), 0.305 (6%), 0.438 (5%), 0.537 (34%) daughter radiations from La 140	fission (HahO39, HeyF39, HahO40, GlasG40, GrumW46, SugaN50, DilC51a, DilC51, BradE51, OveR51, WilkR51, EngeD51c, EngeD51d, KatcS48, FinB51c)
Ba ¹⁴¹	18 m (SchumR59, FritK62, HahO42a, GoldsA51)	 p (HahO42a) Δ -80.1 (MTW) 	A chem, genet (HahO42a) daughter Cs ¹⁴¹ (HahO42a, WahA62) parent La ¹⁴¹ (HahO62a) descendant Xe ¹⁴¹ (BradE51, OveR51, DilC51a) others (HahO39a, HahO39, GoldsA51a, LangeA40)	β 3.0 max Y La X-rays, 0.118 († 10), 0.193 († 100), 0.28 († 50), 0.31 ? († 60), 0.35 († 20), 0.46 († 30, complex), 0.64 († 20, complex?), 0.73 († 7), 0.86 († 6), 0.93 († 3), 1.19 († 8), 1.29 († 3), 1.42 († 4), 1.65 († 3) daughter radiations from La 141	fission (HahO42a, GoldsA51, GoldsA51a, BradE51, OveR51, DiIC51a, SchumR59, FritK62, NagaK60)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
56 ^{Ba ¹⁴²}	11 m (SchumR59, FritK62a) others (HahO42a)		B chem, genet (HahO42a) parent La 142 (HahO42a) others (HahO39a, HahO39, LangeA40)	β 1.7 max Y La X-rays, 0.080 († 30), 0.26 († 100), 0.89 († 40), 0.97 († 15), 1.08 († 10), 1.20 († 35) daughter radiations from La 142	fission (SchumR59, FritK62, HahO42a)
Ba 143	12 s (WahA62)	Υ β (HahO42a)	B chem, genet (HahO42a) chem (WahA62) parent La ¹⁴³ (HahO42a)		fission (HahO42a, WahA62, FritK62a)
Ba ¹⁴⁴	short (DilC51a, DilC51)	Υ [β¯] (Di1C51a)	F genet (DilC5la) [descendant Xe ¹⁴⁴ , ancestor Ce ¹⁴⁴] (DilC5la, DilC5l)		descendant Xe ¹⁴⁴ from fission (DilC51, DilC51a)
57 ^{La 125}	<1 m (PreiI63)	*	F chem, genet [ancestor Cs 125] (PreiI63)		O ¹⁶ on In (PreiI63)
La 126	1.0 m (ShelR61, PreiI63)	★ [β [†] , EC] (ShelR61)	B chem, cross bomb, genet (ShelR61) chem (PreiI63) parent Ba ¹²⁶ (PreiI63, ShelR61)	Y Ba X-rays, 0.256, 0.511 (Y [±])	In 115 (O 16, 5n) (ShelR61, Preif63) Sb 121 (C 12, 7n) (ShelR61)
La ¹²⁷	3.5 m genet (YafL63) 3.8 m genet (Preil63)	φ [†] , EC] (PreiI63, YafL63)	B chem, genet (PreiI63, YafL63) parent Ba ¹²⁷ (PreiI63) ancestor Cs ¹²⁷ (YafL63)		C ¹² on Sb (YafL63) O ¹⁶ on In (PreiI63)
La ¹²⁸	4.2 m (PreiI63) 4.6 m (YafL63) 6 m (ShelR61)	Υ [β ⁺ , EC] (ShelR61)	B chem, cross bomb (ShelR61) chem, genet (YafL63, PreiI63) parent Ba 128 (PreiI63, YafL63) ancestor Cs 128 (YafL63)	Υ Ba X-rays, 0.279, 0.511 (Υ*)	Sb ¹²¹ (C ¹² , 5n) (ShelR61, YafL63) Sb ¹²³ (C ¹² , 7n) (ShelR61, YafL63) In ¹¹⁵ (O ¹⁶ , 3n) (ShelR61, PreiI63)
La ¹²⁹	10.0 m (YafL63) 7.2 m genet (PreiI63) =24 m (LavA63)	 [β[†], EC] (PreiI63, LavA63, YafL63) Δ −81 (MTW) 	A chem, genet (PreiI63, LavA63) chem, sep isotopes, cross bomb, genet (YaIL63) parent Ba 129 with t _{1/2} 2.20 h (YafL63), 2.1 to 2.4 h (LavA63) daughter Ce 129 (LavA63)		C ¹² on Sb (YafL63) O ¹⁶ on In (PreiI63)
La 130	8.7 m (YafL63) 9 m (ShelR61)		A chem, cross bomb, genet energy levels (ShelR61) chem, sep isotopes (YafL63)	Y Ba X-rays, 0.356, 0.45, 0.511 (Y*), 0.55, 0.72, 0.81, 0.91, 1.01, 1.19, 1.45, 1.55	Ba ¹³⁰ (p,n) (YafL63) Sb ¹²¹ (C ¹² , 3n) (ShelR61) Sb ¹²³ (C ¹² , 5n) (ShelR61)
La ¹³¹	56 m genet (YafL63) 61 m (CreC60) 58 m (GranM51) .	₩ EC 72%, β [†] 28% (CreC60) Δ -83.9 (MTW)	A chem, mass spect (GranM51) chem, genet (YafL63) parent Ba 131 (YafL63) not parent Ba 131m, lim 1% (HoreD63a)	β ⁺ 1.94 max e ⁻ 0.078, others γ Ba X-rays, 0.115 (23%), 0.169 (5%), 0.214 (8%), 0.285 (17%), 0.364 (20%), 0.417 (20%), 0.455 (8%), 0.511 (56%, γ [±]), 0.597 (7%), 0.878 (4%)	Ba ¹³⁰ (d,n) (CreC60) Sb ¹²³ (C ¹² ,4n) (YafL63, HoreD63a)
La ¹³²	4.5 h (GranM51) 4.8 h (WareW60) 4.2 h (GrigE60)	φ β (GranM51), [EC] Δ -83.1 (LHP, MTW)	A chem, mass spect (GranM51) daughter Ce ¹³² (WareW60)	β [†] 3.8 max Υ Ba X-rays, 0.47, 0.511 (Υ [±]), 0.56, 0.66, 0.90 (doublet), 1.03, 1.22, 1.58, 1.92	protons on Ba (GranM 51)
La ¹³³	4.0 h (NauR50)	EC, β ⁺ (weak) (NauR50) Δ -85.5 (MTW)	A chem, mass spect (NauR50) daughter Ce ¹³³ (StovB51)	Υ Ba X-rays, 0.511 (Υ [±]), 0.8 β [±] 1.2 max e ⁻ 0.26	Cs ¹³³ (a,4n) (NauR50)
1.a ¹³⁴	6.8 m (GirR5%a) 6.5 m (StovB51)	φ ⁺ 62%, EC 38% (GirR59a) β ⁺ ≈44%, EC ≈56% (StovB51) Δ -85.1 (MTW)	B chem, genet (StovB51) daughter Ce 134 (StovB51)	β [†] 2.7 max Υ Ba X-rays, 0.511 (124%, Υ [±]), 0.605 (6%)	daughter Ce 134 (StovB51) Cs 133 (a, 3n) (GirR59a)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△ = M – A), MeV (C ¹¹ = 0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities	Principal means of production
57 ^{La¹³⁵}	19.4 h (MoriS65) 19.8 h (MitA58) 19.5 h (ChubJ48) others (NauR50, WeimK43)	EC (MounK42, ChubJ48) no β [†] , lim 0.002% (MoriS65) others (GrenH65, MitA58) Δ -87.0 (MoriS65, MTW)	chem (MounK42) chem, excit (ChubJ48) chem, mass spect (NauR50) daughter Ce 135 (ChubJ48) not parent Ba 135m (MoriS65)	
La ¹³⁶	9.5 m (NauR50) 9.0 m (RobeB50) 10.0 m (GirR59) others (MauW47)	Υ EC ≈67%, β [†] ≈33% (NauR50) Δ -86.3 (MTW)	chem (MauW47) chem, excit, sep isotopes (RobeB50)	Cs ¹³³ (a,n) (RobeB50, NauR50, GirR59) Ba ¹³⁵ (d,n), Ba ¹³⁶ (d,2n) (RobeB50)
La ¹³⁷	6 x 10 ⁴ y sp act (BrosA56) others (ChubJ48, IngM48c, BrosA55)	★ EC (BrosA56) △ -88 (MTW)	mass spect (IngM48c) Y Ba X-rays chem (BrosA56)	Ce ¹³⁶ (n, Y) Ce ¹³⁷ (β ⁻) (IngM48c, BrosA56, BrosA55, ChubJ48)
La ¹³⁸	1.12 x 10 ¹¹ y sp act (GloR57) 1.1 x 10 ¹¹ y sp act (TurW56) others (PriR51, MulhG52a)	★ EC ≈70%, β ≈30% (GloR 57) EC 53%, β 47% (Tur W 56) EC ≈94%, β ≈6% (MulhG52a) % 0.089 (IngM47e, WhiF56) Δ -86.7 (MTW)	chem, mass spect (IngM47e) β 0.21 max Y Ba X-rays, 0.81 (30%), 1.426 (70%)	
<u>La</u> 139		% 99.911 (WhiF56, IngM47e) Δ -87.43 (MTW) σ _c 8.9 (GoldmDT64)		
La 140	40.22 h (KirH54) 40.27 h (PepD57) 40.3 h (YafL54a) 40.0 h (BallN51b, BisG50, WeimK43)	Υ β (PoolM38a) Δ -84.36 (MTW)	n-capt (MarsJK35) chem, excit, n-capt (PoolM38a) chem, mass spect (HaydR48) daughter Ba (HahO39, HahO40, GlasG40, HahO42a, GrumW46, FinB5lb) p 2.175 max (6%), 1.69 max (15 1.36 max . 0.329 (20%), 0.487 (40%), 0.8 (19%), 0.923 (10%), 1.596 (96%), 2.53 (3%)	PoolM 38a, GotH42,
La ¹⁴¹	3.87 h (AlsJ60) 3.90 h (FritK62) others (SchumR59, RydH58, KatcS51i, HahO42a)	φ β (HahO42a) Δ -83.06 (MTW)	chem (HahO42a) chem, genet (BurgW51, DuftS1a) daughter Ba ¹⁴¹ (HahO42a) parent Ce ¹⁴¹ (BurgW51, DuftS1a) descendant Xe ¹⁴¹ (BradE51) others (KatcS49, Curii39, BallN51h)	fission (HahO42a, KatcS51i, Schum R59, AlsJ60, FritK62)
La ¹⁴²	92.5 m (FritK62) 81 m (RydH58) 77 m (KatcS51i, BosA53, WilleR60) others (HahO42a)	φ β (KatcS5li) Δ -80.1 (MTW)	Chem (HahO42a, PresW64) β 4.51 max sep isotopes, excit (WolfsK60) γ 0.65 (48%), 0.90 (9%), 1.01 (1.06 (4%), 1.55 (5%, comple 1.74 (5%), 1.91 (9%), 2.05 (6%), 2.41 (15%), 2.55 (11%) descendant Cs 142 (FritK62a) descendant Xe 142 (WolfsK60) descendant Xe 142 (WolfsK60)	RydH58, BosA53, FritK62, SchumR59)
La ¹⁴³	14.0 m (FritK61a) others (HahO43a, GesH51)	φ β (GesH51) Δ -78.4 (MTW)	chem, genet (GesH51) parent Ce ¹⁴³ (GesH51) daughter Ba ¹⁴³ (HahO42a) descendant Cs ¹⁴³ (FritK62a)	1
La ¹⁴⁴	short (DilC51)	Ψ [β] (DilC51) Δ -75 (MTW)	genet (DilC51) [descendant Xe 144, ancestor Ce 144] (DilC51)	descendant Xe 144 from fission (DilC51)
58 ^{Ce¹²⁹}	≈13 m (LavA63)	☆ [β ⁺ , EC] (LavA63)	chem, genet (LavA63) parent La 129 (LavA63) Parent La 129 (LavA63) Ba 129	protons on Pr (LavA63)
Ce ¹³⁰	30 m (AlboG65, WareW60)	Υ [EC, β [†]] (AlboG65, GersG65)	chem, mass spect (AlboG65) Y [La X-rays), 0.13 daughter radiations from La 13	La ¹³⁹ (p, 10n) (GersG65)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Major radiations: approximate energies (MeV) and intensities	Principal means of production
58 ^{Ce¹³²}	4.2 h genet (WareW60)	☆ [EC] (WareW60) △ -82 (MTW)	chem, genet (WareW60) Parent La 132 (WareW60) Y [La X-rays], 0.18 daughter radiations from La 132	protons on Ce (WareW60)
Ce ¹³³	6.3 h (StovB51)	★ EC, β [†] (StovB51) Δ -83 (MTW)	chem, genet (StovB51) parent La ¹³³ (StovB51) β ⁺ 1.3 max Y La X-rays, 0.511 (Y*), 1.8 daughter radiations from La ¹³³	La ¹³⁹ (p, 7n) (StovB51)
Ce ¹³⁴	72.0 h (StovB51) 72 h (LavA60)	Ψ EC (StovB51) Δ -84.9 (MTW)	chem, excit (StovB51) parent La 134 (StovB51) daughter Pr 134 (LavA60, LavA63) Y La X-rays, 0.44? daughter radiations from La 134	La ¹³⁹ (p, 6n) (StovB51)
Ce ¹³⁵	17.0 h (DzhB63a) 17.6 h (TakaKa64) others.(StovB51, ChubJ48)	★ EC, β [†] <1% (StovB51) Δ -85 (MTW)	chem, genet (ChubJ48) parent La ¹³⁵ (ChubJ48) daughter Pr ¹³⁵ (HandT54c) A	
<u>Ce</u> 136	t _{1/2} (EC _K) >2.9 x 10 ¹¹ y sp act (HohK65)	% 0.193 (IngM47e) Δ -86.6 (MTW) σ _c 0.6 (to Ce ^{137m}) (GoldmDT64)		
Ce ¹³⁷	9.0 h (DanbG58) 8.7 h (BrosA55)	★ EC 99+%, β ⁺ ≤0.009% (StonN65a, LHP) Δ -86 (MTW)	chem, n-capt (BrosA55) chem, genet (DanbG58) daughter Ce ^{137m} (DanbG58, DahC58) Y La X-rays, 0.446 (2.3%, complex), 0.481 (0.06%, complex), 0.698 (0.04%), 0.99 (0.10%, complex) [0.004, 0.009], 0.408	daughter Pr 137 (DanbG58, DahC58) La 139(p, 3n) (DanbG58) Ce 136(n, Y) (FranR64) alphas on Ba (BrosA55)
Ce ^{137m}	34.4 h (DanbG58) others (BrosA55, DanbG56, ChubJ48)		chem, excit (ChubJ48) n-capt, sep isotopes (HillR51a) parent Ce ¹³⁷ (DanbG58) not daughter Pr ¹³⁷ (DanbG58) (Ce X-rays, 0.168 (0.4%), 0.255 (11%), 0.762 (0.16%), 0.825 (0.5%, complex) daughter radiations from Ce ¹³⁷	La 139 (p, 3n) (DanbG58) Ce 136 (n, Y) (HillR51a, KellH51, FranR64) alphas on Ba (BrosA55)
<u>Ce¹³⁸</u>		% 0.250 (IngM47e) Δ -87.7 (MTW) σ _c 1.0 (to Ce ¹³⁹) 0.04 (to Ce ^{139m}) (GoldmDT64)		
Ge ¹³⁹	140 d (PoolM48, PoolM43) others (WilleR60)	★ EC (EC(L)/EC(K) 0.37) (KetB56) EC(L)/EC(K) 0.21 (PruC54) △ -87.16 (MTW)	chem (PoolM43) chem, excit, cross bomb (PoolM48) n-capt, sep isotopes (HillR51a) daughter Pr 13 9 descendant Nd 13 9m (StovB51) descendant Nd 13 9m (StovB51)	Ce ¹³⁸ (n, Y) (HillR51a, KellH51, MosA50) La ¹³⁹ (d, 2n) (PoolM43, PoolM48)
Ce ^{139m}	54 s (JameR60) 60 s (KotK60) 55 s (KetB56)	↑ IT (KetB56) △ -86.41 (LHP, MTW)	n-capt (KetB56) not daughter Pr ¹³⁹ (DanbG58) e 0.706, 0.740	Ce ¹³⁸ (n, Y) (KetB56) La ¹³⁹ (p, n) (JameR60)
<u>Çe ¹⁴⁰</u>		% 88.48 (IngM47e) Δ -88.13 (MTW) σ _c 0.6 (GoldmDT64)		
Ce ¹⁴¹	32.5 d (FreeM50a) 33.1 d (WalkD49a) others (PoolM48, WilleR60)	p (HahO40c) Δ -85.49 (MTW) σ _c 30 (GoldmDT64)	chem (HahO40c) chem, excit, n-capt, cross bomb (PoolM43, BallN51d) chem, mass spect (HaydR48) daughter La	Ce ¹⁴⁰ (n, y) (PoolM43, BallN51d, IngM48c) daughter La ¹⁴¹ (BurgW51, DufR51a) Pr ¹⁴¹ (n, p) (PoolM43)

		Half-life		% abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
58 ^{Ce}	142	t _{1/2} (a) >5 x 10 ¹⁶ y sp act (MacfR61a) others (SenF59, Rie W57)	*	11.07 (IngM47e) no a (MacfR61a, SenF59) a (RieW57) -84.63 (MTW) 1 (GoldmDT64)					
Ce	143	33 h (Vasi158, MartiDW56, BallN51d, StovB50, BotW46a) 34 h (KondE51c, WilleR60) others (BunyD49, PoolM43)	Δ	β ⁻ (SugaN46) -81.67 (MTW) 6 (GoldmDT64)	A	chem (SugaN46, PoolM43) chem, cross bomb (PoolM48) chem, genet (BallN51d) mass spect (IngM48c) daughter La 143 (GesH51) parent Pr 143 (PoolM43, BotW46a, BallN51d) descendant Xe 143 (BradE51, DilC51a)	e ⁻	1.39 max 0.015, 0.051, 0.252 Pr X-rays, 0.057 (11%), 0.293 (46%), 0.493 (2.4%), 0.668 (7%), 0.725 (8%), 0.88 (1.4%), 1.10 (0.6%) daughter radiations from Pr ¹⁴³	Ce ¹⁴² (n, Y) (KellH51, PoolM43, BotW46a, PoolM48, BallN51d)
Ce	144	284 d (FlyK65a) 285 d (SchumR56, MerW57) 277 d (EasH60) others (BurgW51a, JoliF44)	Δ	β (HahO40c) -80.49 (MTW) 1.0 (GoldmDT64)	A	chem (HahO40c) chem, mass spect (HaydR48) parent Pr ¹⁴⁴ (HahO43a, NewA51a) descendant Xe ¹⁴⁴ (DilC51)		0.31 max 0.038, 0.092 Pr X-rays, 0.080 (2%), 0.134 (11%) daughter radiations from Pr ¹⁴⁴	fission (HahO40c, BornH43a, DilC51a, NewA51a, BurgW51a, GrumW48, FinB51c)
Се	145	3.0 m (Mark\$54) 3.1 m (WilleR60)		β (MarkS54) -77 (MTW)		chem, excit, genet (MarkS54) parent Pr ¹⁴⁵ (MarkS54)		2.0 max Y rays reported	fission (MarkS54) Nd 148 (n, a) (WilleR60)
Се	146	14 m (CareA53) 15 m (SchumR45) others (GotH46)		β (GotH43) -75.8 (MTW)	В	chem, genet (GotH43) parent Pr ¹⁴⁶ (GotH43, HahO43a, GotH46, CareA53)	١.	0.7 max Pr X-rays, 0.110 († 20), 0.142 († 42), 0.22 († 50), 0.27 († 12), 0.32 († 100) daughter radiations from Pr ¹⁴⁶	fission (GotH43, HahO43a, SchumR45, GotH46, BernsW54)
Ce	147	65 s genet (HoffD64)	*	β (HoffD64)		chem, genet (HoffD64) parent Pr ¹⁴⁷ (HoffD64)			fission (HoffD64)
Ce	148	≈43 s genet (HoffD64)	*	β (HoffD64)	в	chem, genet (HoffD64) parent Pr ¹⁴⁸ (HoffD64)			fission (HoffD64)
59 ^{Pr}	134	17 m (ClarJ65) 40 m genet (LavA63) others (LavA60)	*	β ⁺ (ClarJ65), [EC]	В	chem, genet (LavA60, LavA63) chem, excit, genet energy levels (ClarJ65) parent Ce 134 (LavA60, LavA63)	Y	Ce X-rays, 0.22, 0.30, 0.409, 0.511 (Y [±]), 0.639, 0.96 daughter radiations from Ce ¹³⁴ , La ¹³⁴	I ¹²⁷ (C ¹² , 5n) (ClarJ65) protons on Pr (LavA63)
Pr	135	22 m (HandT54c)	*	β^+ , EC (HandT54c)	В	chem, excit, genet (HandT54c) parent Ce ¹³⁵ (HandT54c)		2.5 max Ce X-rays, 0.080, 0.22, 0.30, 0.511 (Y [±]) daughter radiations from Ce ¹³⁵	Ce ¹³⁶ (p, 2n) (HandT54c)
Pr	136	1.2 h (HandT54c) 1.0 h (DanbG58)	*	EC ≈67%, β ⁺ ≈33% (DanbG58)	A	chem, excit (HandT54c) chem, mass spect (DanbG58)	1.	2.0 max Ce X-rays, 0.17?, 0.511 (66%, Y [±])	Ce ¹³⁶ (p,n) (HandT54c) protons on Ce, Pr (DanbG58)
Pr	137	1.5 h (DanbG58, DahC58)		EC 73%, β ⁺ 27% (DanbG58) -84 (MTW)	В	chem, mass spect (DanbG58, DahC58) parent Ce 137, not parent Ce 137m (DanbG58) daughter Nd 137 (GromK65)	Ι.	1.7 max Ce X-rays, 0.511 (54%, Y*), no other Y's (lim 6%) daughter radiations from Ce ¹³⁷	protons on Ce (DanbG58, DahC58)
Pr	138	2.10 h (DanbG58) 2.2 h (FujM64) 2.0 h (StovB51, HandT54c)		EC 77%, β [†] 23% (FujM64) EC 84%, β [†] 16% (DanbG58) others (StovB51) -82.9 (FujM64, MTW)	A	chem, excit (StovB51) chem, mass spect (DanbG58)	e-	1.65 max 0.258, 0.292 Ce X-rays, 0.298 (77%), 0.40 (9%), 0.511 (46%, Y [±]), 0.79 (100%), 1.04 (100%)	Ce ¹⁴⁰ (p, 3n) (StovB51, DanbG58, FujM64) Ce ¹³⁸ (p, n) (HandT54c)
Pr	138	short (GromK64)	*	(GromK64)	F	genet (GromK64) [daughter ≈5 h Nd ¹³⁸] (GromK64)			daughter ≈5 h Nd ¹³⁸ (GromK64)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△ ■ M – A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
59 ^{Pr¹³⁹}	4.5 h (DanbG58, StovB51, HandT54c) 4.9 h (BiryE63a)		EC 89%, β [†] 11% (BiryE63a) EC 93%, β [†] 7% (DanbG58) EC ≈94%, β [†] ≈6% (StovB51) others (BoreO61) -85.0 (BiryE63a, MTW)	A	chem, genet (StovB51) chem, mass str, genet (DanbG58) parent Ce 139 (StovB51, HandT54c, DanbG58) not parent Ce 139m (DanbG58)	Ι.	1.09 max Ce X-rays, 0.511 (18%, Y [±]), 1.35 (0.5%), 1.61 (0.3%)	Pr ¹⁴¹ (p, 3n) Nd ¹³⁹ (β ⁻) (DanbG58) Ce ¹⁴⁰ (p, 2n) (StovB51, DanbG58)
Pr ^{139m} ?	≈6 m (KolG63)	*		F	genet (KolG63) daughter Nd ¹³⁹ or Nd ¹³⁹ m? (KolG63)			daughter Nd ^{139m} (KolG63)
Pr ¹⁴⁰	3.39 m (EbrT65) others (DWirJ42, HandT54c, PoolM38a, BiryE62, WilleR60, StovB51, HubeO45, PerlmM49)		EC 50%, 6 [†] 50% (BrabV60) EC(K)/EC(L) 8 (BiryE60) others (BiryE60, BiryE62, BrowCI52) -84.78 (HisK64, MTW)	A	excit (AmaE35) excit (PoolM38a) daughter Nd ¹⁴⁰ (WilkG49c, BrowCI52)	e-	2.32 max 1.862 (0.07%) Ce X-rays, 0.511 (100%, Y [±]), 1.596 (0.3%)	daughter Nd ¹⁴⁰ (WilkC49c, BrowCI52, HisK64)
Pr ¹⁴¹	t _{1/2} (a) >2 x 10 ¹⁶ y sp act (PorsW54)	Δ	100 (IngM48a, CollT57) -86.07 (MTW) 12 (GoldmDT64)					
Pr ¹⁴²	19.2 h (WyaE61, BotW46a) 19.3 h (DWirJ42) 19.1 h (JensE50) others (WilleR60)	Δ	β ⁻ (DWirJ42) no EC or β ⁺ , lim 0.5% (ReynJH50b) -83.85 (MTW) 20 (GoldmDT64)	A	n-capt (AmaE35, MarsJK35)	ı.	2.16 max 1.57 (3.7%)	Pr ¹⁴¹ (n, Y) (AmaE35, MarsJK35, PoolM37, PoolM38a, DWirJ42, SerL47b)
Pr ¹⁴³	13.59 d (PepD57) 13.76 d (WriH57) 13.6 d (HoffD63) others (FelL49, BallN51f, RoyL56, PoolM48, MartiDW56)	Δ	β (BallN51e, JoliF44) -83.11 (MTW) 89 (GoldmDT64)	A	chem (BallN51e, JoliF44) mass spect (HaydR46a) daughter Ce ¹⁴³ (PoolM43, BotW46a, BallN51d) others (HahO43a, FinB51c)	ľ	0.933 max average p energy: 0.31 calorimetric (HovV64) no Y	Ce ¹⁴² (n, Y) Ce ¹⁴³ (β ⁻) (PoolM43, BotW46a, BallN51d) fission (HahO43a, JoliF44, BallN51e, FinB51c)
Pr 144	17.27 m (PepD57) 17.30 m (HoffD63) others (NewA51a, SeiJ51b, HahO43a, GrumW46)		β (NewA51a) -80.81 (MTW)	A	chem, genet (NewA51a, HahO43a) daughter Ce ¹⁴⁴ (HahO43a, NewA51a)	l.	2.99 max 0.695 (1.5%), 1.487 (0.29%), 2.186 (0.7%)	daughter Ce 144 (HahO43a, NewA51a)
Pr ¹⁴⁵	5.98 h (DroB59) 5.9 h (MarkS54, AlsJ60)	*	β ⁻ (MarkS54) -79.66 (MTW)	В	chem, excit (MarkS54) chem, sep isotopes (HoffD64) daughter Ce ¹⁴⁵ (MarkS54)		1.80 max 0.072, 0.68, 0.75, 0.92, 0.98, 1.05, 1.16	fission (MarkS54, DroB59, AlsJ60, HoffD64) Nd ¹⁴⁶ (Y,p) (HoffD64)
Pr 146	24.0 m (HoffD64) others (SchumR45a, CareA53, GotH46)		β ⁻ (GotH43) -76.8 (MTW)	В	chem, genet (GotH43) daughter Ce ¹⁴⁶ (GotH43, HahO43a, GotH46, CareA53)	1.	3.7 max 0.455 (77%), 0.74 (16%), 0.78 (15%), 0.92 (6%), 1.37 (6%), 1.51 (27%), 1.72 (4%), 2.23 (4%), 2.39 (3%), 2.73 (1.7%)	fission (GotH43, HahO43a, SchumR45, GotH46, BernsW54, HoffD64) Nd ¹⁴⁶ (n,p) (RamayA65)
Pr ¹⁴⁷	12.0 m (HoffD64) 12 m (WilleR60)	ı	β (HoffD64) -75.5 (HoffD64, MTW)	В	chem, genet (HoffD64) parent Nd 147, daughter Ce 147 (HoffD64)	ľ	2.1 max 0.078 (17%, complex?), 0.127 (9%, complex?), 0.32 (47%, complex), 0.56 (39%), 0.61 (10%), 0.65 (24%), 1.26 (11%)	Nd ¹⁴⁸ (Y, p), fission (HoffD64)
Pr 148	2.0 m (HoffD64)		β ⁻ (HoffD64) -72.9 (HoffD64, MTW)	В	chem, genet energy levels (HoffD64) daughter Ce 148 (HoffD64)	Ι :	4.2 max 0.30	fission (HoffD64)
Pr ¹⁴⁹	2.3 m (HoffD64)	*	β ⁻ (HoffD64)	E	excit, sep isotopes (HoffD64)		2.8 max 0.08, 0.155, 0.325, 0.36, 0.745	Nd ¹⁵⁰ (Y,p) (HoffD64)
60 ^{Nd 137}	55 m (Grom K 65)	¥	β [†] , [EC] (GromK65)	В	chem, atomic level spacing, genet (GromK65) parent Pr ¹³⁷ (GromK65)	е [–] Ү	3 max 0.067 [Pr X-rays, 0.109, 0.511 (Y [±]), 0.55 (complex)] daughter radiations from Pr ¹³⁷ , Ce ¹³⁷	protons on Ta, Er (GromK65)

	Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
	60 ^{Nd¹³⁸}	22 m (StovB51)	*	β [†] (StovB51), [EC]	D	chem, excit (StovB51)	ı.	2.4 max [Pr X-rays, 0.511 (Y [±])]	Pr ¹⁴¹ (p, 4n) (StovB51)
	Nd ¹³⁸	≈5 h (GromK64)	¥	(GromK64)	F	chem (GromK64)			protons on Ta, Er (GromK64)
	Na ¹³⁹	[<<5 h] (GromK63b)	1	[EC, β [†]] -82 (MTW)	F	[genet] (GromK63b) [daughter Nd ^{13 9m}] (GromK63b)	β*, Υ	see Nd ¹³⁹ m	[daughter Nd ^{139m}] (GromK63b)
	Nd ^{13 9m}	5.5 h (StovB51) 5.2 h (BoncN61)		IT (+EC+β [†] ?) (GromK63b) EC ≈90%, β [†] ≈10% (with Nd ¹³⁹) (StovB51) -82 (LHP, MTW)	В	chem, genet (StovB51) atomic level spacing (GromK63b) ancestor Ce ¹³⁹ (StovB51)	e-	3.1 max 0.072, 0.107, 0.189, 0.226 Nd X-rays, Pr X-rays, 0.114 († 80), 0.327 († 50), 0.511 († 1400), 0.73 († 210, complex), 0.82 († 70, complex), 0.90 († 25), 0.983 († 70), 1.03 († 30), 1.10 († 30), 1.24 († 20), 1.34 († 20), 1.48 († 10), 1.58 († 8), 2.05 († 10) daughter radiations from Pr 139 daughter radiations from Nd 139 included in above listing	Pr ¹⁴¹ (p, 3n) (StovB51)
	Nd ¹⁴⁰	3.3 d (WilkG49c)		EC (BrowCI52) EC(K)/EC(L) 6 (BiryE60) -84 (MTW)	A	chem, excit, genet (WilkG49c) parent Pr ¹⁴⁰ (WilkG49c, BrowCI52)	\ 	Pr X-rays daughter radiations from Pr ¹⁴⁰	Pr ¹⁴¹ (p, 2n) (StovB51) Pr ¹⁴¹ (d, 3n) (WilkG49c, BrowCI52)
,	Nd ¹⁴¹	2.42 h (WilkG49c) 2.5 h (KurbJ42) 2.6 h (BiryE63) others (WilleR60)		EC 96%, β [†] 4% (BiryE63) EC 98%, β [†] 2% (PolH58) others (AlfWL63) -84.27 (MTW)	A	excit (KurbJ42) chem, excit (WilkG49c) others (PoolM38a)	ı.	0.79 max Pr X-rays, 0.145 (0.2%), 0.511 (6%, Y*), 1.14 (2%, complex?), 1.30 (1%)	Pr ¹⁴¹ (p,n) (KurbJ42, WilkG49c) Pr ¹⁴¹ (d,2n) (WilkG49c, PolH58)
	Nd ^{14 lm}	64 s (JameR60) 61 s (KotK60)		[IT] (KotK60) -83.52 (LHP, MTW)	С	excit (JameR60) chem (KotK60)	Y	0.755	Pr ¹⁴¹ (p,n) (JameR60)
	Nd 142		Δ	27.13 (IngM48a) 27.09 (WalkW53) 27.3 (WhiF56) -86.01 (MTW) 17 (GoldmDT64)					
	Nd 143		Δ	12.20 (IngM48a) 12.14 (WalkW53) 12.32 (WhiF56) -84.04 (MTW) 330 (GoldmDT64)					
	Nd 144	2.4 x 10 ¹⁵ y sp act (MacfR61a) 2.1 x 10 ¹⁵ y sp act (IsolA65) 5 x 10 ¹⁵ y sp act (PorsW56, PorsW54) 2 x 10 ¹⁵ y sp act (WaldE54)	% 	a (WaldE54, PorsW54, PorsW56) 23.87 (IngM48a) 23.83 (WalkW53) 23.8 (WhiF56) others (IngM50a) -83.80 (MTW) 5 (GoldmDT64)	A	sep isotopes, decay charac, chem (PorsW56, MacfR6la)		1.83	
	Nd 145	t _{1/2} (a) >6 x 10 ¹⁶ y (IsolA65)	Δ	8.29 (WhiF56, WalkW53) 8.30 (IngM48a) -81.47 (MTW) 50 (GoldmDT64)					
`	Na ¹⁴⁶		Δ	17.18 (IngM48a) 17.26 (WalkW53) 17.1 (WhiF56) others (IngM50a) -80.96 (MTW) 2 (GoldmDT64)					

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
60 ^{Nd 147}	11.06 d (WriH57) 11.02 d (HoffD63) 11.1 d (AlsJ60) others (KondE51a, RutW52, MarinJ51, EmmW51, BotW46a)	* β (MarinJ47, MarinJ51) Δ -78.18 (MTW)	A chem, genet (MarinJ47, MarinJ51a) parent Pm 147 (MarinJ47, MarinJ51a) daughter Pr 147 (HoffD64)	β- e- 0.046, 0.084 Y 0.091 (28%), 0.319 (3%), 0.43 (4%, complex), 0.533 (13%) daughter radiations from Pm 147	Nd 146 (n, Y) (BotW46a, MarinJ47, CorkJ48a, MarinJ51c) fission (MarinJ51)
Nd 148		% 5.72 (IngM48a) 5.74 (WalkW53) 5.67 (WhiF56) others (IngM50a) \$\Delta -77.44 (MTW)\$ \$\sigma_c\$ (GoldmDT64)			
Nd ¹⁴⁹	1.8 h (RutW52, WilleR60, HoffD64) 2.0 h (BotW46a, PoolM38a) others (MarinJ51c)	♀ β (PoolM38a) △ -74.41 (MTW)	A excit (PoolM38a) chem, genet (MarinJ51c) parent Pm ¹⁴⁹ (KruP52, MarinJ51c)	β 1.5 max e 0.051, 0.068, 0.079, 0.090, 0.165, 0.195 Y Pm X-rays, 0.114 (18%), 0.156 (4%), 0.210 (27%), 0.27 (26%, complex), 0.327 (5%), 0.424 (9%), 0.541 (10%), 0.654 (9%) daughter radiations from Pm 149	Nd 148 (n, Y) (PoolM 38a, BotW46a, MarinJ51c, GopK64)
Nd ¹⁵⁰	$t_{1/2}$ (β) >10 ¹⁶ y sp act (DixD54a) $t_{1/2}$ ($\beta\beta$) >2 x 10 ¹⁸ y sp act (CowC56) others (MulhG52)	% 5.60 (IngM48a) 5.63 (WalkW53) 5.56 (WhiF56) others (IngM50a) \$\Delta\$ -73.67 (MTW) \$\sigma\$c 1.5 (GoldmDT64)			
Nd ¹⁵¹	12 m (RutW52, MarinJ51c) others (WilleR60)	Υ β (RutW52) Δ -71.0 (MTW)	B n-capt (MarinJ51c) sep isotopes, n-capt, atomic level spacing (RutW52) parent Pm 151 (RutW52)	β-2.0 max e-0.072 Y Pm X-rays, 0.086 (5%), 0.118 (40%), 0.138 (6%), 0.174 (10%, complex), 0.256 (11%), 0.425 (5%), 0.737 (5%), 0.797 (3%), 1.122 (2%), 1.180 (9%)	Nd ¹⁵⁰ (n, Y) (RutW52, MarinJ51c, SchmL59a FosD65)
61 ^{Pm 141}	22 m (GratI59) 20 m (FiscV52)	# β ⁺ 57%, EC 43% (Grati59) Δ -80.7 (MTW)	A chem, excit (FiscV52) mass spect (GratI59)	β ⁺ 2.6 max Nd X-rays, 0.195 (13%), 0.511 (114%, Y [±]) daughter radiations from Nd 141	Pr ¹⁴¹ (a, 4n) (GratI59) Nd ¹⁴² (p, 2n) (FiscV52)
Pm 142	40 s (GratI59) others (MarsT58)	p ⁺ ≈95%, EC ≈5% (GratI59) Δ -81.2 (MTW)	B chem, genet (MarsT58) excit (GratI59) daughter Sm ¹⁴² (MarsT58)	β ⁺ 3.78 max (MarsT58) Y Nd X-rays, 0.511 (190%, Y [±])	Nd 142 (a, 4n) Sm 142 (EC) (Grat159, MarsT58) Nd 142 (p, n) (Grat159)
Pm ¹⁴³	0.73 y (PagI63, BunnL64, FunE60) 0.78 y (WilkG50e)	★ EC (WilkG50e) △ -82.9 (MTW)	A chem, excit (WilkG50e) chem, mass spect (BallN58)	Y Nd X-rays, 0.742 (47%) e 0.698	Sm ¹⁴⁴ (p, 2n)[Eu ¹⁴³][EC Sm ¹⁴³ (EC) (FunE60) Pr ¹⁴¹ (a, 2n) (WilkG50e FiscV52, OfeS59, BunnL64) Nd ¹⁴³ (p, n) (PagI63)
Pm ¹⁴⁴	0.96 y (BunnL64) 1.03 y (PagI63) 1.1 y (FunE60) 1.2 y (TotK59c) others (FiscV52)	 EC (FiscV52) no β⁺, lim 0.2% (OfeS59) Δ -82 (MTW) 	A chem (FiscV52) chem, mass spect (BallN58) excit (OfeS59)	Y Nd X-rays, 0.474 (45%), 0.615 (99%), 0.695 (99%) e 0.430, 0.571, 0.651	Pr ¹⁴¹ (a,n) (OfeS59, TotK59c, FiscV52) Nd ¹⁴⁴ (p,n) (PagI63, SugiyK61, FiscV52)
Pm 144?	60 d (PagI63)	☆ (PagI63)	F sep isotopes (PagI63)	Y y spectrum may be identical to 1.1 y Pm 144 (PagI63)	Nd 144 (p, n) (PagI63)
Pm 145	17.7 y (BrosA59) others (ButeF51)	Φ EC (ButeF51) a 3 x 10 ⁻⁷ % (NurM62) Δ -81.33 (MTW)	A chem, genet (ButeF51) chem, mass spect (BallN58) daughter Sm 145 (ButeF51)	Y Nd X-rays, 0.067 (1.0%), 0.072 (2.3%) e 0.023, 0.028, 0.061	Sm ¹⁴⁴ (n, Y)Sm ¹⁴⁵ (EC) (ButeF51, BrosA59)
Pm 145	16 d (LongJ52a)	약 β [†] (LongJ52a)	F sep isotopes (LongJ52a)	β ⁺ 0.45 max	protons on Nd (LongJ52a)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
61 ^{Pm} ¹⁴⁶	4.4 y (PagI63) 1.9 y (FunE60) 1 y (FiscV52) 1-2 y (LongJ52a)		EC 65%, β 35% (FunE60) EC 69%, β 31% (PagI63) -79.52 (MTW)	A	chem, excit (FiscV52) chem, sep isotopes, genet energy levels (FunE60, FunE62)	l' :	0.78 max Nd X-rays, 0.453 (65%), 0.75 (65%, doublet)	Nd ¹⁴⁶ (p,n) (PagI63, FiscV52, LongJ52a) Nd ¹⁴⁸ (p,3n) (FunE60)
Pm ¹⁴⁷	2.62 y (WheeE65) 2.60 y (FlyK65a) 2.64 y (MerW57) 2.66 y (SchumR56) others (MelaE55, IngM50a, SchumR51a)	Δ	β ⁻ (BallN51g) -79.08 (MTW) 120 (to Pm ¹⁴⁸) 110 (to Pm ^{148m}) (GoldmDT64)	A	chem (MarinJ47, MarinJ51a) mass spect (HaydR48) daughter Nd ¹⁴⁷ (MarinJ47, MarinJ51a) parent Sm ¹⁴⁷ (RasJ50)		0.224 max average β energy: 0.070 calorimetric (HovV62) no Y	Nd ¹⁴⁶ (n, Y) Nd ¹⁴⁷ (β ⁻) (MarinJ47, MarinJ5la) fission (BallN51g, SeiJ51c, MarinJ5la, GrumW48, IngM50a)
Pm 148	5.4 d (ReicC62, EldJ61) others (SchweC62a, ParkG47, KurbJ43, BhaS59)	Δ	β (KurbJ43) -76.89 (BabC63a, MTW) =2000 (GoldmDT64)	A	chem, n-capt, mass spect (ParkG47) daughter Pm ^{148m} (BabC63a)	l' :	2.48 max 0.551 (27%), 0.914 (15%), 1.465 (23%)	Nd 148 (p,n) (LongJ52, FiscV52, KurbJ43, SchweG62a) Nd 148 (d,2n) (KurbJ42, KurbJ43, BabC63a) Pm 147 (n, Y) (ParkG47, ReicC62)
Pm ¹⁴⁸ m	41.8 d (EldJ61) 40.6 d (ReiC62) 45.5 d (SchweC62a) others (FiscV52, FolR51, LongJ52)	Δ	β ⁻ 93%, IT 7% (BabC63a) others (ReiC62, SchweC62a) -76.75 (LHP, MTW) 30,000 (GoJ4mDT64)	A	excit, sep isotopes (LongJ52) chem (FolR51) chem, mass spect, genet (BabC63a) parent Pm ¹⁴⁸ (BabC63a)	e ⁻	0.69 max 0.031, 0.053, 0.091, 0.242, 0.503, 0.583 Pm X-rays, Sm X-rays, 0.289 (13%), 0.413 (17%), 0.551 (95%), 0.630 (87%), 0.727 (36%), 0.916 (21%), 1.015 (20%) daughter radiations from Pm 148	Nd ¹⁴⁸ (p, n) (LongJ52, FiscV52, SchweC62a) Nd ¹⁴⁸ (d, 2n) (BabC63a) Pm ¹⁴⁷ (n, Y) (ReiC62)
Pm ¹⁴⁹	53.1 h (HoffD63, BunnL60) others (ArtnA60, FiscV52, IngM47d, RutW52, KondE51c, BotW46a, MarinJ51b)	ı	β (MarinJ47) -76.07 (MTW)	A	chem (MarinJ47, MarinJ51b) chem, mass spect (IngM47d) daughter Nd ¹⁴⁹ (KruP52, MarinJ51c)	1.	1.07 max 0.286 (2%), 0.58 (0.1%), 0.85 (0.2%)	Nd ¹⁴⁸ (n, Y)Nd ¹⁴⁹ (β ⁻) (KruP52, MarinJ47, SchmL60a, BunnL60)
Pm 150	2.68 h (FiscV52) 2.7 h (LongJ52)	ı	β (LongJ52) -73.6 (MTW)	A	excit, sep isotopes (LongJ52) chem, excit, sep isotopes (FiscV52)	1.	3.05 max 0.334 (71%), 0.406 (7%), 0.71 (8%), 0.831 (18%), 0.88 (12%), 1.165 (23%), 1.33 (22%), 1.75 (10%), 1.96 (2.5%), 2.06 (1.2%), 2.53 (0.9%)	Nd ¹⁵⁰ (p,n) (LongJ52, FiscV52)
Pm ¹⁵¹	27.8 h (HoffD63) 28.4 h (BunnL60) 27.5 h (RutW52)	I -	β ⁻ (RutW52) -73.40 (MTW)	A	genet, atomic level spacing (RutW52) chem (BunnL60) daughter Nd ¹⁵¹ (RutW52)	e-	1.19 max 0.003, 0.018, 0.053, 0.058 Sm X-rays, 0.07 (5%, complex), 0.10 (7%, doublet), 0.17 (18%, complex), 0.24 (5%, complex), 0.275 (6%), 0.340 (21%), 0.45 (5%, complex), 0.66 (3%, complex), 0.72 (6%, complex), others to 0.96	Nd ¹⁵⁰ (n, Y) Nd ¹⁵¹ (β ⁻) (RutW52, BunnL60)
Pm?	12.5 h (FolR51, (PoolM38a)	*	β (PoolM 38a)	E	(PoolM38a) chem (FolR51)			deuterons on Nd (PoolM38a) fission (FolR51)
Pm 152	6.5 m (WilleR58, WilleR60)	-	β (WilleR58) -71 (MTW)	В	sep isotopes, excit (WilleR58) genet energy levels (AteA59)		2.2 max [Sm X-rays], 0.122, 0.245	Sm ¹⁵² (n,p) (WilleR58, WilleR60, AteA59)
Pm ¹⁵³	5.5 m (KotK62)	1	β (KotK62) -70.8 (MTW)	E	excit, sep isotopes (KotK62)	١.	1.65 max 0.090 (?), 0.12, 0.18	Sm ¹⁵⁴ (Y, p) (KotK62)
Pm ¹⁵⁴	2.5 m (WilleR58, WilleR60)	*	β (WilleR60)	С	excit, sep isotopes (WilleR58)	β-	2.5 max	Sm 154(n,p) (WilleR58, WilleR60)
62 ^{Sm 142}	73 m (GratI59) 72 m (MarsT58)	*	EC ≈50%, β [†] ≈50% (DCapG59)	В	chem (MarsT58) excit (Gratt59) parent Pm 142 (MarsT58)	Y	Pm X-rays, 0.15-0.35 (complex), 0.511 (100%, Y*) daughter radiations from Pm 142.	Nd 142 (a, 4n) (GratI59, MarsT58)
Sm ¹⁴³	9.0 m (SilE56) 8.9 m (AlfWL63a) 8.6 m (GratI59) 8.5 m (WilleR60) 8.3 m (MirM56) 8.8 m (KotK60) others (ButeF50)		EC 52%, β ⁺ 48% (DCapG59) EC ≈63%, β ⁺ ≈37% (GratI59) others (SilE56, MirM56) -79.6 (MTW)	В	chem (ButeF50) excit (SilE56) chem, sep isotopes (MirM56)	4	Pm X-rays, 0.511 (100%, Y [±])	Nd 142 (a, 3n) (GratI59) Sm 144 (n, 2n) (WilleR60, MirM56, AlfWL63a) Sm 144 (y, n) (SiIE56, ButeF50, KotK60, DCapG59)

Isotope Z A	Half-life	Type of decay (♣♠); % abundance; Mass excess (△≡M-A), MeV (C¹=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
62 ^{Sm 143m}	64 s (KotK60) 65 s (AIWL63a) 61 s (BroaK65) others (JameR60)	Υ [IT] (KotK60) Δ −78.8 (LHP, MTW)	C chem (KotK60) excit (AlfWL63a)	Y 0.748	Sm ¹⁴⁴ (n, 2n) (AlfWL63a) Sm ¹⁴⁴ (Y, n) (KotK60) Sm ¹⁴⁴ (p, pn) (JameR60)
<u>Sm¹⁴⁴</u>		% 3.16 (IngM48) 3.15 (CollT57) 3.02 (AitK57) Δ -81.98 (MTW) σ _c ≈0.7 (GoldmDT64)			·
Sm ¹⁴⁵	340 d (BrosA59) others (ButeF51, CorkJ48a, IngM47c)	Φ EC (ButeF51, RutW52) Δ -80.67 (MTW) σ _c ≈100 (GoldmDT64)	A mass spect (IngM47c) chem (ButeF51) parent Pm 145 (ButeF51)	Y Pm X-rays, 0.061 (13%), 0.485 (3 x 10 ⁻³ %) e ⁻ 0.016, 0.054 daughter radiations from Pm 145	Sm 144(n, Y) (ButeF51, RutW52, IngM47c, BrosA59)
Sm ¹⁴⁶	7 x 10 ⁷ y sp act (NurM64) 5 x 10 ⁷ y yield (DunlD53)	* α (DunlD53) % <2 x 10 ⁻⁷ (MacfR60) Δ -81.05 (MTW)	B chem, decay charac (DunlD53)	a 2.46	Sm ¹⁴⁷ (n, 2n) (NurM64) alphas on Nd (DunlD53)
<u>Sm</u> 147	1.05 x 10 ¹¹ y sp act (WriP61) others (DonhD64, MacfR61a, GraeG61, BearG54, BearG58, KarrM60, KarrM60a, LatC47, HosR35, PicE49)	* α (HevG32, LibW33) % 15.07 (IngM48) 15.1 (CollT57) 14.9 (AitK57) Δ -79.30 (MTW) σ _C ≈90 (GoldmDT64)	A chem (HevG32) sep isotopes, mass spect WeaB50) chem, genet, mass spect (RasJ50) daughter Pm 147 (RasJ50)	a 2.23	
<u>Sm</u> ¹⁴⁸	$t_{1/2}$ (a) >2 x 10 ¹⁴ y sp act (MacfR61a) $t_{1/2}$ (a) 1.2 x 10 ¹³ y sp act (KarrM60)	% 11.27 (IngM48) 11.35 (CollT57) 11.22 (AitK57) ★ no a (MacR61a) a (KarrM60) -79.37 (MTW)			
<u>Sm</u> 149	>1 x 10 ¹⁵ y sp act (MacfR61a) 4 x 10 ¹⁴ y sp act (KarrM60)	% 13.82 (AitK57) 13.84 (IngM48) 14.0 (CollT57) * no α (MacfR61a) α (KarrM60) Δ −77.15 (MTW) σ _C 41,500 (GoldmDT64)			
<u>Sm¹⁵⁰</u>		% 7.47 (IngM48, CollT57) 7.40 (AitK57) Δ -77.06 (MTW) σ _C 100 (GoldmDT64)			
Sm ¹⁵¹	≈87 y (FlyK65a) ≈93 y yield + mass spect (MelaE55) ≈73 y (KarrD52) ≈120 y yield (IngM50a)	φ β (IngM47c) Δ -74.59 (MTW) σ _c 15,000 (GoldmDT64)	A mass spect (IngM47c, IngM50a) chem (MarinJ49a)	β-0.076 max e-0.014, 0.020 Y Eu L X-rays, 0.022 (4%)	fission (IngM50a, MarinJ49a, AchW59) Sm ¹⁵⁰ (n, Y) (IngM47c)
<u>Sm¹⁵²</u>		% 26.63 (IngM48) 26.6 (CollT57) 26.8 (AitK57) Δ -74.75 (MTW) σ _C 210 (GoldmDT64)			
Sm ¹⁵³	46.8 h (WyaE61) 47.1 h (CorkJ58, CabM62) 46.2 h (GreeRE61) 46.5 h (HoffD63) 47.0 h (LeeM54) others (KurbJ42, BotW46a, Wins L51, RutW52)	φ β ⁻ (KurbJ42) Δ −72.56 (MTW)	A n-capt, excit (PoolM38a) mass spect (HaydR46, IngM47d) chem (WinsL51)	β 0.80 max e 0.022, 0.055, 0.062, 0.095, 0.101 Y Eu X-rays, 0.070 (5.4%), 0.103 (28%), 0.41 to 0.64 (0.6%, 16 Yrays)	Sm ¹⁵² (n, Y) (HevG36, PoolM38a, HaydR46, SerL47b, WinsL51) Nd ¹⁵⁰ (a, n) (KurbJ42)
<u>Sm¹⁵⁴</u>	;	% 22.53 (IngM48) 22.4 (Coll757) 22.9 (AitK57) others (IngM50a) Δ -72.39 (MTW) σ _C 5 (GoldmDT64)			

Isotope Z A	Half-life	Type of decay (♣♠); % abundance; Mass excess (△■M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
62 Sm ¹⁵⁵	23.5 m (RutW52) 21.9 m (SunR60) others (WinsL51a, PoolM38a)	φ β (KurbJ42)	A	n-capt (AmaE35, MarsJK35) chem (WinsL51a) sep isotopes (SuR60, SchmL59b) parent Eu ¹⁵⁵ (IngM47c)	e-	1.53 max 0.056, 0.097, 0.103 Eu X-rays, 0.104 (73%), 0.246 (4%)	Sm 154 (n,Y) (AmaE35, MarsJK35, HevG36, PoolM38a, SerL47b, IngM47c, WinsL5la, SunR60, SchmL59b)
Sm ¹⁵⁶	9.4 h (GunR63) 9 h (AlsJ60)	φ β ⁻ (WinsL51c) Δ −69.33 (MTW)	В	chem, genet (WinsL51c) parent Eu ¹⁵⁶ (WinsL51c)	e-	0.72 max 0.014, 0.021, 0.030, 0.039 Eu X-rays, 0.088 (30%), 0.166 (10%), 0.204 (20%), 0.25 (5%, complex), 0.291 (3%) daughter radiations from Eu ¹⁵⁶	fission (WinsL51c, AlsJ60, GunR63)
Sm 157	0.5 m (WilleR60)	☆ [β¯] (WilleR60)	С	sep isotopes, cross bomb (WilleR60)	Υ	0.57	Gd ¹⁶⁰ (n, a) (WilleR60)
63 ^{Eu} ¹⁴³	2.3 m (KotK65)	Υ β [†] (KotK65), [EC]	E	excit, decay charac (KotK65)	١.	4.0 max 0.511 (Υ [±])	Sm ¹⁴⁴ (d, 3n) (KotK65)
Eu ¹⁴⁴	10.5 s (MesR65)	# β ⁺ (MesR65), [EC] Δ -75.66 (MesR65, MTW)	С	excit, decay charac (MesR65)		5.2 max . 0.511 (Y [±])	Sm 144 (p, n) (MesR65)
Eu ¹⁴⁴	18 m (HoffR52)	★ β ⁺ (HoffR 52)	G	excit, sep isotopes (HoffR52) activity not observed (OlkJ59b, MesR65)			protons on Sm ¹⁴⁴ (HoffR 52)
Eu ¹⁴⁵	5.9 d (FrieA63) 5.6 d (GrovJ59) others (HoffR51)	Φ EC 99%, β [†] 1% (FrieA63) Δ −77.9 (MTW)) A	chem, excit, sep isotopes (GrovJ59) chem, mass spect (FrieA63) daughter Gd ¹⁴⁵ (GrovJ59) daughter Tb ¹⁴⁹ (HoffR51)		Sm X-rays, 0.23?, 0.33?, 0.53 (complex), 0.656 († 30), 0.766 († 10), 0.894 († 100), 1.66 († 16), 2.00 († 8) 0.063, 0.103, 0.847 daughter radiations from Sm 145	Sm ¹⁴⁴ (a, 3n) Gd ¹⁴⁵ (EC) (GrovJ59, OlkJ59b, FrieA63) Sm ¹⁴⁴ (d, n) (GrovJ59)
Eu 146	4.59 d (TakekE64) others (FrieA63, GrovJ59, FunE62, GoroG58, AntoN59a, GoroG57a)	★ EC 96.5%, β [†] 3.5% (FunE62) EC 95.5%, β [†] 4.5% (TakekE64) others (FrisA63) Δ -77.18 (MTW)	A	chem, genet (GoroG57a, GoroG58, GrovJ59) chem, mass spect (FrieA63) daughter Gd ¹⁴⁶ (GoroG58, GrovJ59)	β+	Sm X-rays, 0.511 (7%, Y [±]), 0.634 (77%, doublet), 0.666 (12%), 0.71 (13%, complex), 0.749 (100%), 0.90 (8%, complex), 1.058 (7%), 1.16 (6%, complex), 1.298 (6%), 1.408 (5%), 1.535 (8%), others to 2.93	Sm ¹⁴⁴ (a, 2n) Gd ¹⁴⁶ (EC) (GrovJ59, FrieA63)
Eu 146?	38 h (HoffR51) others (FunE62)	☆ (HoffR51)	E	excit, sep isotopes (HoffR51) chem (FunE62) not daughter 50 d Gd ¹⁴⁶ (FrieA63, AntoN61) daughter 7 h Gd ¹⁴⁶ ? (GuseI57)	Y	Y-ray spectrum may be identical to that of 4.59 d Eu ¹⁴⁶	Sm ¹⁴⁷ (d, 3n), alphas on Sm ¹⁴⁴ (HoffR51) Sm ¹⁴⁷ (p, 2n) (FunE62)
Eu ¹⁴⁷	21.5 d (FrieA63) 24 d (SchweC62, HoffR51, RasJ53, MackRC53) 25 d (AntoN58c)	★ EC 99.5%, \$\textit{\textit{p}}\$ 0.5% (MN\ul)464 a 0.002% (SiiA62, TotK64) others (HoffR51, FrieA63) \$\textit{\textit{\textit{\textit{A}}}\$}\$ -77.5 (MTW)	A	chem, excit, sep isotopes (HoffR51) chem, mass spect (FrieA63) daughter Gd 147 (GoroG57a)	e-	Sm X-rays, 0.122 (20%), 0.198 (24%), 0.600 (7%), 0.680 (11%), 0.800 (6%), 0.957 (9%), 1.079 (9%), 1.25 (1.2%) 0.030, 0.075, 0.114, 0.151 2.91	Sm ¹⁴⁷ (p,n) (HoffR51, RasJ53, SchweC62) Sm ¹⁴⁸ (p,2n) (MvulJ64) deuterons on Sm (RasJ53)
Eu ¹⁴⁸	54 d (WilkG50c) 50 d (HoffR51) 58 d (SchweC62a) 53 d (MarinJ51d)		A	chem (MarinJ51d) excit, sep isotopes (HoffR51, MackRC52) mass spect (BabC63b)	e ⁻ β ⁺	Sm X-rays, 0.413 (18%, complex), 0.551 (120%, complex), 0.62 (90%, complex), 0.72 (18%, complex), 0.872 (7%), 0.917 (5%), 0.967 (5%), 1.033 (7%), 1.16 (5%, complex), 1.345 (8%), 1.62 (11%, complex) 0.02-0.04, 0.51, 0.193, 0.366, 0.505, 0.544, 0.584 0.92 max 2.63	Sm 148 (p, n) (HoffR51, MackRC52, WilkG50c, SchweC62a) Sm 147 (d, n) (KurbJ43, MarinJ51d) Sm 148 (d, 2n) (BabC63b)
Eu ¹⁴⁹	106 d (HarlO61) others (AntoN59, DzhB62d, WanF62)	★ EC (HarlO61, HarmB61, AntoN59) no a, lim 4 x 10 ⁻⁷ % (SiiA62) △ -76 (MTW)	A	sep isotopes, excit (HoffR52) chem, excit (MackRC53, HarlO61, HarlO63) genet energy levels (JhaS62b, AlfV64)		Sm X-rays, 0.277 († 10), 0.328 († 10) 0.015, 0.021, 0.230, 0.281	Sm 149 (p, n) (HoffR52, HarlO61, HarlO63) Sm 150 (p, 2n) (HarmB61, HarlO61)

Isotope Z A	Half-life	Type of decay (♣♠); % abundance; Mass excess (△≡M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
Eu ¹⁵⁰	12.55 h (SiiA62) 12.8 h (YosY63) 13.7 h (MackRC53) 14.0 h (RiccR62) 15.0 h (WilkG50c) others (WilleR60, ButeF50)	ρ^{-} 90%, EC 9%, ρ^{+} 0.4% (GutM65) ρ^{-} 95%, EC 4%, ρ^{+} 1% (Yos Y63) ρ^{-} 95%, EC 5% (SiiA62) ρ^{-} 95%, EC 5% (TiiA62)	chem, excit, sep isotopes (HoffR52) excit, sep isotopes (MackRC52) parent Gd ¹⁵⁰ (KarrM61, SiiA62)	.01 max .24 max m X-rays, 0.334 (4%), 0.406 (3%), 0.511 (0.8%, Y [±]), 0.619 (0.2%), 0.713 (0.2%), 0.831 (0.5%), 0.921 (0.4%, doublet), 1.165 (0.4%), 1.224 (0.4%), 1.224 (0.3%), 1.630 (0.09%), 1.964 (0.2%)	Sm ¹⁵⁰ (p.n) (HoffR52, MackRC52, WilkG50c, HarmB61, YosY63) Sm ¹⁵⁰ (d, 2n) (YosY63)
Eu ¹⁵⁰	=5 y (GutM61) >5 y (HarmB61)	₹ EC (HarmB61, GutM61)	(HarmB61, GutM61)	m X-rays, 0.334 (96%), 0.439 (86%), 0.584 (60%), 0.74 (21%, doublet), 1.049 (9%), 1.248 (5%), 1.347 (4%)	Sm ¹⁵⁰ (p,n) (HarmB61, GutM61)
Eu ¹⁵¹		% 47.77 (HessD48) 47.86 (CollT57) Δ -74.67 (MTW) σ _c 5900 (to Eu ¹⁵²) 2800 (to Eu ^{152m1}) (GoldmDT64)			
Eu ¹⁵²	12.7 y (LocE56, LocE53) 12.2 y (GeiKW57) others (KarrD52, KasJ53)	EC 72%, β ⁻ 28%, β ⁺ 0.021% (LHP) Δ -72.89 (MTW) σ _c 5000 (GoldmDT64)	β ⁺ ο. Υ Go	.48 max .075, 0.115, 0.120 .71 max d X-rays, Sm X-rays, 0.122 (37%), 0.245 (8%), 0.344 (27%), 0.779 (14%), 0.965 (15%), 1.087 (12%), 1.113 (14%), 1.408 (22%)	Eu ¹⁵¹ (n, Y) (IngM47, SerL47b)
Eu ^{152m} 1	9.3 h (BotW46a, ChilG61a) 9.2 h (PoolM38a, HaydR49, AntoS59	7 77%, EC 23%, β [†] 0.011% (NDS) no IT, lim 0.003% (TakaK65) Δ -72.84 (LHP, MTW)	n-capt, excit (PoolM38a) e - 0. mass spect (HaydR46, β ⁺ 0. Υ 0.	.88 max .075, 0.115, 0.120 .89 max .122 (8%), 0.344 (2.5%), 0.842 (13%), 0.963 (12%), 1.315 (1.2%), 1.389 (1.1%)	Eu ¹⁵¹ (n, Y) (MarsJK35, PoolM38a, HevG36, FajK41, SerL47b, HaydR49)
Eu ^{152m} 2	96 m (KirP63)	T IT (KirP63) no β, no EC, lim 5% (KirP63) Δ -72.74 (LHP, MTW)		u X-rays, 0.090 (74%) .010, 0.016, 0.032, 0.039	Sm 154 (p, 3n) (KirP63) Sm 152 (p, n) (KirP63) Eu 151 (n, y) (TakaK65)
Eu ¹⁵³		% 52.23 (HessD48) 52.14 (CollT57) △ -73.36 (MTW) σ _c 320 (GoldmDT64)			
Eu ¹⁵⁴	16 y (KarrD52) others (HaydR49, GeiKW57, KasJ53)	φ β (HaydR49) no β [†] , lim 0.003% (AlbuD58b) Δ -71.68 (MTW) σ _c 1400 (GoldmDT64)	mass spect (IngM47, HaydR49) chem (KarrD52)	.85 max (10%), 0.87 max .073, 0.115, 0.122 dd X-rays, 0.123 (38%), 0.248 (7%), 0.593 (6%), 0.724 (21%), 0.759 (5%), 0.876 (12%), 1.00 (31%, doublet), 1.278 (37%)	Eu ¹⁵³ (n, Y) (ScheiH38, FajK439, FajK41a, SerL47b)
Eu ¹⁵⁵	1.811 y (PierrA59) others (RutW52, WinsL51d, HaydR49)	φ β (WinsL51d) Δ -71.79 (MTW) σ _c 13,000 (GoldmDT64)	mass spect (HaydR49) daughter Sm ¹⁵⁵ (IngM47c) y Go	.25 max .011, 0.017, 0.036, 0.054, 0.078, 0.082 id X-rays, 0.087 (32%), 0.105 (20%)	Sm ¹⁵⁴ (n, Y)Sm ¹⁵⁵ (β ⁻) (IngM47c)
Eu 156	15.4 d (WinsL51c, IngM47c)	φ ρ (WinsL51c) Δ -70.05 (MTW)	mass spect (IngM47d, e ⁻ 0. IngM47c) daughter Sm ¹⁵⁶ (WinsL51c) Y Go	.45 max .039, 0.081, 0.087 id X-rays, 0.089 (8%), 0.646 (7%), 0.723 (6%), 0.812 (9%), 1.07 (11%, complex), 1.15 (14%, complex), 1.24 (16%, complex), 1.97 (7%, complex), 2.098 (3%), 2.19 (5%, complex)	Sm ¹⁵⁴ (n, Y)Sm ¹⁵⁵ (β) Eu ¹⁵⁵ (n, Y) (EwaG62, CliJ61) daughter Sm ¹⁵⁶ (Wins L51c)
Eu ¹⁵⁷	15.1 h (DaniW63) 15.4 h (WinsL51b)	φ ρ (WinsL51b) Δ -69.43 (LHP, MTW)	genet energy levels (HarmB62) cross bomb (DaniW63) sep isotopes (ShidY64)	.3 max .004, 0.014, 0.046, 0.056 dX—rays, 0.055 (5%), 0.064 (27%), 0.32 (5%, doublet), 0.37 (14%, doublet), 0.413 (27%), 0.477 (5%), 0.623 (6%)	Gd ¹⁶⁰ (p, a) (HarmB62) neutrons on Gd (KantJ64)

 Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
63 ^{Eu¹⁵⁸}	46 m (MunH65, SchimF65a, DaniW63) 60 m (WinsL51b)		ρ (WinsL51b) -67.1 (MTW)	В	chem (WinsL51b) chem, genet energy levels (DaniW63)	e-	2.5 max [0.049, 0.072] 0.080 († 100), 0.182, 0.52 († 25, complex), 0.61 († 8), 0.95 († 95, complex), 1.11 († 11), 1.19 († 16)	Gd ¹⁶⁰ (d, a) (DaniW63) fission (WinsL51b)
Eu ¹⁵⁹	18.1 m (MunH65) 19.0 (IwaT65) others (IwaT64, ButeF50, KuroT61b)	-	β (KuroT61b) -66.02 (IwaT65, MTW)	С	excit (ButeF50) sep isotopes, genet (IwaT64) parent Gd ¹⁵⁹ (IwaT64)	β ⁻ Υ	2.6 max 0.07 (42%), 0.09 (18%), 0.15 (14%), 0.22 (5%), 0.67 (21%), 0.73 (10%), 0.8 (11%, complex?), 1.1 (11%, complex), 1.5 (5%, complex?)	Gd ¹⁶⁰ (Y,p) (IwaT64, KuroT6lb, ButeF50)
Eu ¹⁶⁰	≈2.5 m (TakaK61)	!	β (TakaK61) -64 (MTW)	F	decay charac (TakaK61)		3.6 max no γ	Gd ¹⁶⁰ (n,p) (TakaK61)
64 ^{Gd¹⁴⁵}	25 m (GrovJ59) others (OlkJ59b)	¥	EC, β [†] (GrovJ59, Ο1kJ59b)	A	chem, excit, sep isotopes, genet (GrovJ59) parent Eu ¹⁴⁵ (GrovJ59)		2.4 max Eu X-rays, 0.511 (Y*), 0.80 († 9), 1.03 († 10), 1.75 († 100, complex?)	Sm ¹⁴⁴ (a, 3n) (GrovJ59, OlkJ59b)
Ga ¹⁴⁶	50 d (FrieA63) 46 d (GrovJ59) others (AntoN59a, GoroG58, GoroG57a, OlkJ59)		EC (GoroG58) EC ≈99%, β [†] ≈1% (FrieA63) -76 (MTW)	A	chem, genet (GoroG57a, GoroG58) chem, excit, sep isotopes (GrovJ59) chem, mass spect (FrieA63) parent Eu 146 (GoroG58, GrovJ59)		Eu X-rays, 0.078 († 30), 0.115 († 100, complex), 0.155 († 45) 0.066, 0.106 daughter radiations from 4.59 d Eu ¹⁴⁶	Sm ¹⁴⁴ (a, 2n) (GrovJ59, FrieA63)
Gd ¹⁴⁶ ?	7 h (OlkJ59, SunK5la) 12 h genet (GuseI57)		a (SunK51a) a, [EC] (OlkJ59)	F	chem (GuseI57, OlkJ57) parent 38 h Eu ¹⁴⁶ ? (GuseI57)	γ	0.22, 0.34, 0.55, 0.72	alphas on Sm (SunK51a) protons on Tb (Olk759) protons on Ta (GuseI57)
Gd ¹⁴⁷	35 h (AntoN58c) 22 h (FrieA63) 29 h (ShirV57)		EC, no β [†] , lim 1.2% (ShirV57) β [†] (weak) (FrieA63) -75 (MTW)	A	chem, genet (GoroG57a) chem, excit (ShirV57) chem, mass spect (FrieA63) parent Eu ¹⁴⁷ (GoroG57a) daughter Tb ¹⁴⁷ (TotK60)		Eu X-rays, 0.229 († 150), 0.39 († 85, complex), 0.64 († 70, complex), 0.77 († 60, complex), 0.932 († 60), 1.10 († 19, complex) 0.181, 0.221, 0.321, 0.348, 0.388 daughter radiations from Eu 147	Sm ¹⁴⁴ (a,n) (FrieA63) Sm ¹⁴⁷ (a,4n) (ShirV57)
Gd ¹⁴⁸	84 y (SiiA62) others (RasJ53, SurY57)		a (RasJ53) -76.29 (MTW)	в	chem, excit, sep isotopes (RasJ53)	a	3, 18	Sm ¹⁴⁷ (a, 3n), Eu ¹⁵¹ (p, 4n) (RasJ53)
Gd ¹⁴⁹	9.5 d (PraH62a) 9.3 d (ShirV57) others (HoffR51, AntoN58b)		EC 99+%, a ≈0.0007%, no p [†] , lim 0.4% (Shirv57, RasJ53) a 0.0005% (SiiA65a) -75.2 (MTW)	A	chem, excit, sep isotopes, cross bomb (HoffR51) chem, excit (ShirV57) chem, sep isotopes (PraH62a)	e ⁻	Eu X-rays, 0.150 (48%), 0.299 (26%), 0.347 (25%), 0.750 (11%), 0.790 (10%), 0.94 (5%, complex) 0.101, 0.142, 0.250, 0.298 3.01 daughter radiations from Eu ¹⁴⁹	Eu ¹⁵¹ (p,3n) (HoffR51, PraH62a) Sm ¹⁴⁷ (a,2n) (RasJ53, ShirV57)
Gd ¹⁵⁰	2.1 x 10 ⁶ y sp act (SiiA62) 1.4 x 10 ⁶ y sp act (OgaI65) 1.2 x 10 ⁵ y sp act (FrieA63b) ≈1 x 10 ⁵ y (KarrM61)		a (RasJ53) -75.82 (MTW)	A	chem (RasJ53) mass spect (FrieA63b) daughter 12.6 h Eu ¹⁵⁰ (KarrM61, SiiA62)	a	2,73	daughter 12.6 h Eu ¹⁵⁰ (KarrM61, SiiA62) Eu ¹⁵¹ (d, 3n) (RasJ53) alphas on Sm (FrieA63b)
Gd ¹⁵¹	120 d (AntoN58a) 150 d (HeiR50)		EC, no β [†] (HeiR50) α≈8 x 10 ⁻⁷ % (SiiA65a) -74 (MTW)	A	chem, excit (HeiR50) chem, genet energy levels (BisA57, ShirV58) daughter Tb ¹⁵¹ (BaranV58)	e-	Eu X-rays, 0.0216 (3%), 0.154 (7%), 0.175 (3%), 0.244 (7%), 0.308 (1%) 0.014, 0.020, 0.105, 0.127, 0.167 2.60	Eu ¹⁵¹ (p,n) (ShirV58, SiiA65a) Eu ¹⁵¹ (d, 2n) (FajK41, ShirV58, KriN48, HeiR50, SteicE63)
<u>Ga¹⁵²</u>	1.1 x 10 ¹⁴ y sp act (MacfR61a) ≈10 ¹⁵ y (RieW59)	* ^	0.20 (BaiK50) 0.21 (CollT57) a (RieW59, MacfR61a) -74.71 (MTW) <180 (GoldmDT64)	A	chem, sep isotopes (RieW59, MacfR6la)	a	2.1	

Isotope Z A	Half-life	(.	Type of decay ($\frac{A}{2}$); \emptyset abundance; Mass excess \triangle *M-A), MeV (C^{12} =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
64 ^{Gd¹⁵³}	242 d (HoffD63) 236 d (HeiR50)		EC, no β [†] (HeiR50) -73.12 (MTW)	A	mass spect (IngM47c) chem, n-capt (HeiR50) daughter Tb ¹⁵³ (MihJ57a, BaraV58)		Eu X-rays, 0.070 (2.4%), 0.099 (55%, complex) 0.021, 0.049, 0.065, 0.101	Gd ¹⁵² (n, Y) (IngM47c, CorkJ48a, HeiR50) Eu ¹⁵³ (d, 2n) (HeiR50)
Gd 154		2	2.15 (BaiK50) 2.23 (CollT57) -73.65 (MTW)					
<u>G</u> d ¹⁵⁵		Δ.	14.7 (BaiK50) 15.1 (COllT57) 15.0 (LowW59) -72.04 (MTW) 58,000 (GoldmDT64)					
Gd ¹⁵⁶		4	20.47 (BaiK50) 20.6 (CollT57) -72.49 (MTW)					
Gd ¹⁵⁷		Δ .	15.68 (BaiK50) 15.7 (CollT57) others (LowW59) -70.77 (MTW) 2.4 x 10 ⁵ (GoldmDT64)					
<u>Gd</u> ¹⁵⁸		Δ	24.9 (BaiK50) 24.5 (CollT57) -70.63 (MTW) 3.4 (GoldmDT64)					
Gd ¹⁵⁹	18.0 h (KriN48, ButeF50, ButeF49, BarlR55a, WilleR60) others (TotK60a, TakaK62, SerL47b)	1 1	B (KriN48) -68.59 (MTW)	A	n-capt (SerL47b) chem (ButeF49, HeiR50) genet energy levels (JorW53a) mass spect (NielK58a) daughter Eu ¹⁵⁹ (IwaT64)	β_ e_ Y		Gd ¹⁵⁸ (n, Y) (SerL47b, ButeF49, HeiR50)
Gd ¹⁶⁰		Δ	21.9 (BaiK50) 21.6 (CollT57) -67.89 (MTW) 0.8 (GoldmDT64)					
Gd ¹⁶¹	3.6 m (ButeF49) 3.7 m (JorW53a) others (KriN48, WilleR60)	1 1.	B (KetB49c) -65.5 (MTW)	A	n-capt (IngM46) n-capt, excit (ButeF49) n-capt, sep isotopes (SchmL59) parent Tb ¹⁶¹ (KetB49c)	e ⁻	1.6 max 0.005, 0.026, 0.049, 0.055, 0.263, 0.309 Tb X-rays, 0.102 (11%), 0.284 (8%), 0.315 (25%), 0.361 (66%)	Gd ¹⁶⁰ (n, Y) (IngM46, ButeF49, KetB49b, SchmL59)
Gd ¹⁶²	several years (?) (FalK57)	(; -	[β¯] (FalK57) -64 (MTW)	F	chem (FalK57) not parent Tb ¹⁶² (FalK57)			Gd ¹⁶⁰ (n, Y) Gd ¹⁶¹ (n, Y) (FalK57)
65 ^{Tb} 147	24 m (TotK60)	*]	EC, β [†] (TotK60)	С	excit, genet (TotK60) parent Gd ¹⁴⁷ (TotK60)	γ	Gd X-rays, 0.305, 0.511 (Y^{\pm}) daughter radiations from Gd 147	Pr ¹⁴¹ (C ¹² , 6n) (TotK60)
Tb ¹⁴⁸	70 m (TotK60) 66 m (BoncN61)		EC, β [†] (TotK60) -70.7 (MT W)	В	chem, excit (TotK60)		4.6 max Gd X-rays, 0.511 (Y [±]), 0.78, 1.12	Pr ¹⁴¹ (C ¹² , 5n) (TotK60)
Tb ^[<157]	17 h (RolM53)	*	3 (RolM53)	G	chem (RolM53) existence of a Tb isotope with A <162, $t_{1/2} \approx 17$ h, and Q_{β} >2 is highly improbable (LHP)	β-	2.34 max	alphas on Eu (RolM53)
Tb ^[<157]	>17 h (RolM53)	* (3 [†] (RolM53)	G	chem (RolM53) probably a mixture of Tb ¹⁵² , Tb ¹⁵⁵ , and Tb ¹⁵⁶ (LHP)	11 - 1	3.1 max 0.076, 0.088, 0.126, 0.153, 0.20	alphas on Eu (RolM53)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
65 ^{Tb¹⁴⁹}	4.10 h (TotK60a) 4.2 h (BruniE65) others (RasJ53, SurY57)		EC 84%, α ≈16%, no β [†] (TotK60a, RasJ53, RolM53) -71.4 (MTW)	A	chem, mass spect (RasJ50, TotK60a) parent Eu ¹⁴⁵ (HoffR51) daughter Dy ¹⁴⁹ (TotK59) daughter Tb ¹⁴⁹ m (MacfR62) descendant Er ¹⁵³ (MacfR63a)	e ⁻	Gd X-rays, 0.16, 0.35 0.115, 0.127, 0.157, 0.301, 0.338, 0.587 3.95 daughter radiations from Gd ¹⁴⁹	Pr ¹⁴¹ (G ¹² , 4n) (TotK59) Eu ¹⁵¹ (a, 6n) (RasJ53)
Tb ^{149m}	4.3 m (MacfR62, MacfR64)	*	[IT+EC+p ⁺] 99+%, a 0.025% (MacfR64)	В	excit, cross bomb, genet (MacfR62) parent Tb ¹⁴⁹ (MacfR62)	1	[Tb X-rays] 3.99 daughter radiations from Tb ¹⁴⁹	La ¹³⁹ (O ¹⁶ , 6n) (MacfR62, MacfR64)
ть ¹⁵⁰	3.1 h (TotK59d, TotK60a, BoncN61)		EG, p [†] (TotK59d, TotK60, BoncN61) no a, lim 0.05% (TotK60a) -71.03 (MTW)	A	chem, mass spect (TotK59d, TotK60a)		3.6 max Gd X-rays, 0.511 († 100, Y [±]), 0.637 († 100), 0.93 († 35)	protons on Gd (TotK59d, TotK60a)
ть ¹⁵¹	18 h (TotK60a, BaranV58) 19 h (RasJ53) 20 h (MihJ57a) others (TotK58a, AntoN58)		EC 99+%, a 0.0005% (MacfR64) -71.6 (MTW)	A	chem, excit (RasJ53, MihJ57a, TotK58a) chem, genet (BaranV58) chem, mass spect (TotK60a) parent Gd ¹⁵¹ (BaranV58)	e e	Gd X-rays, 0.108 (35%), 0.18 (18%, doublet), 0.252 (35%), 0.288 (32%), 0.40 (complex), 0.48 (complex), 0.48 (complex), 0.60 (complex), 0.72 (complex), 0.87 0.058, 0.100, 0.130, 0.202, 0.237 3.42	Eu ¹⁵¹ (a,4n) (TotK58a, MacfR64) protons on Gd (TotK60a, HarmB62)
Tb ¹⁵²	17.4 h (TotK60a) 18.5 h (TotK59b) 19.6 h (StriA62) others (BoncN60, BoncN61, AbdurA60a)		EC ≈80%, p ⁺ ≈20% (GromK65a) no a, lim 10 ⁻⁵ % (TotK59b) -70.5 (MTW)	A	chem, genet energy levels (TotK59b) chem, mass spect (TotK60a, StriA62) daughter Dy ¹⁵² (BasiA60a)	e ⁻	2.82 max 0.221, 0.263, 0.294, 0.336, 0.382, 0.536, 0.565, 0.607 Gd X-rays, 0.271 († 13), 0.344 († 100), 0.411 († 6), 0.586 († 144), 0.779 († 14), 0.774 († 10), 1.12 († 10, complex), 1.31 († 11, complex), 1.60 († 7, complex), 1.95 († 8, complex), 2.40 († 9, complex), 2.70 († 6, complex)	Eu ¹⁵¹ (a,3n) (TotK59b) protons on Gd (TotK60a, StriA62)
ть ¹⁵²	4.0 m (OlkJ59a)	*	EC, β [†] , α 0.002% (OlkJ59a)	С	excit, cross bomb, sep isotopes (OlkJ59a)	Y	Tb X-rays, 0.14, 0.23, 0.511 (Y [±])	Eu ¹⁵¹ (a, 3n), Gd ¹⁵² (p, n) (OlkJ59a)
ть ¹⁵³	55 h (TotK60a) 63 h (StriA61) 62 h (MihJ57a) others (TotK59a, BaraV58, AntoN58)		EC (MihJ57a) -71 (MTW)	A	chem, excit, genet (MihJ57a) chem, genet (BaraV58) chem, mass spect (TotK60a) parent Gd ¹⁵³ (MihJ57a, BaraV58) daughter Dy ¹⁵³ (DobA58)		Gd X-rays, 0.083 (11%, complex), 0.11 (12%, complex), 0.17 (9%, complex), 0.212 (30%), 0.250, 0.33, 0.88 0.012, 0.034, 0.037, 0.040, 0.044, 0.052, 0.057, 0.162 daughter radiations from Gd 153	protons on Gd (MihJ57a, HarmB62, TotK60a)
ТЬ ¹⁵⁴	21.0 h (TotK60a) 17 h (WilkG50c, RolM53, HandT55b) others (MihJ57a, AntoN58, HenrR59, TotK59a)		EC, β [†] ≈0.5% (?) (WilkG50c) -70 (MTW)	A	chem, excit (WilkG50c) chem, genet energy levels (MihJ57a) chem, excit, sep isotopes (HandT55b) chem, mass spect (TotK60a) not daughter Dy 154 (MacfR61)		Gd X-rays, 0.123, 0.187, 0.248, 0.30 (complex), 0.347, 0.53 (complex), 0.65 (complex), others to 2.5 0.073, 0.115, 0.122, 0.198	Eu ¹⁵¹ (a,n) (WilkG50c) Eu ¹⁵³ (a,3n) (TotK59a) protons on Gd (HandT55b, MihJ57a, TotK60a)
Ть ¹⁵⁴	8.5 h (TotK60a) ≈7.5 h (HandT55b) 8 h (MihJ57a)		EC, β [†] (?) (HandT55b) -70 (MTW)	A	chem, excit (HandT55a) chem, genet energy levels (MihJ57a) chem, mass spect (TotK60a) not daughter Dy 154 (MacfR61)		Gd X-rays, 0.123, 0.187, 0.248, 0.53 (complex), 0.65 (complex) 0.073, 0.115, 0.122, 0.198	protons on Gd (HandT55b, MihJ57a, TotK60a)
ть155	5.6 d (MihJ57a) 5.4 d (TotK60a) 4.5 d (DzhB58) others (AntoN58)		EC (MihJ57a, HarmB62) -71 (MTW)	A	chem, excit (WilkG50a) chem, sep isotopes, genet energy levels (MihJ57a) chem, mass spect (TotK60a) others (HandT55b) daughter Dy 155 (GoroG57a, DobA58, MayM64)		Gd X-rays, 0.087 (37%), 0.105 (25%), 0.163 (8%, complex), 0.180 (8%), 0.262 (7%), 0.368 (4%) 0.011, 0.034, 0.053, 0.078, 0.110, 0.129, 0.210	protons on Gd (MihJ57a, HandT55b, TotK60a)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
65 ^{Tb} ¹⁵⁶	5.1 d (TotK60a) 5.3 d (HenrR59) 5.6 d (MihJ57a) others (HandT55b, WilkG50a, ButeF49, AntoN58, HolloJ59)	EC, β (weak), no β (HandT55b) no β (HolloJ59, OfeS59a) -70 (MTW)	A chem, excit (HandT55b) chem, genet energy levels (MihJ57a)	Y Gd X-rays, 0.089 (17%), 0.199 (40%), 0.356 (13%), 0.535 (70%), 1.065 (12%), 1.16 (17%, complex), 1.22 (29%), 1.42 (15%), 1.65 (5%), 1.85 (4%) e 0.039, 0.081, 0.087, 0.149	Eu ¹⁵³ (a,n) (HansP59, OfeS59a, WilkG50a) Gd ¹⁵⁶ (p,n) (WilkG50c)
Tb ¹⁵⁶ m	5.5 h (MihJ57, HandT55b) 5.0 h (WilkG50a)	 IT (MihJ57, MihJ57a) EC, β⁺ <25% (WilkG50a) β⁻ (weak), no β⁺ (HandT55b) Δ 	B chem, excit (WilkG50a, HandT55b) chem, sep isotopes (MihJ57) chem, mass spect (TotK60)	Y [Tb L X-rays, Tb K X-rays (weak), 0.088 (weak)] e 0.036, 0.081 daughter radiations from Tb 156	Gd ¹⁵⁶ (p, n) (HandT55b, MihJ57)
ть157	1.5 x 10 ² y sp act (FujI64) 3 x 10 ² y sp act (GrigE64) others (IwaS63)	EC (BhaM62, FujI64, IwaS63) Δ -70.71 (MTW)	A chem, mass spect (NauR60a, TotK60a) chem, sep isotopes, cross bomb (BhaM62) daughter Dy 157 (IwaS63, FuJI64)	Y Gd X-rays	Dy 156 (n, Y) Dy 157 (EC) (NauR 60a, BhaM 62) Gd 157 (p, n) (BhaM 62) Gd 156 (a, 3n) Dy 157 (β -) (IwaS 63, FujI64)
Tb ¹⁵⁸	1.2 x 10 ³ y (LewisH61) others (TotK60a, HandT55b, GovN58)	EC 86%, β 14%, no β , lim 2% (BhaM62) Δ -69.43 (MTW)	A chem (ButeF60) chem, mass spect (NauR60a) chem, cross bomb, sep isotopes (BhaM62)	β 0.85 max e 0.029, 0.044, 0.072, 0.078, 0.092, 0.132 Y Gd X-rays, 0.080 (12%), 0.182 (10%), 0.782 (10%), 0.95 (69%, doublet), 1.110 (2.2%), 1.190 (1.8%)	Dy 156 (n, Y) Dy 157 (EC) Tb 157 (n, Y) (NauR60a BhaM62, LewisH61, NauR62)
Tb ¹⁵⁸ m	10.5 s (SchmW65, GovN58) 11.0 s (HammC57) 10.2 s (BroaK65) others (HandT55b, PoolM38)	T (HandT55b) no β (lim 0.6%), no β (lim 0.04%), no EC (lim 1.5%) (SchmW65) Δ -69.32 (LHP, MTW)	C excit (GovN58, HammC57)	e 0.060, 0.102 Y Tb X-rays, 0.110 (0.5%)	Tb ¹⁵⁹ (n, 2n) (SchmW65 Tb ¹⁵⁹ (Y, n) (GovN58, HammC57)
Tb ¹⁵⁹	t _{1/2} (a) >5 x 10 ¹⁶ y sp act (PorsW54)	% 100 (HessD48, CollT57) Δ -69.53 (MTW) σ _c 46 (GoldmDT64)			
Tb ¹⁶⁰	72.1 d (HoffD63) 72.3 d (KrcK54) 73.0 d (ThirH57) others (BotW46a, BursS50, SmiRR56, IngM47c, KriN48, CorkJ50e, CorkJ48a)	β (BotW43) no EC(K), lim 0.5% (ClarM57) Δ -67.85 (LHP, MTW) σ _C 525 (GoldmDT64)	A n-capt (BotW43) mass spect (IngM47c) chem (FolR51)	β 1.74 max (0.4%), 0.86 max e 0.033, 0.079, 0.085 Y Dy X-rays, 0.087 (12%), 0.197 (6%), 0.299 (30%), 0.879 (31%), 0.966 (31%, complex), 1.178 (15%), 1.272 (7%)	Tb ¹⁵⁹ (n, Y) (BotW43, BotW46a, SerL47b)
ть 161	6.9 d (HoffD63, BisA56) 6.8 d (ButeF49, SmiRR56) 7.2 d (BaranS58, FunL64, HeiR50, CorkJ56a) others (CorkJ52c, BarlR55a)	φ (KriN48) Δ -67.47 (MTW)	A excit (KriN48) chem, excit (KetB49c) genet energy levels (CorkJ56a, SmiW56b) daughter Gd 161 (KetB49c)	β - 0.59 max (10%), 0.52 max e - 0.017, 0.040, 0.048 Y Dy X-rays, 0.026 (21%), 0.049 (19%), 0.057 (5%), 0.075 (10%)	Gd ¹⁶⁰ (n, Y) Gd ¹⁶¹ (β ⁻) (KetB49b, KetB49c)
ть162	7.48 m (SchnT65)	Φ [β̄] (SchnT65) Δ -65 (MTW)	B genet energy levels, excit (SchnT65)	Y Dy X-rays, 0.040 († 17), 0.081 († 8), 0.140 († 6), 0.180 († 26) 0.258 († 100), 0.81 († 44), 0.89 († 54) e ⁻ [0.027, 0.072]	Dy ¹⁶² (n,p) (SchnT65)
Tb ¹⁶²	2.24 h (SchnT65) 2 h (FalK57)	* [β¯] (FalK57) Δ -65 (MTW)	C chem, excit, sep isotopes (FalK57)		Gd ¹⁶⁰ (a,pn) (FalK57)
Tb ¹⁶³	6.5 h (AlsJ60, TakaK62) others (FalK57)	* β (TakaK62) Δ -64.7 (MTW)	B chem, excit (fission yield) (AlsJ60) sep isotopes (TakaK62)	β-1.65 max Y Dy X-rays, 0.025, 0.235, 0.330, 0.510	Gd ¹⁶⁰ (q,p) (FalK57) Dy ¹⁶⁴ (Y,p) (TakaK62) high energy fission (AlsJ60)
ть ¹⁶³	7 m (WilleR60)	☆ [β¯] (WilleR60)	E sep isotopes, excit (WilleR60) possibly identical to 7.5 m Tb ¹⁶²	Y 0.18	Dy 163 (n,p) (WilleR60)
b ^{162, 163}	14 m (ButeF50)		F excit (ButeF50)		gammas on Dy (ButeF5

Isotope Z A	Half-life		Type of decay (🏕); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic fationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
65 ^{Tb¹⁶⁴}	23 h (AlsJ60)		[β¯] (AlsJ60) -62 (MTW)	D	chem, excit (fission yield) (AlsJ60)		_	high energy fission (AlsJ60)
66 ^{Dy 149}	10-20 m (TotK59, TotK58a)	*	EC (TotK58a, TotK59)	С	excit, genet (TotK59, TotK58a) parent Tb ¹⁴⁹ (TotK59)			Pr 141 (N 14, 6n) (TotK59, TotK58a)
Dy ¹⁵⁰	7.2 m (MacfR64) 8 m (TotK59) 7 m (RaeJ53)		EC, β [†] , α (TotK59) EC+β [†] 82%, α 18% (Macπ64) -69 (MTW)	С	cross bomb (RasJ53) excit (TotK59) daughter Ho ¹⁵⁰ (MacfR63) daughter Er ¹⁵⁴ (MacfR63)		Tb X-rays, 0.39, 0.511 (Y [±]) 4.23 daughter radiations from Tb ¹⁵⁰	Pr ¹⁴¹ (N ¹⁴ , 5n) (TotK59) Ce ¹⁴⁰ (O ¹⁶ , 6n) (MacR64) Tb ¹⁵⁹ (p, 10n) (RasJ53)
Dy ¹⁵¹	18.0 m (MacfR64) 19 m (TotK59, RasJ53)		β [†] + EC 94%, α 6% (MacfR64) -69 (MTW)	В	cross bomb (RasJ53) excit (TotK59) daughter 35.6 s Ho ¹⁵¹ (MacfR63)		4.06 Tb X-rays, 0.145, 0.511 (Y*) daughter radiations from Tb ¹⁵¹	Pr 141 (N 14, 4n) (TotK59) Ce 140 (O 16, 5n) (MacR64) Tb 159 (p, 9n) (RasJ53)
Dy ¹⁵²	2.41 h (SiiA62) 2.3 h (MacfR64, RasJ53, SurY57, BasiA60a) 2.5 h (TotK58a)		EC, β [†] (?), α (RasJ53, TotK59) α 0.05% (MacfR64) -70.11 (MTW)	A	chem, excit (RasJ53, TotK58a) chem, genet (BasiA60a) parent 18 h Tb ¹⁵² (BasiA60a) daughter 52.35 Ho ¹⁵² (MacfR63)	۵	Tb X-rays, 0.257, 0.511 ? (Y [±]) 3.65 daughter radiations from 18 h Tb ¹⁵²	Pr ¹⁴¹ (N ¹⁴ , 3n) (TotK59) Gd ¹⁵² (a, 4n) (TotK58a, MacfR64)
Dy ¹⁵³	6.4 h (MacfR64) 5.5 h (RydH62) 5.0 h (TotK58a) 6.4 h (DzhB61a) others (DobA58, GoroG57a)		EC, a 0.0030% (MacfR64) -69.2 (MTW)	A	chem, excit, sep isotopes (TotK58a) chem, mass spect, genet (DobA58) parent Tb ¹⁵³ (DobA58)	e ⁻	Tb X-rays, 0.08 (complex), [0.25 (complex)], others 0.029, 0.047, 0.072, 0.091, 0.192, 0.202 3.48 daughter radiations from Tb ¹⁵³	Gd ¹⁵² (a,3n) (TotK58a, MacfR64)
Dy ¹⁵⁴	t _{1/2} >10 y (MacfR61) t _{1/2} (a) ≈1 x 10 ⁶ y sp act (MacfR61)		a (MacfR61) -70.5 (MTW)	В	chem, excit (MacfR61) not parent 21 h or 8.5 h Tb ¹⁵⁴ (MacfR61)	a	2.85	Gd ¹⁵⁴ (a,4n) (MacfR61)
Dy ¹⁵⁴ m	13 h (TotK58a)	*	a (TotK58a)	в	chem, excit, sep isotopes (TotK58a)	a	3.37	Gd 154 (a, 4n) (TotK58a)
Dy ¹⁵⁵	10.2 h (PersL63c, PersL64a) others (MayM64, TotK58a, GoroG57a, BoncN60, DzhB58a, DobA58, MihJ57a)		EC (TotK58a) β [†] 2% (PeraL63c) -69 (MTW)	A	chem, excit (MihJ57a) chem, mass spect (DobA58) parent Tb ¹⁵⁵ (GoroG57a, DobA58, MayM64) daughter Ho ¹⁵⁵ (DalB60a, KalyA59, BasiA61)	γ β [†] e	Tb X-rays, 0.227 (68%), 0.52 (8%, complex), 0.65 (5%, complex), 0.74 (4%, complex), 0.91 (5%, complex), 1.000 (6%), 1.091 (5%), 1.16 (6%, complex), 1.250 (4%), 1.39 (3%), 1.45 (4%), 1.66 (2%) 1.08 max (0.14%), 0.85 max (2%) 0.013, 0.038, 0.057, 0.175 daughter radiations from Tb 155	${ m Tb}^{159}({ m p,5n})~({ m MihJ57a,} \ { m Pers L64a}) \ { m Gd}^{153}({ m a,2n}), \ { m Gd}^{154}({ m a,3n})~({ m TotK58a}) \ { m Gd}^{152}({ m a,n})~({ m TotK61})$
	t _{1/2} (a) >1 x 10 ¹⁸ y sp act (RieW58)	% △ °c	0.0524 (IngM48d) 0.057 (CollT57) -70.9 (MTW) ≈3 (GoldmDT64)					
Dy ¹⁵⁷	8.1 h (PersL63b) 8.2 h (MayM64, HandT53, RayG63) others (DobA58, GoroG57a)		EC, no β [†] (HandT53) -70 (MTW)	A	chem, excit (HandT53) chem, sep isotopes (TotK61) chem, mass spect (DobA58) parent Tb ¹⁵⁷ (IwaS63, FujI64)		Tb X-rays, 0.326 (91%) 0.009, 0.031, 0.052, 0.074, 0.274	Tb ¹⁵⁹ (p, 3n) (HandT53, PersL63b) Gd ¹⁵⁴ (a,n) (TotK61)
Dv 158		Δ	0.0902 (IngM48d) 0.100 (CollT57) -70.37 (MTW) 100 (GoldmDT64)					
Dy ¹⁵⁹	144 d (KetB59) 151 d (HoffD63) 138 d (RayG63, MayM64) others (ButeF51a, KetB49, BjoS61, GrigE60a)	*	EC (KetB49) -69.15 (MTW)	A	chem, n-capt (KetB49) chem, cross bomb (ButeF5la) genet energy levels (MihJ57a)		Tb X-rays, 0.058 (4%), 0.348 (9 x 10 ⁻⁴ %) 0.006, 0.049, 0.056	Dy ¹⁵⁸ (n, Y) (SerL47b, ButeF49, HeiR50) Tb ¹⁵⁹ (d, 2n) (ButeF51a) Tb ¹⁵⁹ (p, n) (KetB59)

Z A	Half-life		% abundance; Mass excess (△ ±M-A), MeV (C¹²=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
66 ^{Dy} 160		1	2.294 (IngM48d) 2.35 (CollT57) -69.67 (MTW)					
Dy 161		Δ	18.88 (IngM48d) -68.05 (MTW) 600 (GoldmDT64)					
Dy 162		Δ	25.53 (IngM48d) 25.5 (CollT57) -68.18 (MTW) 140 (GoldmDT64)					
Dy 163		Δ	24.97 (IngM48d) 24.9 (CollT57) -66.36 (MTW) 130 (GoldmDT64)					
Dy 164		Δ	28.18 (IngM48d) 28.1 (ColiT57) -65.95 (MTW) 800 (to Dy 165) 2000 (to Dy 165m) (GoldmDT64)					
Dy ¹⁶⁵	139.2 m (SherR52) 139.0 m (PersL63) others (BotW46a, KetB49, SerL47b, MangS62, SlaH46, MayE54)	Δ	ρ~ (PoolM38a) -63.51 (MTW) 4700 (GoldmDT64)	A	n-capt (HevG36, MarsJK35) n-capt, sep isotopes (IngM47f) mass spect (IngM47a)	e ⁻	1.29 max 0.039, 0.085 Ho X-rays, 0.095 (4%), 0.280 (0.6%), 0.361 (1.1%), 0.633 (0.7%), 0.716 (0.7%) others to 1.08	Dy 164 (n, Y) (MarsJK35, HevG36, PoolM38a, MeiL40, SerL47b, KetB49)
Dy ^{165m} 1	1.26 m (HardR64) others (FlaA46, FlaA44a, HoleN48a)		IT (FlaA44a) ρ- 2.5% (HardR64) β- 2.4% (TorR60) others (JorW53b) -63.40 (LHP, MTW)	A	n-capt (FlaA44a) n-capt, sep isotopes (IngM47f)	e ⁻	1.04 max (0.4%), 0.89 max 0.054, 0.100, 0.106 Dy X-rays, 0.108 (3%), 0.152 (0.3%), 0.362 (0.6%), 0.514 (1.8%) daughter radiations from Dy 165	Dy ¹⁶⁴ (n, Y) (FlaA44a, FlaA46, SerL47b, CaldR50, HardR64)
Dy ^{165m} 2	32 s (HardR64)	*	[IT] (HardR64)	С	n-capt, sep isotopes (HardR64)	Y	complex spectrum to 1.1	Dy 164 (n, Y) (HardR 64)
Dy ¹⁶⁶	81.5 h (HoffD63) 81.8 h (GunR62) others (HelmeR60, ButeF50a, KetB49)		β (KetB49) -62.59 (MTW)	A	chem, genet (KetB49) parent Ho ¹⁶⁶ (KetB49, ButeF50a)	e ⁻	0.48 max (5%), 0.40 max 0.019, 0.027, 0.046 Ho X-rays, 0.082 (12%), 0.372 (0.5%), 0.426 (0.5%) daughter radiations from Ho ¹⁶⁶	Dy 164 (n, Y) Dy 165 (n, Y) (KetB49, ButeF50a, RusL60, HelmeR60, GunR62, BrabV64, HoffD63)
Dy ¹⁶⁷	4.4 m (WilleR60)	*	[β ⁻] (WilleR60)	c	sep isotopes, excit (WilleR60)			Er 170 (n, a) (WilleR 60)
67 ^{Ho¹⁵⁰}	≈20 s (MacfR63)	*	[EC,β [†]] (MacfR63)	F	genet (MacfR63) parent Dy 150 (MacfR63)			Pr ¹⁴¹ (O ¹⁶ , 7n) (MacfR63)
Но ¹⁵¹	35.6 s (MacfR63)	*	β ⁺ + EC 80%, α 20% (MacIR63)	В	excit, cross bomb, genet (MacfR63) parent Dy ¹⁵¹ (MacfR63)	1 3	4.51 [Dy X-rays, 0.511 (Y^{\pm})] daughter radiations from Dy 151 , Tb 147	Pr ¹⁴¹ (O ¹⁶ , 6n) (MacfR63)
Ho ¹⁵¹	42 s (MacfR63)	*	a ≈30%, β [†] + EC ≈70% (MacfR64)	С	excit, cross bomb (MacfR63)	. :	4.60 [Dy X-rays, 0.511 (γ^{\pm})] daughter radiations from Dy 151 , Tb 147	O ¹⁶ on Nd ¹⁴² (MacfR63)
Ho ¹⁵²	52.3 s (MacfR63)	¥	[EC+β [†]] 81%, α 19% (MacfR63)	В	excit, genet (MacfR63) parent Dy 152 (MacfR63)	a	4.45	Pr ¹⁴¹ (O ¹⁶ , 5n) (MacfR63)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≡M-A), MeV (C¹¹=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities	Principal means of production
67 ^{Ho 152}	2.4 m (MacfR63) ≈4 m (RasJ53)	★ [EC+β ⁺] ≈70%, α ≈30% (MacfR63) Δ -63.8 (MTW)	C excit (RasJ53) excit, cross bomb (MacfR63, MacfR64b) daughter Er ¹⁵² (MacfR63a)	Pr ¹⁴¹ (O ¹⁶ , 5n) (MacfR63)
Ho ¹⁵³	9 m (MacfR63)	* [EC+β [†]], α 0.3% (MacR63) Δ -65.0 (MTW)	C excit (MacfR63) a 3.92	Pr ¹⁴¹ (O ¹⁶ , 4n) (MacfR63)
Ho ¹⁵³	27 m (MayM64)	☆ [a] (MayM64)	F genet (MayM64) ancestor Eu ¹⁴⁵ (MayM64)	protons on Dy (MayM64)
Ho 154	7 m (LagP66)	 β⁺, [EC] (LagP66) Δ −65 (MTW) 	B chem, mass spect (LagP66) Y [Dy X-rays], 0.335, 0.511 (Y*)	protons on Dy (LagP66)
Ho ¹⁵⁵	50 m (LagP66, KalyA59) 46 m (DalB60a)	★ [EC], β ⁺ (KalyA59)	A chem, genet (KalyA59,	protons on Dy, Ho (LagP66)
Ho ¹⁵⁶	55 m (LagP66, BasiA61) 57 m (GrigE60d) others (MihJ57a)	# [EC] (MihJ57a) ρ ⁺ (GrigE60d)	A chem, sep isotopes (MihJ57a) chem, mass spect (LagP66) († 99), 0.367 († 23), 0.511 (Υ*), 0.685, 0.89, 1.20, 1.41 e ⁻ , 0.084, 0.130, 0.213 β ⁺ 2.9 max († 1), 1.8 max († 18)	Dy ¹⁵⁶ (p,n) (MihJ57a)
но 157	14 m (LagP66)	φ ⁺ , [EC] (LagP66)	B [chem], mass spect (LagP66) Y Dy X-rays, 0.087, 0.152, 0.190, 0.227, 0.511 (Y [±]), 0.71, 0.86, 0.90, 1.20 daughter radiations from Dy 157	protons on Dy, Ho (LagP66)
но 158	ll.5 m (SchepH62) ll m (StenT65a)	EC, no β ⁺ , lim 10% (SchepH62) Δ -66.33 (MTW)	A chem (DneI60) chem, excit (SchepH62) chem, genet (StenT65a) daughter Ho 158m (StenT65a) e - (0.940, 1.21, 1.47, 1.6, 1.8, 2.05, 2.21, 2.87, 3.1 e - (0.045, 0.062, 0.091, 0.097, 0.164	ТЬ ¹⁵⁹ (а, 5n) (SchepH62)
Ho ¹⁵⁸ m	29 m (SchepH62) 27 m (DneI60, GromK61a) 22 m (LagP66) others (BasiA61, BoncN61a)	T (AbdurA61, GromK61a) [EC], β ⁺ (BoncN61a) Δ -66.26 (LHP, MTW)	A chem (DneI60) chem, excit (SchepH62) mass spect (LagP66) daughter Er ¹⁵⁸ (GromK61a, BoncN61a, AbdurA61) parent Ho ¹⁵⁸ (StenT65a) Parent Ho ¹⁵⁸ (StenT65a) Parent Ho ¹⁵⁸ (StenT65a) A chem (DneI60) Dy X-rays, Ho L X-rays, 0.099, 0.218, 0.32 (complex), 0.356, 0.412, 0.46 (complex), 0.73 (complex), 0.85 (complex), 0.95 (complex), 1.21, 1.47, 1.60, 1.80, 2.06, 2.20, 2.62 Parent Ho ¹⁵⁸ (StenT65a) A chem (DneI60) Dy X-rays, Ho L X-rays, 0.099, 0.218, 0.32 (complex), 0.356, 0.412, 0.46 (complex), 0.52, 0.63 (complex), 0.95 (complex), 0.85 (complex), 0.95 (complex), 0.218, 0.32 (complex), 0.85 (complex), 0.73 (complex), 0.85 (complex), 0.95 (complex), 0.85 (complex), 0.95 (complex), 0.132, 0.46 (complex), 0.75 (complex), 0.85 (complex), 0.95 (complex), 0.121, 1.47, 1.60, 1.80, 2.06, 2.102, 2.62 Parent Ho ¹⁵⁸ (StenT65a) B complex (StenT65a)	Τb ¹⁵⁹ (α, 5n) (SchepH62)
но ¹⁵⁹	33 m (LagP66, TotK58) 35 m (MayM64)	☆ EC (TotK58) △ -67 (MTW)	A chem, excit (TotK58) Y Dy X-rays, 0.057, 0.080, 0.13,	Tb ¹⁵⁹ (a,4n) (TotK58) Dy ¹⁶⁰ (p,2n) (MayM64)
Ho ¹⁵⁹ m	6.9 s (BorgJ66)	☆ IT (BorgJ66) △ -67 (LHP, MTW)	energy levels (BorgJ66)	daughter Er ¹⁵⁹ (AbdurA61a, LagP66) Dy ¹⁶⁰ (p, 2n) (BorgJ66)
Ho 160	25.6 m (StenT65, StenT65a) 28 m (ToUK58, MayM64) 22.5 m (WilkG50a) ≈33 m (GoroG57a) ≈22 m (HandT54a)	EC 99+%, β ⁺ ≈0.4% (GrigE59d) others (WilkG50a) △ -66.4 (MTW)	chem (HandT54a) chem, sep isotopes, excit (MayM64)	daughter Ho 160m (GrigE62b) Tb ¹⁵⁹ (a, 3n) (WilkG50a, TotK58) protons on Dy (MayM64)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△■M-A), MeV (C ¹³ =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
67 ^{Ho 160} m	5.0 h (StenT65, NerW55, MihJ57, HandT54a, RayG63) 4.8 h (GrigE60a) 4.6 h (WilkG50a) 5.3 h (DzhB57) others (DzhB57g)		IT 66%, EC+β [†] 34% (NDS) β [†] ≈0.1% (GrigE59d) -66.3 (LHP, MTW)	A	chem, genet (NerW55) chem, sep isotopes (MihJ57) chem, excit, sep isotopes (MayM64) daughter Er 160 (NerW55) parent Ho 160 (GrigE62b)	e ⁻	Dy X-ray, 0.087 (14%), 0.197 (20%), 0.539 (5%), 0.646 (20%), 0.729 (50%), 0.880 (26%), 0.965 (37%, complex), others to 2.8 0.033, 0.051, 0.058, 0.079, 0.085, 0.144, 0.188 1.9 max daughter radiations from Holicoluded in above listing	Tb ¹⁵⁹ (a, 3n) (TotK58, TotK59a, WilkG50a) daughter Er ¹⁶⁰ (BjoS61, RayG63, NerW55, GrigE62b) protons on Dy (MayM64)
Ho ¹⁶¹	2.4 h (DneI58) 2.5 h (RayG63, HandT54a, HandT54) others (BjoS61, BasiA61, WilkG50c)		EC (HandT54a, HandT54) -67 (MTW)	A	chem, genet, excit (HandT54a, HandT54) daughter Er ¹⁶¹ (HandT54, HandT54a)		Dy X-rays, 0.026 (23%), 0.075 (15%), 0.157 (1%), 0.176 (2%) 0.017, 0.024, 0.049, 0.069, 0.076	Tb ¹⁵⁹ (a, 2n) (WilkG50a) protons on Dy (MayM64)
Ho ^{161m}	6.1 s (BorgJ66) 6.8 s (StenT65a)		IT (StenT65a, BorgJ66) -67 (LHP, MTW)	A	chem, genet (StenT65a, StenT65) excit, sep isotopes (BorgJ66) daughter Er ¹⁶¹ (StenT65a, StenT65)		Ho X-rays, 0.211 (53%) 0.155, 0.202	daughter Er ¹⁶¹ (StenT65a, StenT65) Dy ¹⁶² (p, 2n) (BorgJ66)
но 162	15 m (StenT65, StenT65a) 12 m (JorM61)		EC 95%, β [†] 5% (JorM61) -66.02 (MTW)	A	genet (JorM61) chem, genet (StenT65, StenT65a) daughter Ho 162m (JorM61, StenT65, StenT65a)	β+	Dy X-rays, 0.081 (8%), 0.511 (9%, Y [±]) 1.10 max 0.027, 0.072, 0.079	daughter Ho 162m (JorM61, HarmB61)
Ho ^{162m}	68 m (JorM61, MayM64) 67 m (MihJ57a)		IT 63%, EC 37% (JorM61) -65.92 (LHP, MTW)	A	chem, sep isotopes (MihJ57a) chem, mass spect (JorM61) others (HandT54a, WilkG50a) parent Ho 162 StenT65, StenT65a)		Ho X-rays, Dy X-rays, 0.081 (10%), 0.185 (26%), 0.283 (12%), 0.940 (13%), 1.224 (24%) 0.027, 0.036, 0.048, 0.072, 0.079, 0.131, 0.177 daughter radiations from Ho 162	Tb ¹⁵⁹ (a,n) (JorM61) protons on Dy (MayM64)
Но ¹⁶³	t _{1/2} >10 ³ y sp act (NauR60) others (BjoS61)	Δ	-66.35 (MTW)	A	chem, mass spect (NauR60)			Er ¹⁶² (n, Y) Er ¹⁶³ (EC) (NauR60)
Ho ^{163m}	1.1 s (BorgJ66) 0.8 s (HammC57)		IT (GovN58) -66.05 (LHP, MTW)	В	excit (GovN58) excit, sep isotopes (BorgJ66)	Y e	Ho X-rays, 0.305 0.249, 0.296	Ho ¹⁶⁵ (Y, 2n) (Hamm C57 GovN58)
Ho 164	36.7 m (BrowHN54) 34.0 m (WilkG50a) 41.5 m (WafH50) 47 m (PoolM38a) others (HandT54a)	*	β-53%, EC 47%, no β ⁺ , lim 0.05% (BrowHN54) -64.84 (MTW)	A	excit (PoolM38a)	e ⁻	0.99 max 0.019, 0.034, 0.065, 0.071, 0.083, 0.089 Dy, Er X-rays, 0.073, 0.091	protons on Dy (WilkG50a MihJ57a) Ho 165 (Y, n) (WafH48, BrowHN54) Ho 165 (n, 2n) (PoolM38a WafH50)
но 165	t _{1/2} (a) >6 x 10 ¹⁶ y sp act (PorsW54)	Δ	100 (LelW50, CollT57) -64.81 (MTW) 64 (to Ho 166) =1 (to Ho 166m) (GoldmDT64)					
Ho ¹⁶⁶	26.9 h (GranP49, CorkJ58) 27.0 h (HoffD63) others (FunL63, IngM47, BotW46a, AntoN50, AntoN50a, KetB49b, CorkJ49b)		β ⁻ (HevG36) -63.07 (MTW)	A	n-capt (HevG36) mass spect (IngM47) chem (KetB49b) daughter Dy ¹⁶⁶ (KetB49, ButeF50a)	l	1.84 max 0.023, 0.072, 0.078 Er X-rays, 0.081 (5.4%), 1.380 (0.9%), 1.582 (0.20%), 1.663 (0.10%)	Ho 165 (n, Y) (HevG36, PoolM38a, MeiL40, SerL47b) daughter Dy 166 (KetB49, ButeF50a, HoffD63)
Ho ^{166m}	1.2 x 10 ³ y sp act, mass spect (FalK65) others (ButeF52)		β ⁻ (ButeF52) -63.06 (LHP, MTW)	A	chem, excit (ButeF52) chem, genet energy levels (MiltJ55)	e-	[0.07 max] 0.023, 0.072, 0.078, 0.127, 0.175 Er X-rays, 0.081 (12%), 0.184 (90%), 0.280 (30%), 0.412 (12%), 0.532 (12%), 0.711 (58%), 0.810 (60%), 0.830 (11%), others to 1.43	Ho ¹⁶⁵ (n, Y) (ButeF52)
Ho ¹⁶⁷	3.1 h (WilleR60) 3.0 h (HandT55)		β¯ (HandT55) -62.3 (MTW)	A	chem, excit (HandT55) genet energy levels (HarmB62)	e-	0.96 max 0.024, 0.048, 0.073, 0.150, 0.180, 0.199, 0.263 Er X-rays, [0.079, 0.083, 0.208, 0.238, 0.321, 0.348, 0.387]	Er ¹⁷⁰ (p, a) (HandT55) Er ¹⁶⁷ (n, p) (WilleR60, HandT55)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities	Principal means of production
67 ^{Ho} 168	3.3 m (WilleR60) 3.5 m (TakaK61)	β TakaK61) Δ -59.7 (MTW)	sep isotopes, cross bomb β^- 2.2 max γ 0.85	Er ¹⁶⁸ (n,p) (WilleR60, TakaK61)
но ¹⁶⁹	4.8 m (MiyK63)	φ (MiyK63) Δ ~58.8 (MTW)	charac (MiyK63) β 1.95 max 0.15, 0.68, 0.76, 0.84, 0.92	Er ¹⁷⁰ (Y,p) (MiyK63)
но ¹⁶⁹	96 m (ButeF50)	↑ (ButeF50)	excit (ButeF50) possibly Er ¹⁶³ (LHP)	gammas on Er (ButeF50)
Ho ¹⁷⁰	45 s (TakaK61) 40 s (WilleR60)	φ (TakaK61) Δ -55.8 (MTW)	E excit, sep isotopes β 3.1 max (WilleR60) γ 0.43	Er ¹⁷⁰ (n,p) (WilleR60, TakaK61)
68 ^E r ¹⁵²	10.7 s (MacfR63a)	Υ a ≈90%, [EC+β [†]] ≈10% (MacfR63a)	excit, cross bomb (MacfR 63a, MacfR 64b) parent 2.4 m Ho 152 (MacfR 63a)	Pr ¹⁴¹ (F ¹⁹ , 8n), Nd ¹⁴² (O ¹⁶ , 6n), Ce ¹⁴⁰ (Ne ²⁰ , 8n) (MacfR64b, MacfR63a)
Er ¹⁵³	36 s (MacfR63a)	Υ α >75%, EC+β ⁺ <25% (MacfR63a)	excit, cross bomb, genet (MacR63a, MacR64b) ancestor Tb ¹⁴⁹ (MacfR63a)	Nd 142 (O 16, 5n) (MacfR63a) Pr 141 (F 19, 7n), Ce 140 (Ne 20, 7n) (MacfR64b)
Er ¹⁵⁴	5 m (MacfR63a)	α (MacfR63a) Δ -63 (MTW)	excit, genet (MacfR63a) parent Dy 150 (MacfR63a) a 4.15 daughter radiations from Dy 150	Nd ¹⁴² (O ¹⁶ , 4n) (MacfR63a)
Er ¹⁵⁷	≈25 m (LagP66)	Υ β ⁺ , [EC] (LagP66)	[chem], mass spect (LagP66) Y Ho X-rays, 0.117, 0.386, 0.511 (Y*), 1.32, 1.66, 1.82, 2.0 daughter radiations from Ho 157	Ho ¹⁶⁵ (p, 9n) (LagP66)
Er ¹⁵⁸	2.3 h (StenT65, GromK61a) 2.4 h (DneI60) 2.5 h (BoncN61a)	Υ EC, β [†] (BoncN6la)	Chem, genet (GromK61a, BoncN61a) parent Ho	(GromK6la, AbdurA61, BoncN6la, DneI60) Ho ¹⁶⁵ (p,8n) (LagP66)
Er ¹⁵⁹	36 m (LagP66) 1 h (AbdurA61a)	¥ [EC, β [†]] (AbdurA6la)	A chem, atomic level spacing, genet (AbdurA6la) mass spect (LagP66) parent Ho 159 (AbdurA6la) parent Ho 159 (AbdurA6la) e	Ho 165(p, 7n) (LagP66) protons on Ta (AbdurA61a)
Er 160	29.4 h (NerW55) 28.7 h (BjoS61) 29.5 h (RayG63) others (MicM54, DzhB57, GoroG57a, LagP66)	* [EC], no β [†] (NerW55)	chem, mass spect (NerW55, MicM54) parent Ho 160m (NerW55) not parent Ho 160, lim 5% (DzhB63e)	protons on Er (RayG63, n BjoS61)
Er ¹⁶¹	3.1 h (NerW55, RayG63, GrenH61) 3.2 h (BjoS61, GromK61a, DneI60a) others (HandT54, MicM54)	# [EC], β ⁺ (NerW55) EC, no β ⁺ , lim 3% (HandT54, GrenH61) Δ -65 (MTW)	Chem, cross bomb, excit (HandT54) chem, mass spect (MicM54, NerW55) parent Ho 161 (ButeF60, RayG63) parent Ho 161m (StenT65a, StenT65)	ButeF60)
Er ¹⁶²		% 0.136 (HaydR 50) Δ -66.4 (MTW) σ _c 2 (GoldmDT 64)		
Er ¹⁶³	75.1 m (PersL63d) others (HandT53a, BjoS61, StenT65)	EC 99+%, β ⁺ 0.004% (Persi.63d) Δ -65.14 (MTW)	Chem, excit (HandT53a, Pers L63d)	Ho ¹⁶⁵ (p, 3n) (HandT53a, PersL63d)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△ • M-A), MeV (C [*] =0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
68 ^{Er164}		Δ	1.56 (HaydR50) -65.87 (MTW) 1.7 (GoldmDT64)					
Er ¹⁶⁵	10.34 h (RydH63) 10.3 h (StenT65) 10.4 h (ZylJ63) others (RayG63, BjoS61, SchoR63, ButeF50b, GrigO58, GoroG57)	1	EC (ButeF50b) -64.44 (MTW),	A	chem, excit (ButeF50b) chem, mass spect (NierW56, BjoS61) daughter Tm 165 (HandT53a, NerW54)	Y	Ho X-rays, continuous bremsstrahlung to 0.37	Ho ¹⁶⁵ (d, 2n) (RydH63) Ho ¹⁶⁵ (p, n) (RayG63) Er ¹⁶⁴ (n, Y) (SchoR63)
Er166		Δ	33.41 (HaydR50) -64.92 (MTW) 12 (GoldmDT64)					
Er 167		Δ	22.94 (HaydR50) -63.29 (MTW) 700 (GoldmDT64)					
Er ^{167m}	2.3 s (AlexKF63) 2.5 s (DMatE49, Hamm C57)		IT (DMatE49) -63.08 (LHP, MTW)	В	n-capt (DMatE49) excit (HammC57) genet (MihJ57a) daughter Tm ¹⁶⁷ (MihJ57a)	I _	Er X-rays, 0.208 (43%) 0.150, 0.199	daughter Tm 167 (MihJ57, MihJ57a) daughter Ho 167 (HarmB62) Er 166 (n, Y) (DMatE49, AlexKF63)
Er 168		Δ	27.07 (HaydR50) -62.98 (MTW) 2 (GoldmDT64)					
Er ¹⁶⁹	9.6 d (BjoS61) 9.0 d (RayG63) 9.4 d (KetB48) 9.0 d (BisA56e, ButeF50) others (WilleR60)	1	β ⁻ (KetB48) -60.91 (MTW)	A	chem, n-capt (KetB48) genet energy levels (HatE56a) chem, mass spect (BjoS61)	e-	0.34 max 0.006 [Tm M X-rays], 0.008 (0.3%)	Er ¹⁶⁸ (n, Y) (KetB48)
Er ¹⁷⁰		Δ	14.88 (HaydR50) -60.0 (MTW) 9 (GoldmDT64)					
Er ¹⁷¹	7.52 h (CranF58) others (KellH51, KetB48)		β ⁻ (KetB48) -57.6 (MTW)	A	n-capt (HevG36, NeunE35) chem, genet (KetB48) chem, mass spect (NetD56) parent Tm ¹⁷¹ (KetB48)	e-	1.49 max (2.3%), 1.06 max 0.004, 0.052, 0.065, 0.102, 0.115 Tm X-rays, 0.112 (25%), 0.124 (9%), 0.296 (28%), 0.308 (63%), others to 0.96	Er ¹⁷⁰ (n, Y) (HevG36, PoolM38a, KetB48, BotW46a, NeunE35)
Er ¹⁷²	49.5 h (HansPéla) 48.7 h (GunRé2) others (NetD56, OrtCél)		β¯ (OrtC61) -56.5 (MTW)	A	chem, genet (NetD56) parent Tm ¹⁷² (NetD56)	e ⁻	0.89 max (<10%), 0.37 max 0.010, 0.020, 0.049, 0.058, 0.348 Tm X-rays, 0.407 (40%), 0.610 (40%) daughter radiations from Tm ¹⁷²	Er ¹⁷⁰ (n, Y) Er ¹⁷¹ (n, Y) (NetD56, OrtC61, HelmeR61b, HansP61a, GunR62)
Er ¹⁷³ (or Tm ¹⁷⁶ , Yb ¹⁷²)	2.0 m (WilleR60)	*	β or IT (WilleR60)	F	sep isotopes (WilleR60)	Y	0.18, 0.25, 0.36	neutrons on Yb ¹⁷⁶ (WilleR60)
69 Tm 153	1.6 s (MacfR64b)	*	a (MacfR64b)	С	excit, cross bomb (MacfR64b)	a	5. 10	Pr ¹⁴¹ (Ne ²⁰ , 8n), Nd ¹⁴² (F ¹⁹ , 8n) (MacfR64b)
Tm ¹⁵⁴	3.0 s (MacfR64b)	*	a (MacfR64b)	С	excit, cross bomb (MacfR64b)	a	5.04	Pr ¹⁴¹ (Ne ²⁰ , 7n), Nd ¹⁴² (F ¹⁹ , 7n) (MacfR64b)
Tm ¹⁵⁴	5 s (MacfR64b)	*	a (MacfR64b)	E	excit, cross bomb (MacfR64b)	a	4. 96	Pr ¹⁴¹ (Ne ²⁰ , 7n), Nd ¹⁴² (F ¹⁹ , 7n) (MacfR64b)

Isotope Z A	Half-life		Type of decay (♥); % abundance; Mass excess (△2M-A), MeV (C ¹² =0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
69 Tm 161	32 m (ButeF60) 30 m (HarmB59) 20 to 30 m (RayG63) 44 m (GromK63)	-	EC (HarmB59) -62 (MTW)	A	chem, sep isotopes (HarmB59) chem, genet (ButeF60) chem, excit, sep isotopes, genet (RayG63) parent Er 161 (ButeF60, RayG63)		Er X-rays, 0.084, 0.106, 0.112, 0.145 (complex), 0.172, others 0.027, 0.036, 0.050, 0.055, 0.065, 0.075, 0.089, 0.115, others daughter radiations from Er 161	Er ¹⁶² (p, 2n) (RayG63, HarmB59)
Tm 162	77 m (WilsRG60g) 90 m (RayG63) activity not observed, t _{1/2} <45 m (BjoS61)		EC (WilsRG60g) -61.5 (MTW)	В	excit, sep isotopes (WilsRG60g) chem, excit, sep isotopes (RayG63)	\ \ \ \	Er X-rays, 0.102 († 20), 0.236 († 10)	protons on Er (RayG63, WilsRG60g)
Tm ¹⁶²	22 m (AbdumA63)	1	β ⁺ , EC (AbdumA63) -61.5 (MTW)	D	chem (AbdumA63) daughter Yb ¹⁶² (AbdumA63)	e	3.82 max 0.045, 0.093, 0.100 [Er X-rays, 0.102, 0.511 (Y [±])]	daughter Yb ¹⁶² (AbdumA63)
Tm ¹⁶³	1.8 h (BjoS61, GromK63, RayG63) others (HarmB59, BoncN60, ButeF60)		EC (HarmB59) β [†] (BoncN60) -62.87 (MTW)	A	chem, sep isotopes (HarmB59) chem, mass spect (BjoS61) chem, sep isotopes, excit (RayG63) parent Er 163 (ButeF60, BjoS61)		Er X-rays, 0.104 († 8), 0.17 († 1, complex), 0.240 († 5, complex), 0.29 († 3, complex), 0.34 († 3, complex) 0.047, 0.095, 0.184 1.1 max daughter radiations from Er 163	Er ¹⁶⁴ (p, 2n) (RayG63)
Tm 164	2.0 m (WilsRG60g) 1.8 m (RayG63)	1	EC 50%, β [†] 50% (WilsRG60g) -61.91 (MTW)	A	chem, genet energy levels (DalB60, AbdurA60, AbdurA60b) excit, sep isotopes (RayG63, WilsRG60g) daughter Yb ¹⁶⁴ (DalB60, AbdurA60, AbdurA60b)	β	Er X-rays, 0.091 (4%), 0.356, 0.361, 0.391, 0.511 (100%, Y [±]), 0.773, 0.862, 0.907, 0.930 2.94 max 0.034, 0.083, 0.089	Er ¹⁶⁴ (p,n) (RayG63, WilsRG60g)
Tm ¹⁶⁵	30.1 h (BjoS61) others (MicM54, RayG63, GoroG57, HandT53a)		EC, no β [†] (HandT53a) β [†] 0.007% (PreiZ65) -62.87 (PreiZ65, MTW)	A	chem, excit (HandT53a) chem, mass spect (MicM54) parent Er ¹⁶⁵ (HandT53a, NerW54)	e	Er X-rays, 0.054, 0.113, 0.243 († 50), 0.297 († 35, complex), 0.34 († 10, complex), 0.44 († 5, complex), 0.70 († 2), 0.807 († 15), 1.13 († 5), 1.30 († 1) 0.038, 0.045, 0.052, 0.056, 0.068, 0.161, 0.185, 0.233, 0.240 0.30 max daughter radiations from Er 165	protons on Er (RayG63)
Tm ¹⁶⁶	7.7 h (WilsRG60d, GrigE60a, WilkG49b, RayG63, MicM54) others (BjoS61, BoncN60, PariP63)		EC 98.2%, p ⁺ 2% (GrigE61) others (WilsRG60d, WilkG49b) -61.88 (LHP, MTW)	A	chem, excit (WilkG49a) chem, mass spect (MicM54) daughter Yb ¹⁶⁶ (FolR51, NerW55, GoroG57)	e	1.94 max 0.023, 0.072, 0.079, 0.127 Er X-rays, 0.081, 0.19 (doublet), 0.215, 0.46, 0.60 (complex), 0.69 (complex), 0.78 (complex), 1.180, 1.277, 1.378, 1.873, 2.06 (doublet)	Ho 165(a, 3n) (WilkG49b) protons on Yb (WilkG49b, RayG63, WilsRG60d)
Tm 167	9.6 d (NaraH60, WilkG49b, NerW55, RayG63) 9.3 d (BjoS61, BonnN62)		EC, no β [†] (WilkG49b) no β [†] , lim 0.3% (GromK62) -62.13 (GromK62, MTW)	A	chem, excit (WilkG49a, RayG63) chem, mass spect (MicM54, NerW55, BjoS61) parent Er 167m (MihJ57a) daughter Yb 167 (WilsRG60f)	1	Er X-rays, 0.057 (4%), 0.208 (43%), 0.532 (2%) 0.048, 0.150, 0.199 daughter radiations from Er 167m included in above listing	Ho ¹⁶⁵ (a, 2n) (RayG63) protons on Er (RayG63)
Tm ¹⁶⁸	85 d (WilkG49b) 86 d (RayG63) 87 d (HandT54b) 93 d (BonnN62) others (BjoS61, GoroG57)		EC, β (?) ≈2% (WilkG49b) -61.27 (MTW)	A	chem, excit (WilkG49b, RayG63) chem, mass spect (BjoS61)		Er X-rays, 0.080 (11%), 0.19 (77%, complex), 0.448 (27%), 0.63 (14%, complex), 0.73 (40%, complex), 0.82 (88%, complex), 0.917 (4%), 1.280 (3%) 0.022, 0.071, 0.077, 0.127, 0.141	Er ¹⁷⁰ (p, 3n) (RayG63) Ho ¹⁶⁵ (a, n) (WilkG49b) Er ¹⁶⁸ (p, n) (RayG63)
Tm 169	t _{1/2} (a) >5 x 10 ¹⁶ y sp act (Pors W 54)	Δ	100 (LagC50, CollT57) -61.25 (MTW) 125 (GoldmDT64)					
Tm ¹⁷⁰	134 d (FlyK65a) 125 d (BonnN62) others (BotW46, CaldR50, KetB49b)	Δ	β (BotW46) EC(K) 0.15% (DayP56) no EC(K), lim 0.3%, no β , lim 0.01% (GrahR52) -59.6 (MTW) 150 (GoldmDT64)	A	n-capt (NeunE36) chem (KetB48a)	e	0.97 max 0.023, 0.075, 0.082 Yb X-rays, 0.084 (3.3%)	Tm 169(n, Y) (HevG36, NeunE36, SerL47b) Er 170(p, n) (RayG63)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△ *M-A), MeV (C' = 0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
69 ^{Tm¹⁷¹}	1.92 y (FlyK65a) 1.9 y (KetB49b)		β ⁻ (KetB48) -59.1 (MTW)	A	chem, genet (KetB48) chem, mass spect (NetD56) daughter Er ¹⁷¹ (KetB48)	e-	0.097 max 0.057, 0.065 Yb X-rays, 0.067	Er ¹⁷⁰ (n, γ) Er ¹⁷¹ (β ⁻) (KetB48)
Tm ¹⁷²	63.6 h (NetD56) 63.5 h (HansP61a) others (KuroT61b, FolR51)	1	β ⁻ (FolR51) -57.4 (MTW)	A	chem (FolR51) chem, n-capt, mass spect (NetD56) daughter Er ¹⁷² (NetD56)	1.	1.88 max Yb X-rays, 0.079 (5%), 0.181 (2.2%), 0.91 (1.4%), 1.09 (7%), 1.39 (7%), 1.46 (7%), 1.53 (6%), 1.61 (5%)	daughter Er ¹⁷² (NetD56, HelmeR61a, HansP61a, OrtC61)
Tm ¹⁷³	8.2 h (OrtC63, KuroT63) others (KuroT61b)		β (KuroT61b) -56.4 (MTW)	В	chem, sep isotopes, cross bomb (OrtC63)	e-	1.3 max (2%), 0.89 max 0.008, 0.056, 0.064 Yb X-rays, 0.066 (1.1%), 0.399 (89%), 0.465 (8%)	Er ¹⁷⁰ (a,p) (OrtC63) Yb ¹⁷³ (n,p) (OrtC63) Yb ¹⁷⁴ (Y,p) (KuroT63, OrtC63, KuroT61b)
Tm ¹⁷⁴	5.5 m (WilleR60) 5 m (TakaK61)		β (TakaK61) -54.6 (TakaK61, MTW)		sep isotopes (WilleR60) decay charac (TakaK61)	1.	2.5 max no Y	Yb ¹⁷⁴ (n,p) (WilleR60, TakaK61)
Tm ¹⁷⁴	5.2 m (KantJ64c)	1	β (KantJ64c) -54.1 (MTW)	В	genet energy levels (KantJ64c, OrtC64)	e ⁻	1.2 max 0.015, 0.067, 0.074 Yb X-rays, 0.176 (67%), 0.273 (85%), 0.366 (93%), 0.50 (15%), 0.99 (89%)	Yb ¹⁷⁴ (n,p) (KantJ64b)
Tm ¹⁷⁵	20 m (KuroT6lb) 19 m (ButeF50)	1	β ⁻ (KuroT61b) -52.3 (LHP, MTW)	E	excit (ButeF50) excit, decay charac (KuroT6lb)	1"	2.0 max 0.51	Yb ¹⁷⁶ (Y,p) (KuroT61b)
Tm ¹⁷⁶	1.5 m (TakaK61)		β (TakaK61) -49.2 (MTW)	F	decay charac (TakaK61)	١.	4.2 max no Y	Yb ¹⁷⁶ (n,p) (TakaK61)
Tm ¹⁷⁶ (or Er ¹⁷³ , Yb ¹⁷⁷)	2.0 m (WilleR60)	*	IT or β (WilleR60)	F	sep isotopes (WilleR60)	٧	0.18, 0.25, 0.36	neutrons on Yb 176 (WilleR60)
70 ^{Yb¹⁵⁴}	0.39 s (MacfR64b)	*	a (MacfR64b)	С	excit, cross bomb (MacfR64b)	a	5.33	Sm ¹⁴⁴ (O ¹⁶ , 6n), Nd ¹⁴² (Ne ²⁰ , 8n) (MacfR 64b)
Yb ¹⁵⁵	1.6 s (MacfR64b)	*	α (MacfR64b)	С	excit, cross bomb (MacfR64b)	α	5.21	Sm ¹⁴⁴ (O ¹⁶ , 5n), Nd ¹⁴² (Ne ²⁰ , 7n) (MacfR64b)
¥ь ¹⁶²	≈24 m (AbdumA63)	*	[EC] (AbdumA63)	D	chem (AbdumA63) parent 22 m Tm ¹⁶² (AbdumA63)		[Tm X-rays] 0.032, 0.039 daughter radiations from 22 m Tm ¹⁶²	protons on Ta (AbdumA63)
¥Ъ ¹⁶⁴	75 m (DalB60, AbdurA60b, AbdurA60) 78 m (PariP64) 74 m (ButeF60) others (NerW55, KalyA59)	¥	EC (DalB60, AbdurA60, AbdurA60b)	A	chem (NerW55) chem, genet (AbdurA60, DalB60, AbdurA60b) chem, mass spect (PariP64) parent Tm (AbdurA60b, DalB60, AbdurA60)	Y	Tm X-rays daughter radiations from Tm ¹⁶⁴	Tm ¹⁶⁹ (p, 6n) (ButeF60, PariP64)
Yb ¹⁶⁵	10.5 m (PariP64)	ı	[EC, β [†]] (PariP64) -60 (MTW)	С	mass spect (PariP64)			Tm 169(p, 5n) (PariP64)
YP166	57.5 h (PariP63) 54 h·(NerW55) 62 h (FolR51) 60 h (GoroG57)		EC (FolR51) -61.6 (MTW)	А	chem, genet (FolR51) chem, mass spect (MicM54, NerW55) parent Tm ¹⁶⁶ (FolR51, NerW55, GoroG57)		Tm X-rays, 0.082 (17%) 0.023, 0.072 daughter radiations from Tm ¹⁶⁶	Tm 169(p,4n) (PariP63)
Yb ¹⁶⁷	17.7 m (WilsRG60f) 17.3 m (WanC64) others (HandT54b, BasiA60b)		EC, no β^{\dagger} (HandT54b) β^{\dagger} 0.4% (WanC64) β^{\dagger} 0.2% (TamT65) -60.17 (MTW, GromK62)	В	chem, excit (HandT54b) genet (WilsRG60f) parent Tm 167 (WilsRG60f) daughter Lu 167 (AroP58, ButeF60)		Tm X-rays, 0.113 (90%, complex), 0.176 (15%) 0.047, 0.055, 0.096	daughter Lu ¹⁶⁷ (HarmB59) Tm ¹⁶⁹ (p, 3n) (HandT54b) Er ¹⁶⁴ (a, n) (WilsRG60f)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
70 ^{Yb168}		Δ	0.140 (BaiK50) 0.135 (CollT57) -61.3 (MTW) 11,000 (GoldmDT64)					
Yb ¹⁶⁹	31.8 d (WalkD49a) 30.6 d (CorkJ56) 33 d (BotW46, MartiDS51, HandT54b)	١.	EC (BotW46) -60 (MTW)	A	n-capt (BotW46) chem, excit (KetB48a) mass spect (MicM54) daughter Lu 169 MerE61)		Tm L X-rays (56%), Tm K X-rays (185%), 0.063 (45%), 0.110 (18%), 0.131 (11%), 0.177 (22%), 0.198 (35%), 0.308 (10%) 0.004-0.011, 0.034, 0.050, 0.053, 0.071, 0.100, 0.118, 0.121, 0.139	Yb ¹⁶⁸ (n, Y) (AttH45, BotW46) Tm ¹⁶⁹ (d, 2n) (KetB48a)
Yb ^{169m}	46 s (HoffK60a) 50 s (DMatE49)	l .	IT (DMatE49) -60 (LHP, MTW)	В	n-capt (DMatE49) n-capt, sep isotopes (HoffK60a) daughter Lu ¹⁶⁹ (HarmB60)		Yb L X-rays 0.014, 0.022	Yb ¹⁶⁸ (n, Y) (DMatE49, HoffK60a)
Yb ¹⁷⁰			3.03 (BaiK50) 3.14 (CollT57) -60.5 (MTW)					
Yb ¹⁷¹			14.31 (BaiK50) 14.4 (CollT57) -59.2 (MTW)					
Yb ^{171m}	<<8 d (MihJ57)		IT (MihJ57a, MihJ57) -59.1 (LHP, MTW)	D	chem (MihJ57) daughter Lu ¹⁷¹ (MihJ57a, MihJ57, HarmB60)		Yb L X-rays, 0.019, 0.076 0.010, 0.017, 0.067, 0.074	daughter Lu 171 (MihJ57, MihJ57a)
<u>γь¹⁷²</u>			21.82 (BaiK50) 21.9 (CollT57) -59.3 (MTW)					
Yb ¹⁷³			16.13 (BaiK50) 16.2 (ColTT57) -57.7 (MTW)					
Уь174		Δ	31.84 (BaiK50) 31.6 (CollT57) -57.1 (MTW) 9 (to Yb ¹⁷⁵) 46 (to 0.513 level of Yb ¹⁷⁵) (GoldmDT64)					
Yb ¹⁷⁵	101 h (AttH45, (CorkJ56) 102 h (IngM47a) 99 h (BotW46)		β ⁻ (AttH45) -54.8 (MTW)	A	n-capt (BotW46, AttH45) mass spect (IngM47a) chem (KetB49b)	Y	0.466 max Lu X-rays, 0.114 (1.9%), 0.283 (3.7%), 0.396 (6.0%) 0.051, 0.102, 0.112, 0.333	Yb ¹⁷⁴ (n, Y) (AttH45, BotW46, IngM47a)
уь176		Δ	12.73 (BaiK50) 12.6 (CollT57) -53.4 (MTW) 7 (GoldmDT64)		. • • •			
Yb ^{176m}	11.7 s (KantJ62) 11 s (VergM65)		[IT] (KantJ62) -52.4 (LHP, MTW)	В	sep isotopes, excit (KantJ62) genet energy levels (DBoeJ64, KantJ62)	Y	Yb X-rays, 0.19, 0.29, 0.39	Yb ¹⁷⁶ (n, n ¹) (KantJ62)
Yb ¹⁷⁷	1.9 h (CorkJ56, AttH45) 2.4 h (BotW46)		ρ ⁻ (BotW46) -50.8 (JohaH64, MTW)	A	n-capt (MarsJK35, HevG36) chem, genet (BetR58) parent Lu ¹⁷⁷ (BetR58)	Y	1.40 max Lu X-rays, 0.122 (3%), 0.151 (16%), 1.080 (5%), 1.241 (3%) 0.059, 0.075, 0.088, 0.110, 0.140	Yb ¹⁷⁶ (n, Y) (MarsJK35, HevG36, PoolM38a, BotW46, IngM47a)
Yb ¹⁷⁷ m	6.5 s (FetP62a, CamE59) 6.4 s (HoffK60a) others (DMatE49, KahJ51)		IT (HoffK60a, FetP62a, DMatE49) -50.5 (LHP, MTW)	A	n-capt (DMatE49) n-capt, sep isotopes (HoffK60a, FetP62a)		Yb X-rays, 0.104 (65%), 0.228 (13%) 0.043, 0.094, 0.167, 0.219	Yb 176 (n, Y) (HoffK60a, FetP62a, CamE59)
APun	0.15 s (KahJ52)	*	[IT] (KahJ51)	F	n-capt (KahJ51)	Y	0.455 (KahJ52)	neutrons on Yb (KahJ51)

Lu ¹⁶⁹ 34 h (DzhB64a) others (MerE61, DzhB59g, GoroG57b, NerW55) Lu ^{169m} 2.7 m (BjoS65) Δ TT (BjoS65) Δ Lu ¹⁷⁰ 2.05 d (WilsRG60e) 2.0 d (DzhB64a) others (MerE61, DzhB59g Δ EC (GoroG β† (DzhB59 Δ -58 (MTW) FEC (WilkG) β† (DzhB65)	ce: Mass excess MeV (C ¹² =0); Il neutron on (σ), barns	Class; Identification; Major radiations: Genetic relationships and intensities	Principal means of production
Lu ¹⁵⁶ 0.23 s (MacfR65a)	WilleR60) F	sep isotopes (WilleR60) Y 0.18, 0.25, 0.36	neutrons on Yb ¹⁷⁶ (WilleR60)
Lu ¹⁶⁹ Lu ¹⁶⁹ 34 h (DzhB64a) others (MerE61, DzhB59g, GoroG57b, NerW55) Lu ^{169m} 2.7 m (BjoS65) Δ 1T (BjoS65) Δ 58 (LHP, Lu ¹⁷⁰ 2.05 d (WilsRG60e) 2.0 d (DzhB64a) others (MerE61, MihJ57a, DzhB59g, WilkG51) Lu ^{170m} 0.7 s (BjoS65) Δ 1T (BjoS65, Δ 57.1 (Hand MingG60e) 2.0 d (DzhB664a) others (MerE61, MihJ57a, DzhB59g, WilkG51) Lu ^{171m} 8.3 d (WilsRG60h) 3.2 d (BonnN62) others (RaoC63, WilkG51, MihJ57a, ValenJ62) Lu ^{171m} 76 s (BjoS65) 4 IT (BjoS65, Δ 57.0 (LHF) -58 (MTW)	5a) C	cross bomb, excit a 5.63-(MacfR65a)	Sm 144 (F 19, 8n) (MacfR65a)
Lu ¹⁶⁹ Lu ¹⁶⁹ Lu ¹⁶⁹ Lu ^{169m} Lu ^{169m} Lu ¹⁷⁰ Lu ¹⁷⁰ Lu ¹⁷⁰ Lu ¹⁷⁰ 1.0 2.05 d (WilsRG60e) 2.0 d (DzhB64a) others (MerE61, MihJ57a, DzhB59g, WilkG51) Lu ¹⁷⁰ Lu ¹⁷⁰ Lu ¹⁷⁰ Lu ¹⁷¹ 8.3 d (WilsRG60h) 8.2 d (BonnN62) others (Raoc63, WilkG51, MihJ57a, ValenJ62) Lu ^{171m} 76 s (BjoS65) Lu ^{171m} T6 s (BjoS65) TEC, G* ≈ 12 -57 (MTW) EC (GoroG β ⁺ (DzhB59 -58 (LHP, EC (WilkG β ⁺ (DzhB59 -57.1 (Hander) Tr (BjoS65, -57.0 (LHF) -58 (MTW)	5a) C	cross bomb, excit a 5.54 (MacfR65a)	Sm ¹⁴⁴ (F ¹⁹ , 7n) (MacfR65a)
Cothers (MerE61, DzhB59g, GoroG57b, NerW55) β + (DzhB59, -58 (MTW)	2% (MerE61)	chem (MerE61) daughter Hf ¹⁶⁸ (MerE61) e [0.026, 0.078, 0.085] β [†] 1.2 max	(MerE61)
Lu ¹⁷⁰ Lu ¹⁷⁰ 2.05 d (WilsRG60e) 2.0 d (DzhB64a) others (MerE61, MihJ57a, DzhB59g, WilkG51) Lu ¹⁷⁰ 0.7 s (BjoS65) Δ TI (BjoS65, Δ -57.0 (LHF Lu ¹⁷¹ 8.3 d (WilsRG60h) 8.2 d (BonnN62) others (RaoC63, WilkG51, MihJ57a, ValenJ62) Lu ¹⁷¹ Lu ¹⁷¹ 76 s (BjoS65) Δ -58 (LHP, EC (WilkG; β ⁺ (DzhB59g, Δ -57.1 (Hand) EC (WilkG; β ⁺ = 0.007% LHP) -58 (MTW)	69g)	chem, excit (NerW55) chem, genet (GoroG57b, MerE61) parent Yb 169 (GoroG57b, MerE61) parent Yb 169m (HarmB60) daughter Hf 169 (MerE61) daughter Hf 169 (MerE61) Y b X-rays, 0.063, 0.111, 0 0.577, many others to 2.2 0.010, 0.014, 0.022, 0.026, 0.053, 0.066, 0.077 others to 2.2 β* daughter radiations from Ythincluded in above listing	0.050, daughter Hf ¹⁶⁹ (MerE61)
2.0 d (DzhB64a) others (MerE61, MihJ57a, DzhB59g, WilkG51) Δ -57.1 (Hand DzhB59g, WilkG51) Δ -57.0 (LHF	'	excit, sep isotopes (BjoS65) Y [Lu L X-rays] e 0.019, 0.027	Yb ¹⁷⁰ (p, 2n) (BjoS65)
Lu ¹⁷¹ 8.3 d (WilsRG60h) 8.2 d (BonnN62) others (RaoC63, WilkG51, MihJ57a, ValenJ62) Lu ^{171m} 76 s (BjoS65) Δ -57.0 (LHF EC (WilkG β [†] = 0.007% LHP) -58 (MTW)	G51) A 69g, MerE61) nsP65a, MTW)	chem, excit (WilkG51) chem, mass spect (MicM56) daughter Hf ¹⁷⁰ (ValenJ62, MerE61) Y Yb X-rays, 0.084 (13%), 0. 0.24, 1.01, 1.03, 1.17, 1. 1.41, 2.03, 2.32, 2.67, 2. 3.09, many others to 3.2 e - 0.023, 0.075, 0.082, others B ⁺ 2.4 max	27, 89, (ValenJ62, DzhB64a) protons on Yb
8.2 d (BonnN62) others (RaoC63, WilkG51, MihJ57a, ValenJ62) Lu ^{171m} 76 s (BjoS65) \$\begin{array}{c} \begin{array}{c} \begin{array}{c} \beta^+ ≈ 0.007% \\ \begin{array}{c} \begin{array}{c} \beta^+ ≈ 0.007% \\ \begin{array}{c} \begin{array}{c		excit, sep isotopes, genet onergy levels (BjoS65) e 0.036, 0.044	daughter Hf ¹⁷⁰ (ValenJ65). Yb ¹⁷⁰ (p,n) (BjoS65)
1	% (VitV65a,	chem, excit (WilkG51) excit, sep isotopes (WilsRG60h) genet energy levels (IodM60a, ChupE58a) parent Yb ^{171m} (MihJ57a, MihJ57, HarmB60) daughter Hf ¹⁷¹ (WilkG51)	
	' I	excit, sep isotopes (BjoS65) genet energy levels (BjoS65, BarnD65) Y Lu X-rays, 0.071 (0.2%) e 0.061, 0.069	daughter Hf ¹⁷¹ (BarnD65) Yb ¹⁷¹ (p,n) (BjoS65)
Lu ¹⁷² 6.70 d (WilkG51, WilsRG60a) others (BonnN62, RaoC63) EC (WilkG: Δ -57 (MTW)	· ·	Chem, excit (WilkG51) sep isotopes, excit (WilsRG60a) daughter Hf (172) ValenJ62b, RaoC63) Y b X-rays, 0.079 (13%, cor 0.182 (26%), 0.81 (21%), (45%, complex), 1.09 (60 0.017, 0.029, 0.069, 0.077, 0.120, others to 2.1	0.90 WilsRG60a) 7m 169 (q.n) (WilkG51)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△ • M-A), MeV (C''-0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
71 ^{Lu¹⁷²m}	3.7 m (ValenJ62b)		IT (ValenJ62b) -57 (LHP, MTW)	В	chem, genet (ValenJ62b) daughter Hf ¹⁷² (ValenJ62b)		Lu L X-rays 0.032, 0.040	daughter Hf ¹⁷² (ValenJ62b)
Lu ¹⁷²	4.0 h (WilkG51)	*	β ⁺ , EC (WilkG51)	G	chem, excit (WilkG51) activity not observed (WilsRG60a)			alphas on Tm, protons on Lu (WilkG51)
Lu ¹⁷³	1.37 y (BonnN62) 1.4 y (WilkG51, MihJ57a) 1.3 y (BicJ59, GrigE60a) 1.7 y (WilsRG60a) others (GoroG58a)	I -	EC (WilkG51) -57.0 (MTW)	A	chem, excit (WilkG51) sep isotopes (WilsRG60a) daughter Hf ¹⁷³ (WilkG51)		Yb L X-rays, Yb K X-rays (150%), 0.079 (14%), 0.101 (7%), 0.17 (5%, complex), 0.272 (18%), 0.637 (1.5%) 0.017, 0.039, 0.068, 0.077, 0.090	Yb ¹⁷³ (p,n) (WilkG51, BicJ59, WilsRG60a) Lu ¹⁷⁵ (p,3n)Hf ¹⁷³ (EC) (BicJ59, WilkG51)
Lu ¹⁷⁴	3.6 y (BonnN62) >800 d (BalaV64) <<160 d (HarmB60) others (WilkG51, WilleR60)		EC, no p ⁻ , p ⁺ (WilsRG60) others (WilkG51) -55.6 (MTW)	A	chem, excit (WilkG51) excit, sep isotopes (WilsRG60) daughter Lu ¹⁷⁴ m (HarmB60)		Yb X-rays, 0.076 (6%), 1.24 (9%) 0.015, 0.067, 0.074	Yb ¹⁷⁴ (p,n) (WilsRG60, HarmB60, PraH62)
Lu ¹⁷⁴ m	140 d (BonnN62) 150 d (BalaV64) others (WilkG51, WilleR60)		IT (HarmB60, RomV60) EC (FunL65, RiccR65a) -55.4 (LHP, MTW)	В	chem, genet (HarmB60, RomV60) chem (BonnN62) parent Lu ¹⁷⁴ (HarmB60)	1	Lu L X-rays, 0.067, 0.176, 0.273, 0.994 0.094, 0.034, 0.050, 0.057 daughter radiations from Lu ¹⁷⁴	Yb ¹⁷⁴ (p,n) (WilsRG60, HarmB60, PraH62)
<u>Lu</u> 175	t _{1/2} (a) >1 x 10 ¹⁷ y sp act (PorsW54)	_	97.40 (HaydR50) 97.41 (CollT57) -55.3 (MTW) 5 (to Lu ¹⁷⁶) 18 (to Lu ¹⁷⁶ m) (GoldmDT64)					
<u>Lu</u> 176	2.2 x 10 ¹⁰ y sp act (DonhD64) 3.6 x 10 ¹⁰ y sp act (MNaiA61b, BrinGA65) 2.4 x 10 ¹⁰ y sp act (ArnJ54) 2.1 x 10 ¹⁰ y sp act (GloR57b) 4.6 x 10 ¹⁰ y sp act (DixD54) others (HerrW58a, LibW39a)	% 	B, no EC, lim 10% (ArnJ54) no EC (GloR57b) EC(K) 3% (DixD54) 2.60 (HaydR50) 2.59 (CollT57) -53.4 (MTW) 2100 (to Lu ¹⁷⁷) =1 (to Lu ^{177m}) (GoldmDT64)	A	chem (HeyM38) mass spect (MattaJ39)	e_	0.43 max 0.023, 0.078, 0.086, 0.137 Hf X-rays, 0.088 (15%), 0.202 (85%), 0.306 (95%)	natural source
Lu ¹⁷⁶ m	3.69 h (SchmL60) others (BetR58, AttH45, BotW46)		 β⁻, no IT (SchaG52) no β⁺, lim 0.0005% (LanghH61b) -53.1 (LHP, MTW) 	A	n-capt (MLenJ35b, MarsJK35) chem, excit (WilkG48a)	e-	1.31 max 0.023, 0.078, 0.086 Hf X-rays, 0.088 (10%)	Lu 175 (n, Y) (MLenJ35b, MarsJK35, HevG36, FlaA43, BotW46, AttH45, SerL47b, AntoN50a)
Lu ¹⁷⁷	6.74 d (SchmL60) others (BetR58, BotW46, WilkG48a, DouDG49, CorkJ49b, FlaA43, AttH45)		β¯ (BotW46) -52.2 (MTW)	A	n-capt (HevG36) mass spect (IngM47a) chem, excit (WilkG48a) daughter Yb ¹⁷⁷ (BetR58)	Y	0.497 max Hf X-rays, 0.113 (2.8%), 0.208 (6.1%) 0.048, 0.103, 0.111, 0.143	Lu ¹⁷⁶ (n, y) (HevG36, FlaA43, AttH45, BotW46, SerL47b, AntoN50a, AlexP64)
Lu ¹⁷⁷ m	155 d (JorM62)	l	β ⁻ 78%, IT 22% (KriL64) -51.3 (LHP, MTW)	A	chem, n-capt, mass spect (JorM62) parent Hf ^{177m} (BodE66)	β-	Lu X-rays, Hf X-rays, 0.105 (13%), 0.113 (23%), 0.128 (17%), 0.153 (17%), 0.174 (13%), 0.208 (62%), 0.228 (37%), 0.281 (14%), 0.319 (10%), 0.227 (18%), 0.378 (29%), 0.414 (17%), 0.418 (21%), many others between 0.05 and 0.47 [0.165 max] very complex spectrum between 0 and 0.47 daughter radiations from Lu 177 daughter radiations from Hf 177m included in above listing	Lu ¹⁷⁶ (n, Y) {JorM62, AlexP64)
Lu 178	30 m (KuroT6lb)		β ⁻ (KuroT6lb) -50.0 (MTW)	F	decay charac (KuroT61b)	Ι.	2. 25 max no Y	Hf ¹⁷⁹ (Y,p) (KuroT61b)

Isotope Z A	Half-life	(4	Type of decay (★); 6 abundance; Mass excess △*M-A), MeV (C''=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
71Lu ¹⁷⁸	22.0 m (PouA60) 18.7 m (Strit 57) 19 m (GleP61) 22 m (ButeF50) 16 m (KuroT61b) 30 m (BakH64a)	1 1	5 (KuroT61b) 49.6 (LHP, MTW)	В	chem (ButeF50) chem, genet energy levels (KuroT61b)	е-	1.50 max 0.023, 0.028, 0.077, 0.083, 0.091, 0.148, 0.204 Hf X-rays, 0.089, 0.214, 0.326, 0.427 daughter radiations from Hf ¹⁷⁸ m included in above listing	Ta ¹⁸¹ (n, a) (GleP61, PouA60, BakH64a, StriT57)
Lu ¹⁷⁸	5 m (BakH64a)	Υ β	BakH64a)	F	chem (BakH64a)	1. 1	2.25 0.090, 0.22, 0.33, 0.43	Ta ¹⁸¹ (n, a) (BakH64a)
Lu ¹⁷⁹	4.6 h (StenW63) 7.5 h (KuroT6lb)	1 1	(KuroT6lb) -48.9 (MTW)	в	decay charac (KuroT6lb) chem, sep isotopes, decay charac (StenW63)	1' 8	1.35 max 0.213	Hf ¹⁸⁰ (Y, p) (StenW63, KuroT61b)
Lu ¹⁸⁰	2.5 m (TakaK61)	1 1	3 (TakaK61) -46.2 (MTW)	F	decay charac (TakaK61)	J. 1	3.3 max no Y	Hf ¹⁸⁰ (n,p) (TakaK61)
72 ^{Hf¹⁵⁷}	0.12 s (MacfR65a)	* a	(MacfR65a)	С	cross bomb, excit (MacfR65a)	a	5. 68	Sm ¹⁴⁴ (Ne ²⁰ , 7n) (MacfR65a)
Hf ¹⁵⁸	3 s (MacfR65a)	* a	(MacfR65a)	С	cross bomb, sep isotopes (MacfR65a)	a	5.27	Sm 144 (Ne ²⁰ , 6n) (MacfR 65a)
Hf ¹⁶⁸	22 m (MerE61)	* [EC], β [†] ? ≈2% (MerE61)	в	chem, genet (MerE61) parent Lu ¹⁶⁸ (MerE61)		Lu X-rays, 0.129, 0.17 ? 1.7 max daughter radiations from Lu ¹⁶⁸	Lu ¹⁷⁵ (p,8n) (MerE61)
Hf ¹⁶⁹	1.5 h (MerE61) others (WilkG51)	☆ F	EC, β [†] (MerE61)	В	chem, genet (MerE61) parent Lu ¹⁶⁹ (MerE61)		Lu X-rays, 0.115 1.3 max daughter radiations from Lu ¹⁶⁹	Lu ¹⁷⁵ (p,7n) (MerE61)
Hf ¹⁷⁰	12.2 h (ValenJ62) 9 h (MerE61)	* E	EC (ValenJ62)	A	chem, genet (MerE61) chem, genet, mass spect (ValenJ62) parent Lu ¹⁷⁰ (MerE61, ValenJ62)		Lu X-rays, 0.120, 0.165, 0.99, 1.28, 0.65, 2.03, 2.36, 2.52, 2.94 0.035, 0.057, 0.102, 0.145, others between 0 and 3 daughter radiations from Lu ¹⁷⁰	Lu ¹⁷⁵ (p,6n) (MerE61, ValenJ62)
Hf ¹⁷¹	10.7 h (ValenJ62) 16.0 h (WilkC51) 12 h (NerW55) 13 h (BaranV59a) others (BrabV61a, RaoC63)	* ₽	EC (WilkG51)	В	chem, genet, excit (WilkG51) chem, mass spect (ValenJ62) parent Lu ¹⁷¹ (WilkG51)		Lu X-rays, 0.122, 0.188, 0.29, 0.34, 0.47, 0.66, 0.86, 1.07 daughter radiations from Lu ¹⁷¹	Lu ¹⁷⁵ (p,5n) (WilkG51, ValenJ62) alphas on Yb (WilkG51)
Hf ¹⁷²	5 y (RaoC63, WilkG51)	☆ E	SC (WilkG51)	A	chem, genet (WilkG51) chem, sep isotopes (ValenJ62b) parent Lu ¹⁷² (WilkG51, ValenJ62b, RaoC63) parent Lu ^{172m} (ValenJ62b)		Lu X-rays, 0.024 (22%), 0.082 (10%), 0.125 (21%, complex) 0.014, 0.018, 0.032, 0.040, 0.063 daughter radiations from Lu 172 daughter radiations from Lu 172m included in above listing	Lu ¹⁷⁵ (p, 4n) (WilkG51) alphas on Yb (WilkG51, ValenJ62b)
Hf ¹⁷³	23.6 h (WilkG51) 24 h (RaoC63, ValenJ62a, MalyT62, BaranV59a) others (NerW55, WapA54c)	* E	EC (WilkG51)	A	chem, excit, genet (WilkG51) parent Lu ¹⁷³ (WilkG51) daughter Ta ¹⁷³ (FalK60, RaoC63, MalyT62)		Lu X-rays, 0.13 (96%, complex), 0.162 (5%), 0.30 (52%, complex), 0.55 (1.1% complex), 0.898 (1.9%), 1.04 (1.0%, complex), 1.20 (0.4%, complex) 0.060, 0.072, 0.076, 0.113, 0.127, others between 0 and 1.1	Lu ¹⁷⁵ (p,3n) (WilkG51, BicJ59) alphas on Yb (WilkG51, ValenJ62a)
Hf ¹⁷⁴	2.0 x 10 ¹⁵ y sp act (MacfR61a) 4 x 10 ¹⁵ y sp act (RieW59)	% 0 0 Δ -	(RieW59, MacfR61a) 0.163 (WhiF56) 0.20 (ReynJH53) -55.6 (MTW) 100 (GoldmDT64)	A	sep isotopes, decay charac (MacfR61a)	a	2. 50	
Hf ¹⁷⁵	70 d (WilkG49)	1 :	EC (WilkG49) -54.7 (FunL65f, MTW)	A	chem, excit (WilkG49) n-capt, sep isotopes (BursS51) mass spect (HedA51) daughter Ta ¹⁷⁵ (RaoC63, FalK60)		Lu X-rays, 0.089 (3.4%), 0.343 (85%), 0.433 (1.4%) 0.026, 0.079, 0.280, 0.333	Hi ¹⁷⁴ (n, Y) (HedA51, HatE56, MizJ55) Lu ¹⁷⁵ (d, 2n), Lu ¹⁷⁵ (p, n) (WilkG49)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△■M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
72 ^{Hf} ¹⁷⁶		% 5.21 (WhiF56) 5.23 (ReynJH53) Δ -54.4 (MTW) σ _c <30 (GoldmDT64)			
Hf ¹⁷⁷		 % 18.56 (WhiF56) 18.6 (ReynJH53) Δ -52.7 (MTW) 370 (to Hi¹⁷⁸) 1.4 (to Hi¹⁷⁸m) (GoldmDT64) 			
Hf ^{177m}	1.1 s (BodE66)		A chem, genet (BodE66) daughter Lu ^{177m} (BodE66)	Y Hf X-rays, 0.105 (17%), 0.113 (30%), 0.128 (21%), 0.153 (22%), 0.174 (16%), 0.208 (81%), 0.228 (48%), 0.327 (23%), 0.378 (37%), 0.418 (27%), many others between 0 and 0.47	daughter Lu ¹⁷⁷ m (BodE66)
Hf ¹⁷⁸		% 27.1 (WhiF56) 27.2 (ReynJH53) Δ -52.3 (MTW) σ _c 30 (to Hf ¹⁷⁹) 50 (to Hf ¹⁷⁹ m) (GoldmDT64)			
Hf ^{178m}	4.3 s (AlexKF62) 4.8 s (FelF58) 3.5 s (CamE59, FetP62a)	☆ IT (FelF58) Δ -51.1 (MTW)	A chem, genet (FelF58) n-capt, sep isotopes (FetP62a) daughter 2.1 h Ta 178 (FelF58)	Hf X-rays, 0.089 (54%), 0.093 (14%), 0.214 (75%), 0.326 (94%), 0.427 (97%) e ⁻ 0.023, 0.028, 0.077, 0.083, 0.091, 0.148, 0.204	daughter Ta ¹⁷⁸ (Fe1F58) Hf ¹⁷⁷ (n, Y) (FetP62a)
Hf ¹⁷⁹		% 13.75 (WhiF 56) 13.7 (ReynJH53) Δ -50.3 (MTW) σ _c 65 (to Hf ¹⁸⁰) 0.2 (to Hf ¹⁸⁰ m) (GoldmDT 64)			
Hf ^{179m}	18.6 s (HoffK59) others (FlaA44a, DMatE51a, AlexKF62)	Υ IT (FlaA46) Δ -49.9 (LHP, MTW)	A n-capt (FlaA44a) n-capt, sep isotopes (BursS51, DMatE51a)	Y Hf X-rays, 0.217 (94%) e ⁻ 0.096, 0.150	Hf ¹⁷⁸ (n, Y) (FlaA44a, FlaA46, DMatE51a, BursS51)
Hf ¹⁸⁰		% 35.22 (WhiF56) Δ -49.5 (MTW) σ _c 10 (GoldmDT64)			
Hf ^{180m}	5.5 h (BursS51) others (RaoC63)	T (BursS51) no β-, lim 5% (GallC62) Δ -48.4 (LHP, MTW)	A chem, n-capt, sep isotopes (BursS51) genet energy levels (MihJ54b)	Y Hf X-rays, 0.058 (48%), 0.093 (16%), 0.215 (82%), 0.333 (93%), 0.444 (80%), 0.501 (17%) e ⁻ 0.028, 0.047, 0.055, 0.083, 0.091, 0.150, 0.206, 0.267	Hf ¹⁷⁹ (n, Y) (BursS51)
Hf ¹⁸¹	42.5 d (LindnM60) 44.6 d (WriH57) 45.5 d (CaliJ59) others (MurH53, CorkJ50d, BeneJ48a, SerL47b)	# β (HevG38) Δ -47.41 (MTW) σ _c ≈40 (GoldmDT64)	A chem, n-capt (HevG38) mass spect (HedA51) sep isotopes, n-capt (BursS51)	β 0.41 max e 0.066, 0.069, 0.122, 0.415 Y Ta X-rays, 0.133 (48%, complex) 0.346 (13%), 0.482 (81%)	Hf ¹⁸⁰ (n, Y) (HevG38, SerL47b, BursS51, LindM60)
Hf ¹⁸²	9 x 10 ⁶ y spact (HutWH61, WingJ61) ≈8 x 10 ⁶ y spact (NauR61)	β (HutWH61, WingJ61, NauR61) Δ -45.8 (LHP, MTW)	A chem, mass spect, genet (HutW61, WingJ61, NauR61) parent Ta 182 (HutW61, WingJ61, NauR61)	β [0.5 max] Y 0.271 (84%) daughter radiations from Ta 182	Hf ¹⁸⁰ + 2n (HutW61, WingJ61, NauR61)
Hf ¹⁸³	65 m (BlacJe65) 64 m (GatO56, GatO58)	# β (GatO56, GatO58) Δ -43.0 (MTW)	D chem (GatO56, GatO58)	β 1.6 max Y 0.46 († 58), 0.82 († 100)	W ¹⁸⁶ (n, α) (GatO56, GatO58, BlacJe65)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), MeV (C''=0); Thermal neutron cross section (♂), barns	Class; Identification; Major radiations: Genetic relationships and intensities	Principal means of production
73 ^{Ta¹⁷²}	44 m (AboH64a) 24 m (ButeF61)	★ β ⁺ , EC (AboH64a)	chem (ButeF61) Y Hf X-rays, 0.092, 0.208, 0 (Y [±]), others to 3.3	protons on Hf (AboH64a, ButeF61)
Ta ¹⁷³	3.7 h (FalK60, SanA63, RaoC63) 3.5 h (MalyT62) 2.5 h (HarmB60)	Φ EC, β [†] (FalK60) EC, no β [†] (SanA63)	chem, excit, genet (FalK60, RaoC63) chem, genet (MalyT62) parent Hf (FalK60, RaoC63, MalyT62) daughter W (SanA63) Hf X-rays, 0.090 (complex) (complex), 0.64, 1.00 0.059, 0.069, 0.095, 0.107, daughter radiations from H	0.161, 173 Ho 165(N 14, 6n)W 173(EC) (Falk60) protons on Ta 181 (Rao C63, San A63)
Ta ¹⁷⁴	1.2 h (DemeI65) 1.3 h (FalK60, RaoC63) 1.1 h (ButeF61)	Φ EC, β [†] (FalK60)	chem, excit (FalK60, RaoC63) chem, mass spect (AboH65) daughter W ¹⁷⁴ (DemeI65)	. (
Ta ¹⁷⁵	10.5 h (SanA63) 11 h (FalK60, RaoC63)	★ EC (FalK60)	chem, cross bomb, excit, genet (FalK60) chem, excit, genet (RaoC63) parent Hf ¹⁷⁵ (RaoC63, FalK60) daughter W ¹⁷⁵ (SanA63)	2, 1.4, 0.116, 0.116, (Folk(0)) (HarmB60) Ho (165 (N 14, 4n) W 175 (EC)
Ta ¹⁷⁶	8.0 h (WilkG50d)	# EC (WilkG50d) no β ⁺ , lim 0.2% (FelF56) Δ -51 (NDS, MTW)	chem, excit (WilkG48a, WilkG50d) genet energy levels (FelF56) daughter W ¹⁷⁶ (WilkG50d) Hf X-rays, 0.088, 0.202, m others to 3.0 0.023, 0.078, 0.086, 0.137, to 3.0	Lu ¹⁷⁵ (a, 3n) (WilkG50d, VerhH63, HasA63) others Hf ¹⁷⁶ (p, n) (HarmB60)
Ta 177	56.6 h (WestH61) 56 h (RaoC63) 53 h (WilkG50d)	★ EC (WilkG50d) Δ -51.6 (MTW)	chem, excit (WilkG48a, WilkG50d) genet energy levels (WestH61, HarmB60) Y Hf X-rays, 0.113 (6%), 0.2 (1.0%), 0.425 (0.13%), 0. (0.10%), 0.746 (0.22%), (0.30%), others between and 0.95 e- 0.048, 0.102, 0.111, others between 0 and 1.06	509 WestH61) 1.058 protons on Hf 1.07 (WilkG50d, HarmB60) Ta ¹⁸¹ (p. 5n) W ¹⁷⁷ (EC)
Ta 178	9.35 m (WilkG50d) 9.5 m (CarvJ58)	Y EC 99%, β [†] 1% (GallC61a) others (FeIF58, BisA56b, WilkG50d) Δ -50.4 (MTW)	chem, genet (WilkG50d) daughter W ¹⁷⁸ (WilkG50d) (γ [±] , † 10), 1.10 († 11), († 4, complex), 1.35 († 4 complex), 1.45 († 9, complex),	1.18 (WilkG50d, GallC61a, 6, BodE62, KarlE62a)
Ta ¹⁷⁸	2.1 h (WilkG50d, RaoC63) 2.5 h (CarvJ58)	Υ EC, no β [†] , lim 2% (CarvJ58) EC ≈97%, β [†] ≈3% (WilkG50d)	chem, excit (WilkG50d, RaoC63) chem, cross bomb, genet (FelF58) parent Hi ^{178m} (FelF58) Hi X-rays, 0.089 (54%), 0.32 (120%, complex), 0.427 (0.023, 0.028, 0.077, 0.083, 0.148, 0.204, 0.263 daughter radiations from Hi included in above listing	8 GallC62a, FelF58) 97%) deuterons on Hf (FelF58) protons on Hf (WilkG50d)
Ta ¹⁷⁹	≈600 d (WilkG50d)	☆ EC (WilkG50d) Δ -50.2 (MTW)	chem, excit (WilkG50d, RaoC63) excit (CarvJ58)	protons on Ta 181 (Rao C63) Lu 176 (a, n) (WilkG50d)
Ta 180	t _{1/2} (β ⁻): >1 x 10 ¹² y sp act (CarvJ58) >1 x 10 ¹³ y sp act (BaumE58) t _{1/2} (EC): >2 x 10 ¹³ y sp act (BaumE58) >4 x 10 ⁹ y sp act (CarvJ58) others (EberP55, EberP58)	% 0.0123 (WhiF56) Δ -48.86 (МТW)		
Ta ^{180m}	8.15 h (BrowHN51) 8.00 h (WilkG50d) 8.1 h (RaoC63) others (OldO38)	Y EC 87%, β 13% (GallC62) EC ≈79%, β ≈21%, no β thin 0.005% (BrowHN51) Δ -48.65 (LHP, MTW)	chem, excit (OldO38) β^{-} 0.71 max e 0.028, 0.083, 0.091 Y Hf X-rays, 0.093 (4%), 0.10 (0.6%)	Hf ¹⁸⁰ (d, 2n) (GallC62) Ta ¹⁸¹ (n, 2n) (PoolM37, OldO38, WilkG50d) Ta ¹⁸¹ (Y, n) (GelK60, GusaM58)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△■M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
73 ^{Ta¹⁸¹}		% 99.9877 (WhiF56, WhiF55) 100 (WhiJ48) Δ -48.43 (MTW) σ _c 21 (to Ta ¹⁸²) 0.07 (to Ta ¹⁸² m) (GoldmDT64)			
Ta ^m	0.33 s (CamE49, GooM50, KahJ51)	¥ IT (GooM50)	E excit (CamE49) critical abs (GooM50)	Y Ta L X-rays	neutrons on Ta (CamE49, GooM50, KahJ51)
Ta 182	115.1 d (WriH57) others (EicG52, SinW51, SerL47b)	# β (HouF40) Δ -46.35 (HansF64, MTW) σ _c 8000 (GoldmDT64)	A chem, n-capt (FomV36, OldO38) daughter Hf ¹⁸² (HutW61, WingJ61, NauR61)	β 1.71 max (0.3%), 0.522 max e 0.030, 0.044, 0.054, 0.073, 0.089, 0.110, many others between 0 and 1.6 Y W X-rays, 0.068 (42%), 0.100 (14%), 0.152 (7%), 0.222 (8%), 1.122 (34%), 1.189 (16%), 1.222 (27%), 1.231 (13%), many others between 0 and 1.6	SerLato, Meilato)
Ta ^{182m}	16.5 m (HoleN48b) 16.2 m (SerL47b) others (WilkG50d)	T (HoleN48b) no β (SunA61) Δ -45.84 (LHP, MTW)	A chem, n-capt (SerL47b, HoleN48b)	Y Ta X-rays, 0.147 (40%), 0.172 (40%), 0.184 (20%), 0.319 (5%), 0.356 (0.3%)	Ta ¹⁸¹ (n, Y) (SerL47b, HoleN48b, SunA61)
Ta ¹⁸³	5.0 d (PoeA55) 5.2 d (MurJ55, DMonJ53) others (SumO57a, MosA51)	# β (ButeF50, PoeA55) Δ -45.20 (MTW)	A chem, excit (ButeF50) n-capt, chem, genet energy levels (MurJ55) parent W ^{183m} (GallC61)	β 0.62 max Y W.X-rays, 0.046 (5%), 0.053 (5%), 0.099 (7%), 0.108 (11%), 0.161 (17%, complex), 0.246 (33%, complex), 0.30 (11%, complex), 0.354 (11%) e 0.034-0.043, 0.050, 0.073, 0.088, 0.093, 0.177, many others between 0 and 0.40 daughter radiations from W ¹⁸³ m included in above listing	Ta ¹⁸¹ (n, Y)Ta ¹⁸² (n, Y) (MurJ55)
Ta ¹⁸⁴	8.7 h (ButeF55a)	 β (ButeF55a) Δ -42.9 (MTW) 	B chem, sep isotopes (ButeF55a)	β 2.64 max (0.2%), 1.76 max (0.9%), 1.19 max e [0.042, 0.100] Y W. X-rays, 0.111 (21%), 0.16 (7%), 0.21 (7%), 0.25 (42%), 0.30 (24%), 0.41 (71%), 0.53 (19%), 0.79 (16%, complex), 0.90 (49%, complex), 0.90 (49%, complex), 1.16 (12%)	W ¹⁸⁶ (d, a) (VerhH64) W ¹⁸⁴ (n, p) (ButeF55a)
Ta ¹⁸⁵	50 m (PoeA55) 48 m (MosA51, ButeF50) others (DufR50)	* β (DufR 50) Δ -41.3 (NDS, MTW)	B chem, excit (ButeF50) excit, sep isotopes (DufR50) not parent W 185m (PoeA55)	β 1.7 max Y W X-rays, 0.075 (5%), 0.100 (6%), 0.175 (60%), 0.245 (5%)	W ¹⁸⁶ (Y, p) (DufR 50, ButeF 50, MoriH60a) W ¹⁸⁶ (n, pn) (PoeA 55)
Ta ¹⁸⁶	10.5 m (PoeA55)	☆ β (PoeA55) Δ -38.7 (MTW)	C sep isotopes, cross bomb (PocA55)	β 2.2 max Y W X-rays, 0:123 (18%), 0.20 (74%), 0.30 (18%), 0.41 (15%), 0.51 (33%), 0.61 (33%), 0.73 (48%), 0.94 (11%)	W 186 (n,p) (PoeA55)
74 ^{W 160} ?		❤ a (MacfR65a)	F excit (MacfR65a)	a 5.75	S ³² on Sm ¹⁴⁴ (MacfR65a)
w ¹⁷³	16.5 m (SanA63)	❤ EC (SanA63)	B chem, excit, genet (SanA63) parent Ta ¹⁷³ (SanA63)		Ta ¹⁸¹ (p, 9n) (SanA63)
w ¹⁷⁴	31 m genet (DemeI65)	☆ [EC] (DemeI65)	B chem, genet (DemeI65) parent Ta ¹⁷⁴ (DemeI65)		C ¹² on Er (DemeI65)
w ¹⁷⁵	34 m (SanA63)	♥ EC (SanA63)	A chem, mass spect, genet (SanA63) parent Ta 175 (SanA63)	Y Ta X-rays, 0.26, 0.80, 1.3, 1.6 daughter radiations from Ta 175	Ta ¹⁸¹ (p,7n) (SanA63)
w ¹⁷⁶	2.3 h (ValenJ63) 2.7 h (RaoC63) others (GrigE62)	 EC 99+%, β⁺ =0.5% (WilkG50d) Δ −50 (NDS, MTW) 	A chem, genet (WilkG50d, GrigE62) chem, mass spect (ValenJ63) parent Ta ¹⁷⁶ (WilkG50d)	Y Ta X-rays, 0.034, 0.100 e 0.017, 0.023, 0.027, 0.033, 0.050, 0.083 daughter radiations from Ta 176	Ta ¹⁸¹ (p, 6n) (RaoC63, WilkG50d)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△sM-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
74 ^{W177}	135 m (SanA63) 130 m (WilkG500d) 132 m (RaoC63) others (MalyT63a)	1 -	EC (WilkG50d) -50 (NDS, MTW)	A	chem, genet (WilkG50d) chem, mass spect (SanA63) chem, excit (RaoC63) parent Ta ¹⁷⁷ (WilkG50d) daughter Re ¹⁷⁷ (HaldB57)		Ta X-rays, 0.20, 0.42, 0.62, 0.83, 1.00 0.020, 0.028, 0.048, 0.059, 0.068, 0.075, 0.088, 0.119, 0.360 daughter radiations from Ta ¹⁷⁷	Ta ¹⁸¹ (p,5n) (RaoC63, SanA63, WilkG50d)
w ¹⁷⁸	21.5 d (WilkG50d) 22.0 d (BisA56b)	1 -	EC (WilkG50d) -50 (NDS, MTW)	A	chem (WilkG50d) chem, excit (RaoC63) parent 9.35 m Ta ¹⁷⁸ (WilkG50d)	Υ	Ta X-rays daughter radiations from 9.35 m Ta ¹⁷⁸	Ta ¹⁸¹ (p,4n) (RaoC63, WilkG50d)
w ¹⁷⁹	37.5 m (ValenJ63a) 38 m (SanA63) others (RaoC63, WilkG50d, RocT56)	1	EC (WilkG50d) -49 (NDS, MTW)	A	chem, excit (RaoC63, WilkG50d) chem, sep isotopes (HarmB60) chem, mass spect (SanA63, ValenJ63a)	1 3	Ta X-rays, 0.031 (22%) 0.020, 0.029	Ta ¹⁸¹ (p, 3n) (RaoC63, WilkG50d) W ¹⁸⁰ (p, 2n) Re ¹⁷⁹ (EC) (HarmB60)
w ^{179m}	5.2 m (WilkG50d) ≈7 m (RocT56) activity not observed (So£S55)		IT (HarmB60) -49 (NDS, MTW)	В	chem, excit (WilkG50d) genet energy levels (HarmB60)		W X-rays, 0.222 0.152, 0.211 daughter radiations from W ¹⁷⁹	daughter Re ¹⁷⁹ (HarmB60) Ta ¹⁸¹ (p,3n) (WilkG50d)
<u>w¹⁸⁰</u>	t _{1/2} (a): >1.1 x 10 ¹⁵ y sp act (BearG60) >9 x 10 ¹⁴ y sp act (MacfR61a)	Δ	0.135 (WilliD46) -49.37 (MTW) <20 (GoldmDT64)					
w ^[180]	t _{1/2} (a) <2 x 10 ¹⁷ y sp act (Pors W 56)	*	a (PorsW56)	G	(PorsW56) activity not observed (BearG60, MacfR61a)	a	3.0	natural source (Pors W 56)
w ¹⁸¹	140 d (RaoC63, WilkG47, SinB59) 120 d (GodK61) 126 d (KreW60) 145 d (BisA56b)		EC (WilkG47) no β [†] (BisA56b, BisA55) -48.24 (MTW)	A	chem, excit (WilkG47) chem, n-capt (LindnM51a) daughter Re ¹⁸¹ (GallC57)	i i	Ta X-rays, 0.006 (1%), 0.136 (0.1%), 0.152 (0.1%) 0.004, 0.006	Ta ¹⁸¹ (d, 2n) (WilkG47) Ta ¹⁸¹ (p, n) (MuiA61) W ¹⁸⁰ (n, Y) (MuiA61, LindnM51a, CorkJ53d)
<u>w¹⁸²</u>	t _{1/2} (a) >2 x 10 ¹⁷ y sp act (BearG60)	Δ	26.4 (WilliD46) -48.16 (MTW) 20 (to W ¹⁸³) 0.5 (to W ^{183m}) (GoldmDT64)					
<u>w¹⁸³</u>	t _{1/2} (a) >1.1 x 10 ¹⁷ y sp act (BearG60)	Δ	14.4 (WilliD46) -46.27 (MTW) 11 (GoldmDT64)					
w ^{183m}	5.3 s (GallC61) 5.1 s (SchmW61) 5.5 s (DMatE49)	ι -	IT (DMatE49) -45.96 (LHP, MTW)	A	sep isotopes, n-capt (DMatE49) Chem, genet, genet energy levels (GallC61) daughter Ta ¹⁸³ (GallC61)		W X-rays, 0.046 (8%), 0.053 (11%), 0.099 (9%), 0.102 (4%), 0.108 (19%), 0.160 (6%) 0.034, 0.040	daughter Ta ¹⁸³ (GallC61) W ¹⁸² (n, Y) (SchmW61, DMatE49)
w ¹⁸⁴		Δ	30.6 (WilliD46) -45.62 (MTW) 2.1 (to W ¹⁸⁵) 0.01 (to W ¹⁸⁵ m) (GoldmDT64)					
w ¹⁸⁵	75 d (AndeR64, FajK40a, KreW55) others (ThirH57, GodK61, DoyW63a)	1	β (MinaO40) -43.30 (MTW)	А	chem, excit, n-capt (MinaO40) mass spect (BisA58a)	ľ	0.429 max average β energy: 0.14 calorimetric (ShimN56a) no Y	W ¹⁸⁴ (n, Y) (MinaO40, FajK40a, SerL47b, CorkJ49a) Re ¹⁸⁷ (d, α) (FajK40a)
w ^{185m}	1.62 m (PoeA55) 1.55 m (MangS62) 1.85 m (DufR50)	l	IT (DufR50) -42.93 (LHP, MTW)	В	excit, sep isotopes (DufR50, PoeA55) not daughter Ta ¹⁸⁵ (PoeA55)	Y	W X-rays, 0.075 († 8), 0.100 († 16), 0.13 († 70), 0.17 († 100)	W ¹⁸⁴ (n, Y) (PoeA55) W ¹⁸⁶ (Y, n) (DufR50, MoriH60a)

Isotope Z A	Half-life	Type of decay (**); % abundance; Mass excess (Δ=M-A), MeV (C"=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
74 ^{W 186}	t _{1/2} (ββ) >6 x 10 ¹⁵ y sp act (FremJ52)	% 28.4 (WilliD46) Δ -42.44 (MTW) σ _C 40 (GoldmDT64)			
w ¹⁸⁷	23.9 h (EicG53) 23.7 h (AndeR64) 24.0 h (WriH57) others (MinaO40, CorkJ53, FajK40a)	φ β (MinaO40) Δ -39.83 (MTW) σ _c ≈90 (GoldmDT64)	chem, n-capt, excit (MinaO40)	β 1.31 max (15%), 0.63 max e 0.063, 0.122, others between 0 and 0.8 Y Re X-rays, 0.072 (11%), 0.134 (9%), 0.479 (23%), 0.552 (5%), 0.618 (6%), 0.686 (27%), 0.773 (4%)	W ¹⁸⁶ (n, Y) (Mina O40, Ama E35, MLen J35, Faj K40a, Ser L47b, Cork J49a)
w ¹⁸⁸	69.4 d (RoyJ62) others (LindnM5la)		A chem, genet (LindnM51a, RoyJ62) parent Re ¹⁸⁸ (RoyJ62, LindnM51a, LindnM51)	β 0.349 max Y Re X-rays, 0.227 (0.22%), 0.290 (0.40%) daughter radiations from Re ¹⁸⁸	W ¹⁸⁶ (n, Y) W ¹⁸⁷ (n, Y) (LindnM51a, LindnM51, RoyJ62)
₩ ¹⁸⁹	11.5 m (KauP65a) 11 m (FleJ63)	 p̄ (FleJ63) Δ -35.3 (KauP65a, MTW) 	/F10763)	β 2.5 max (weak), 2.0 max Y Re X-rays, 0.032 (?), 0.130 († 12), 0.178 († 13), 0.258 († 100), 0.417 († 96), 0.55 († 28), 0.86 († 20) 0.96 († 17)	Os ¹⁹² (n,a) (FleJ63)
75 ^{Re 177}	17 m (HaldB57)	φ β (HaldB47), [EC] Δ -47 (NDS, MTW)	B chem, genet (HaldB57) parent W 177 (HaldB57)	Y [W X-rays, 0.511 (Y [±])] daughter radiations from W ¹⁷⁷	protons on W (HaldB57)
Re ¹⁷⁸	15 m (HaldB57)	φ (HaldB57), [EC]	D chem, sep isotopes (HaldB57)	β [±] 3.1 max Υ [W X-rays, 0.511 (Υ [±])]	protons on W, Re (HaldB57)
Re ¹⁷⁹	20 m (HarmB60) 18 m (FosJ58)	★ EC (HarmB60) Δ -46 (NDS, MTW)	B chem, sep isotopes (HarmB60) others (FosJ58)	W X-rays daughter radiations from w ^{179m} w ¹⁷⁹	W ¹⁸⁰ (p, 2n) (HarmB60)
Re ¹⁸⁰	2.4 m (FiscV55)	ၞ β [†] , EC (FiscV55)	1 1	β [‡] 1.1 max Υ [W X-rays], 0.11, 0.511 (Υ [±]), 0.88	W ¹⁸² (p, 3n) (FiscV55)
Re ¹⁸⁰	20 h (HaldB57)	Υ β ⁺ (HaldB57), [EC]		β [†] 1.9 max Υ [W X-rays, 0.511 (Υ [±])]	protons on W, Re (HaldB57)
Re ¹⁸⁰	18 m (FosJ58)	★ [EC] (FosJ58)	G chem, excit, sep isotopes (FosJ58) activity assigned to Re 179 (HarmB60)		protons on Re (FosJ58)
Re ¹⁸¹	18 h (GranG63) 19 h (FosJ58) 20 h (GallC57)	★ EC (GallC57) Δ -47 (NDS, MTW)	B chem, excit, genet (GallC57) parent W 181 (GallC57) daughter 23 m Os 181 (FosJ58) daughter 2.7 h Os 181 (SurY60)	W X-rays, 0.365, many others between 0 and 1.5 	Ta ¹⁸¹ (a, 4n) (GallC57) W ¹⁸² (p, 2n) (HarmB60)
Re ¹⁸²	12.7 h (WilkG50) 13 h (GallC59)	# EC (WilkG50) β ⁺ 0.3% (BadN63) Δ -45.30 (MTW)	chem, genet energy levels (GallC59) daughter Os ¹⁸² (StovB50, FosJ58)	W X-rays, 0.068, 0.100, 1.122, 1.189, 1.23 (complex), 2.01, 2.05, many others between 0 and 2.05 1.74 max 0.015, 0.031, 0.056, 0.089, 0.098, many others between 0 and 2.05	Ta ¹⁸¹ (a, 3n) (WilkG50, GallC59) W ¹⁸² (p, n) (WilkG50, HarmB61) daughter Os ¹⁸² (FosJ58, StovB50)
Re 182	64.0 h (WilkG50) 60 h (GallC58a)	# EC (WilkG50) no β [†] , lim 5 x 10 ⁻⁴ % (BadN63)	chem, genet energy levels (GallC58a)	Y W X-rays (very strong), 0.068, 0.100, 0.15-0.36 (complex), 1.08, 1.112 (complex), 1.43, many others between 0 and 1.4 e 0.015, 0.031, 0.044, 0.061, 0.089, 0.098, 0.100, 0.122, 0.160, 0.187, many others between 0 and 1.4	Ta ¹⁸¹ (a, 3n) (WilkG50, GallC58a) W ¹⁸² (p,n) (WilkG50, HarmB61)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
75 ^{Re 183}	71 d (BliP65, GallC58) 68 d (FosJ58) others (ThuS56, TurS51, StovB50)		EC (WilkG50) -45 (MTW)	A	chem, excit (WilkG50) chem, genet energy levels (ThuS56) daughter Os ¹⁸³ (StovB50)		W X-rays, 0.046, 0.053, 0.109 (complex), 0.209 (strong), 0.246, 0.292 0.030, 0.034, 0.040, 0.088, 0.093, many others between 0 and 0.40	Ta ¹⁸¹ (a, 2n) (WilkG50, ThuS56)
Re ¹⁸⁴	38 d (BodE60, DzhB62b) 34 d (BliP65) 33 d (JohnN63) others (WilkG50, TurS51)		EC (WilkG50) -44 (MTW)	A	chem, excit (FajK40a) chem, excit (WilkG50) chem, genet energy levels (GallC58)		W X-rays, 0.111, 0.78 (complex), 0.90 (complex) 0.042, 0.100	Ta 181 (a, n) (WilkG50) deuterons on W (BisK63a, BodE60, DzhB62b, GallC58) protons on W (WilkG50, HarmB64) Re 185 (n, 2n) (GallC58, JohnN63)
Re ¹⁸⁴ m	169 d (JohnN63) 160 d (HarmB64) 166 d (BliP65) others (DzhB62b)		IT 70%, EC 30% (HarmB64) -44 (LHP, MTW)	A	chem, genet energy levels (JohnN63, HarmB64)		Re X-rays, W X-rays, 0.111, 0.78 (complex), 0.90 (complex) 0.035, 0.042, 0.073, 0.081, 0.100 daughter radiations from Re 184	See Re ¹⁸⁴
Re ¹⁸⁴ ?	2.2 d (WilkG50)	*	EC or IT (WilkG50)	D	chem, excit (WilkG50)	Y	0.159	Ta ¹⁸¹ (a,n) (WilkG50) W ¹⁸⁴ (p,n) (WilkG50)
Re ¹⁸⁵		Δ	37.07 (WhiJ48) -43.73 (MTW) 110 (GoldmDT64)					
Re ¹⁸⁶	88.9 h (PortF56) 92.8 h (GooLJ47) 91 h (CorkJ48b) 90 h (SinK39)		β 95%, EC 5% (MalyL64) others (PortF56, JohnM56, MetF51) no β + lim 10 ⁻⁵ % (MetF51)	A	n-capt (KurtI35) n-capt, excit (SinK39) chem, n-capt, excit (FajK40a) mass spect (HessD47)	e-	1.07 max 0.063, 0.125 W X-rays, Os X-rays, 0.137 (9%), 0.632 (0.032%), 0.768 (0.035%)	Re 185 (n, Y) (Kurtl35, SinK39, FajK40a, SerL47b)
Re ^{186?}	1 h (HaldB57)	*	(HaldB57)	D	chem (HaldB57)			protons on Re, W (HaldB57)
<u>Re¹⁸⁷</u>	4.3 x 10 ¹⁰ y genet (HirtB63) 1.2 x 10 ¹¹ y sp act (WolfC62) others (HerrW58, WatD62a, HinH54, SutA54, DixD54a, NalS48, SugaN48)	% △	β (NalS48) 62.93 (WhiJ48) -41.14 (MTW) 70 (to Re 188) 1.3 (to Re 188m) (GoldmDT64)	A	chem (NalS48)	β-	0.003 max (in about 1/3 of the decays the electron goes into a stable atomic orbit)	
Re ¹⁸⁸	16.7 h (FlaA53, AjzF56, DzhB54) 16.9 h (LindnM51a) 18.9 h (GooLJ47) others (PoolM37, DoyW63a)	Δ	β ⁻ (SinK39) -38.79 (MTW) <2 (GoldmDT64)	A	chem, n-capt (AmaE35) n-capt, excit (SinK39) chem, n-capt, excit (FajK40) mass spect (HessD47) daughter W 188 (LindnM51a, LindnM51, RoyJ62) daughter Re 188m (HerrW52)	e-	2.12 max 0.081, 0.143 Os X-rays, 0.155 (10%), 0.478 (0.6%), 0.633 (0.9%), 0.829 (0.3%), 0.932 (0.4%), other weak Y ¹ s to 2.0	Re 187 (n, Y) (Kurtl35, AmaE35, PoolM37, SinK39, FajK40a, SerL47b)
Re ^{188m}	18.7 m (TakaK64, FlaA53) others (ButeF50, MihJ53b)	l	IT (MihJ53b) -38.62 (LHP, MTW)	A	n-capt, sep isotopes (MihJ53b) chem, genet (HerrW52) parent Re ¹⁸⁸ (HerrW52)		Re X-rays, 0.092 (5%), 0.106 (10%) 0.004, 0.013, 0.021, 0.034, 0.051, 0.061, 0.080, 0.093 daughter radiations from Re 188	Re ¹⁸⁷ (n, Y) (MihJ53b)
Re ¹⁸⁹	24.3 h (BliP65) 23 h (CraeB63)		β (CraeB63) -37.8 (MTW)	A	chem, excit, cross bomb (CrasB63) genet energy levels (CrasB63, ResD61) daughter W ¹⁸⁹ (FleJ63, KauP65a)	e ⁻	1.00 max 0.023, 0.028, 0.057, 0.074, 0.112, 0.143, others between 0 and 0.25 Os X-rays, 0.150 (4%, doublet), 0.187 (3%, doublet), 0.218 (10%, doublet), 0.245 (4%)	W ¹⁸⁶ (a, p) (CrasB63) Os ¹⁸⁹ (n, p) + Os ¹⁹⁰ (n, pn) (CrasB63) Os ¹⁹² (d, an) (FleJ63)
Re ¹⁸⁹	140 d (BliP65) 150 d (LindnM51a)	¥	β (LindnM5la, TurS5l) β , IT (?) (BliP65)	F	chem (LindnM51a, TurS51) chem, genet energy levels (BiiP65) activity assigned to Re 184m (CrasB63, JohnN63)	Υ	0.211, 0.57, 0.67	W ¹⁸⁶ (a,p) (BliP65, TurS51)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△■M-A), MeV (C"=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
75 ^{Re[189?]}	≥5 y (LindnM5la)	β (LindnM5la)	F	chem (LindnM5la) activity not observed (SmiRR56a)	β	0.75 max activity not observed	neutrons on Re (LindnM51a)
Re ¹⁹⁰	2.8 m (AteA55) others (BaroG62)	φ (AteA55) Δ -35.4 (MTW)	В	chem, genet energy levels, cross bomb (AteA55)	۱'	1.6 max Os X-rays, 0.191 († 10), 0.392 († 10), 0.57 († 10), 0.83 († 3)	Os ¹⁹² (d, a), Os ¹⁹⁰ (n, p) (AteA55)
Re ¹⁹⁰ m	2.8 h (FleJ64, BaroG62)	♀ [IT] (FleJ64, BaroG62)	В	chem, cross bomb, sep isotopes (FleJ64, BaroG62)	١.	1.6 max [Os] X-rays, 0.12, 0.19, 0.23, 0.38 (complex), 0.56 (complex), 0.82 (these are probably daughter radiations of 2.8 m Re according to FleJ64)	Os ¹⁹² (d, a), Os ¹⁹⁰ (n, p), Ir ¹⁹³ (n, a) (FleJ64, BaroG62)
Re ^[191]	9.8 m (AteA53c)	β (AteA53c) Δ -34.6 (NDS, MTW)	D	chem (AteA53c) excit (AteA55) decay charac (CrasB63)	β	1.8 max	[Os ¹⁹² (n, np)] (AteA53c)
Re ¹⁹²	6 s (BlacJe65a)	∳β (BlacJe65a)	c	sep isotopes, genet energy levels (BlacJe65a)	ı.	2.5 max 0.20, 0.29, 0.37, 0.48, 0.57	Os 192(n,p) (BlacJe65a)
76 ^{Os 181}	23 m (FosJ58)	★ [EC] (FosJ58) Δ -44 (NDS, MTW)	В	chem, excit, sep isotopes, genet (FosJ58) activity not observed (SurY60) parent Re 181 (FosJ58)		[Re X-rays], others 0.093, 0.101 daughter radiations from Re ¹⁸¹	Re ¹⁸⁵ (p, 5n) (FosJ58)
Os 181	2.7 h (SurY60)	₩ [EC) (SurY60)	E	chem, genet (SurY60) parent Re ¹⁸¹ (SurY60)	Y	Re X-rays, 0.23 daughter radiations from Re ¹⁸¹	protons on Au (SurY60)
Os ¹⁸²	21.9 h (FosJ58) 21.1 h (NewJ60a) 20 h (GranG63) others (StovB50)	Σ EC, no β ⁺ (StovB50) Δ -44 (NDS, MTW)	A	chem, genet (StovB50) chem, excit, sep isotopes (NewJ60a) parent 12.7 h Re ¹⁸² (StovB50, FosJ58) daughter Ir ¹⁸² (DiaR61)		Re X-rays, 0.180 († 7), 0.263 († 1.4), 0.510 († 10) 0.015, 0.025, 0.043, 0.052, 0.108, 0.438 daughter radiations from 12.7 h Re ¹⁸²	Re ¹⁸⁵ (p, 4n) (StovB50) W ¹⁸² (a, 4n) (NewJ60a)
Os ¹⁸³	12.0 h (NewJ60a, StovB50) 15.4 h (FosJ58) others (GranG63, SurY60)	★ EC (StovB50) Δ -43 (NDS, MTW)	A	chem, genet (StovB50) parent Re ¹⁸³ (StovB50) daughter Ir ¹⁸³ (DiaR61, LavA61)		Re L X-rays, Re K X-rays (170%), 0.114 (27%), 0.168 (10%), 0.236 (5%), 0.382 (90%), 0.48 (9%, complex), 0.86 (5%, complex), 1.44 (1%) 0.043, 0.102, many others between 0 and 1.4, all weak	Re ¹⁸⁵ (p, 3n) (FosJ58, StovB50) alphas on W (NewJ60a) daughter Ir ¹⁸³ from Lu ¹⁷⁵ (C ¹² , 4n) (DiaR61)
Os ¹⁸³ m	9.9 h (NewJ60a) 10 h (FosJ58)	± EC ≈54%, IT ≈46% (NewJ60a, NewJ60b) Δ -43 (NDS, MTW)	A	chem, excit, sep isotopes (FosJ58, NewJ60a) genet (DiaR61) daughter Ir ¹⁸³ (DiaR61)	l	Os X-rays, 1.035 (6%), 1.105 (48%, complex) 0.055, 0.096, 0.158, 0.168 daughter radiations from Os ¹⁸³	Re 185 (p, 3n) (Fos 158) alphas on W (New 160a) daughter Ir 183 from Lu 175 (C12, 4n) (Diar 61)
Os 184		% 0.018 (NierA37) Δ -44.0 (MTW) σ _c <200 (GoldmDT64)					
Os ¹⁸⁵	93.6 d (JohnM57) others (FosJ58, GooLJ47, KatziL48, TurS51, SurY60, GranG63)	EC (MillM51a) no β [†] , lim 4 x 10 ⁻⁴ % (Mali558) Δ -42.74 (MTW)	A	chem, cross bomb (GooLJ47, KatziL48) chem, genet energy levels (MartyN57)	1	Re X-rays, 0.646 (80%), 0.875 (14%, complex) 0.059, 0.091, 0.574, 0.634	Re 185(d, 2n) (GooLJ47, ChuT50) Os 184(n, Y) (KatziL48) Re 185(p, n) (FosJ58, StovB50)
Os 186		% 1.59 (NierA37) Δ -43.0 (MTW)					
Os ¹⁸⁷		% 1.64 (NierA37) -41.14 (MTW)					
Os ¹⁸⁷ m	39 h (GreeG56) 35 h (ChuT50)	☆ (ChuT 50)	G	chem (ChuT50) activity not observed (NewJ60a, MerE63)			

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△ ■ M-A), MeV (C"=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
76 ^{Os 188}		% 13.3 (NierA37) Δ -40.91 (MTW)			
Os?	26 d (GreeG56)	★ (GreeG56)	F chem (GreeG56)	Y X-rays	N ¹⁴ on Os (GreeG56)
Os ¹⁸⁹		% 16.1 (NierA37) Δ -38.8 (MTW) σc 0.008 (to Os ¹⁹⁰ m) (GoldmDT64)			
Os ¹⁸⁹ m	5.7 h (SchaG58) others (ChuT50, GreeG56)	☆ IT (SchaG58) △ -38.8 (LHP, MTW)	-L /C-L-CED)	Y Os L X-rays e 0.019, 0.028	daughter Ir 189 (SchaG58)
Os ¹⁹⁰		% 26.4 (NierA37) Δ -38.5 (MTW) σ _c 3.9 (to Os 191) 8.6 (to Os 191m) (GoldmDT64)			
Os ¹⁹⁰ m	9.9 m (SchaG58) others (ChuT50, AteA55c, MalyT61, MangS62)	☆ IT (SchaG58, AteA55c) Δ -36.8 (LHP, MTW)	AteA55c) genet energy levels (SchaG58,	Y Os X-rays, 0.187 (70%), 0.361 (94%), 0.502 (98%), 0.616 (99%) e ⁻ 0.026, 0.036, 0.113, 0.175	daughter Ir 190m ₂ (ChuT50, AteA55c, SchaG58)
Os ¹⁹¹	15.0 d (KatziL48) 16.0 d (ChuT50) 14.6 d (NabS58)	* β (SeaG41b) Δ -36.4 (MTW)	chem, n-capt (SeaG41b) chem, excit (SwanJ52)	β 0.143 max e 0.030, 0.042, 0.053, 0.116, 0.127 Y Ir X-rays, 0.129 (25%) daughter radiations from Ir included in above listing	Os 190 (n, Y) (SeaG41b, ZinE40, SerL47b, SwanJ52)
Os ^{191m}	13.0 h (PlaZ63) 14 h (SwanJ52)	1T, no β (lim 5%) (SwanJ52) Δ -36.3 (LHP, MTW)		Y Os L X-rays e 0.062, 0.072 daughter radiations from Os 191	Os(n, Y) (SwanJ52)
Os 192	t _{1/2} (ββ) >10 ¹⁴ y sp act (FremJ52)	% 41.0 (NierA37a) Δ -35.9 (MTW) σ _c 1.6 (GoldmDT64)	,		
Os ¹⁹³	31.5 h (NabS58) 30.6 h (ChuT50) others (GooLJ47, SeaG41b, ZinE40)	φ β (SeaG41b) Δ -33.32 (MTW) σ _C 200 (GoldmDT64)	chem, n-capt (SeaG41b) chem, excit (SwanJ52)	β 1.13 max e 0.060, 0.070 Y Ir X-rays, 0.139 (3%), 0.28 (2.1%, complex), 0.322 (1.4%), 0.38 (2.0%, complex), 0.460 (3.9%), 0.558 (2.1%)	Os 192 (n, Y) (KurtI35, ZinE40, SeaG41b, SerI47b)
Os ¹⁹⁴	6.0 y (JohnN65b) 5.8 y (WilliDC64) others (LindnM5la)	Υ β (WilliDC64) Δ -32.39 (MTW)	chem, genet, n-capt (WilliDC64)	β 0.053 max e [0.029, 0.040] Y Ir X-rays, 0.043 (10%), 0.078 (0.03%) daughter radiations from Ir 194	Os ¹⁹² (n, Y)Os ¹⁹³ (n, Y) WilliDC64, LindnM50, LindnM51a)
Os ¹⁹⁵	6.5 m (BaroG57, ReyP57)	 p̄ (BaroG57, ReyP57) Δ -30 (MTW) 	B chem, genet (BaroG57, ReyP57) parent Ir 195 (BaroG57, ReyP57)	β 2 max	Pt 198 (n. a) (BaroG57, ReyP57)
77 ^{Ir 182}	15 m (DiaR61)	Υ EC, [β [†]] (DiaR61) Δ -39 (NDS, MTW)	A chem, cross bomb, genet (DiaR61) parent Os 182 (DiaR61)	Y Os X-rays, 0.133, 0.278, 0.510, others to =4	Lu ¹⁷⁵ (C ¹² , 5n), Tm ¹⁶⁹ (O ¹⁶ , 3n) (DiaR61)
Ir ¹⁸³	0.9 h (DiaR61) 1.0 h (LavA61) others (SurY60)	EC (DiaR61, LavA61)	A chem, genet (DiaR61, LavA61) parent Os 183 (DiaR61, LavA61) parent Os 183m (DiaR61)	Y Os X-rays, 0.24 daughter radiations from Os 183m, Os 183	Lu ¹⁷⁵ (C ¹² , 4n) (DiaR61)

Isotope Z A	Half-life	Type of decay (*); % abundance; Mass excess (Δ*M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
77 ^{Ir 184}	3.2 h (DiaR61) 3.1 h (BaranV60)	EC, β [†] (DiaR61) Δ -40 (NDS, MTW)	B chem, decay charac (BaranV60) chem, excit, decay charac (DiaR61) daughter 42 m Pt 184 (Qais65)	Y Os X-rays, 0.125 († 100), 0.267 († 200), 0.392 († 90), 0.51 (Y [±] ?), 0.83, 0.96, 1.09, others to 4.3	Lu ¹⁷⁵ (C ¹² , 3n) (DiaR61)
Ir ¹⁸⁵	14 h (EmeG63) 15 h (DiaR58)	★ EC (Diar 58) Δ -40 (NDS, MTW)	B chem, excit (DiaR58) sep isotopes (HarmB62) daughter Pt ¹⁸⁵ (QaiS65)	Y Os X-rays, 0.101, 0.254, others e 0.024, 0.034, 0.047, 0.085, 0.180	Re ¹⁸⁵ (a, 4n) (DiaR58, EmeG63) Os ¹⁸⁶ (p, 2n) (HarmB62)
Ir ¹⁸⁶	15.8 h (EmeG63) 14 h (SmiW55) 16 h (DiaR58) others (MalyT60, KryL61)		A chem, excit (DiaR58) genet energy levels (EmeG63) daughter Pt 186 QaiS65)	Y Os X-rays, 0.137 (45%), 0.297 (74%), 0.434 (35%), 0.511 (6%, Y*), 0.64 (9%, complex), 0.77 (8%, complex), 1.60-1.75 (4%, complex), many others between 0 and 3.0	Re ¹⁸⁵ (a, 3n) (DiaR58, EmeG63)
Ir ¹⁸⁶	1.7 h (MalyT63) 2.0 h (BoncN62, GranG63)	β [†] , EC (BoncN62, GranG63)	B chem (BoncN62, MalyT63) chem, excit (GranG63) not daughter Pt ¹⁸⁶ (QaiS65)	Y Os X-rays, 0.137, 0.295, 0.511 (γ [±]), 0.630, 0.77, 0.99, others β ⁺ 2.6 max e ⁻ 0.063, 0.125	Ir ¹⁹¹ (p,p5n) (GranG63)
Ir ¹⁸⁷	10.5 h (EmeG63) others (DiaR58, MalyT60, KryL61)	♀ EC (DiaR58) Δ -40 (MTW)	B chem, excit (DiaR58) daughter Pt ¹⁸⁷ (BaranV60)	Y Os X-rays, 0.18 († 45), 0.31 († 14), 0.41 († 100), 0.50 († 35), 0.61 († 45), 0.90 († 40) 0.98 († 50), all Y rays complex, many others e-0.007, 0.013, 0.053, 0.063, 0.073, 0.104, many others between 0	Re ¹⁸⁵ (a, 2n) (DiaR58, EmeG63)
Ir ¹⁸⁸	41.5 h (ChuT50) others (SmiW55, NauR54, GranG63, KryL61, MalyT60)	Υ EC 99+%. β ⁺ ≈0.3% (ChuT50) Δ -38.08 (MTW)	A chem, excit, sep isotopes (ChuT50) genet energy levels (GrahR62, MarkI63) daughter Pt 188 (NauR54, SmiW55)	and 1.1 Os X-rays, 0.155 (34%), 0.478 (16%), 0.633 (25%, doublet), 0.829 (7%), 1.210 (7%), 1.717 (4%), 2.08 (16%, complex), 2.217 (13%), many others between 0 and 2.7 1.66 max 0.081, 0.143, many others between 0 and 2.7	alphas on Re (ChuT50, WarnL62, YamaT63) Os (p, 2n) (HarmB64) deuterons on Os (ChuT50)
Ir ¹⁸⁹	13.3 d (GranG63, LewisH64) others (ChuT50, SmiW55, MalyT60, KryL61)	★ EC (SmiW55) Δ -38 (MTW)	A chem, genet (SmiW55) daughter Pt ¹⁸⁹ (SmiW55) parent Os ^{189m} (SchaG58)	Y Os X-rays, 0.245 (18%) e- 0.023, 0.046, 0.058, 0.067, 0.171, many others between 0 and 0.27	Ir ¹⁹¹ (p, 3n) Pt ¹⁸⁹ (EC) (GranG63, LewisH64) Re ¹⁸⁷ (a, 2n) (DiaR58) Os ¹⁹⁰ (p, 2n) (HarmB62)
Ir ¹⁹⁰	11 d (GranG63, AteA55c) 10.7 d (GooLJ47) 12.3 d (KaneW60) 12.6 d (ChuT50)	 EC (AteA55c) no β[†], lim 0.002% (KaneW60) Δ -36.5 (MTW) 	A chem, excit, cross bomb (GooLJ47, AteA55c) genet energy levels (KaneW60, ResD61)	Y Os X-rays, 0.187 (51%), 0.37 (39%, complex), 0.40 (39%, complex), 0.518 (39%), 0.56 (72%, complex), 0.604 (47%), others to 1.7 e 0.113, 0.175, others to 1.7	Re ¹⁸⁷ (a, n) (ChuT50) Os ¹⁸⁹ (d, n) (GooLJ47) Os ¹⁹⁰ (p, n) (HarmB64)
Ir ¹⁹⁰ m 1	1.2 h (HarmB64)	↑ IT (HarmB64) △ -36.5 (LHP, MTW)	B chem, sep isotopes, excit (HarmB64)	Y Ir L X-rays e 0.015, 0.024 daughter radiations from Ir 190	Os ¹⁹⁰ (p, n) (HarmB64)
Ir ^{190m} 2	3.2 h (ChuT50) 3.0 h (GranG63)	EC 94%, IT 6% (HarmB64) EC 90%, β [†] 10% (AteA55 Δ -36.3 (LHP, MTW)	A chem, excit, sep isotopes (ChuT50) chem, cross bomb (AteA55c) genet energy levels (HarmB64) parent Os 190m (ChuT50, AteA55c)	Y Os X-rays, Ir X-rays, 0.187 (66%), 0.361 (88%), 0.502 (92%), 0.616 (93%) e- 0.026, 0.036, 0.113, 0.175 daughter radiations from Ir 190m 1 Ir 190 daughter radiations from Os 190m included in above listing	Re 187(a, n) (ChuT 50) deuterons on Os (ChuT 50) Os 190(p, n) (Harm B64)
<u>Ir¹⁹¹</u>		% 38.5 (SamM36a) Δ ~36.7 (MTW) σc 750 (to Ir 192) 250 (to Ir 192m 1) 0.3 (to Ir 192m 2) (GoldmDT64)			

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C''=0); Thermal neutron cross section (♂), barns	Class; Identification; Major radi Genetic relationships approximate ene and inter	ergies (MeV)
77 ^{Ir 191m}	4.9 s (FiscV55, CamE56) 4.5 s (CloJ58) others (NauR54a, MihJ54a)	↑ IT (NauR54a) Δ -36.5 (LHP, MTW)	A chem, genet (NauR54a, Y Ir X-rays, 0.129 c 0.030, 0.042, 0.0 daughter Os 191 (NauR54a, CamE56)	(N
Ir ¹⁹²	74.2 d (AlliJ60) 74.4 d (KasJ51) others (WyaE61, HarbG63, SinW51, ChuT50)	$\begin{array}{c} & \beta^{-} \ 95.5\%, \ EC \ 4.5\% \\ & (BashA56) \\ & \beta^{-} \ 96.5\%, \ EC \ 3.5\% \\ & (BagL55) \\ & \beta^{+} \ 1.5 \times 10^{-5}\% \\ & (AntoS60) \\ & \Delta^{-} 34.7 \ (MTW) \\ & \sigma_{c} \end{array}$	A n-capt (AmaE36) mass spect (RalW46) chem (WilkG48) daughter Ir 192m1, daughter Ir 2 (SchaG59) A n-capt (AmaE36) p 0.67 max c 0.217, 0.230, 0.2 Y (29%), 0.308 (381%), 0.468 (4%), 0.604 (9%)	rays, 0.296 (10%), 0.317 (19%), 0.589 Os ¹⁹² (d, 2n) (GooLJ47, ChuT50)
Ir ^{192m} 1	1.42 m (HoleN48b, MizJ54) 1.45 m (WebG53) others (SchaG61, MMilE37)		A n-capt (MMilE37) resonance neutron activation (GoldhM47) parent Ir ¹⁹² (SchaG59) not daughter Ir ^{192m} 2 (SchaG59)	
Ir ^{192m} 2	>5 y (SchaG59)	↑ IT (SchaG59) Δ -34.6 (LHP, MTW, NDS)	B genet, n-capt (SchaG59) parent Ir 192 (SchaG59) not parent Ir 192m1 (SchaG59) daughter radiation	k), Ir L X-rays
<u>Ir¹⁹³</u>		% 61.5 (SamM36a) Δ -34.45 (MTW) σ _C 110 (GoldmDT64)		
Ir ^{193m}	11.9 d (BoeF57)	↑ IT (BoeF57) △ -34.37 (LHP, MTW)	B chem, n-capt (BoeF57) Y Ir L X-rays e ⁻ 0.069, 0.078	Ir 191(n, Y)Ir 192(n, Y) (BoeF57)
Ir ¹⁹⁴	17.4 h (PeiM64) 19.0 h (GooLJ47) others (WitC41, AmaE35, MMilE37, SerL47b)	Υ β [−] (MMilE37) Δ -32.49 (MTW)	A n-capt (AmaE35) mass spect (RalW46) chem (WilkG48) daughter Os 194 LindnM51a, WilliDC64)	.16 (0.8%, (0.6%, complex), daughter Os 194 (PeiM64)
Ir ¹⁹⁴ m	47 s (HennH60, HennH60a)	* β, IT (HennH60, HennH60a)	G n-capt, decay charac (HennH60, HennH60a, HennH61) activity not observed (SchaG61) activity produced by thermal neutrons on Ir, but not with enriched Ir 193 (FetP62a)	11011600)
Ir ¹⁹⁵	4.2 h (ClafA62) 2.3 h (ButeF54) 2.7 h (ChrisD52)	φ β (ChrisD52) Δ -31.8 (MTW)	B chem, excit (ChrisD52, ButeF54, HomS61) sep isotopes (ClafA62) daughter Os ¹⁹⁵ (BaroG57, ReyP57) B - 1.0 max Pt X-rays, 0.10, 0.43, 0.66	0.13, 0.33, 0.37, Pt 195 (n, p) (ButeF54) Pt 196 (y, p) (ChrisD52, Hom561) Os 192 (a, p) (ClafA62)
Ir ¹⁹⁶	120 m (BisW65)	φ β (BisW65) Δ -29.23 (BiαW65, MTW)	B chem, genet energy levels, sep isotopes (BisW65) β 0.95 max (95%), 0.44 (95%), 0.44 (95%), 0.65 (100%)	Pt ¹⁹⁸ (d,a) (BisW65) 66 (94%), 0.39 %), 0.522 (99%),
1r.196	9.7 d (ButeF54)	Υ β (ButeF54)	chem, cross bomb (ButeF54) activity assigned to Ir ¹⁸⁹ + Ir ¹⁹⁰ (GardD57); not produced by Pt ¹⁹⁴ (d, a) (GardD57)	
Ir ¹⁹⁷	7 m (ChrisD52, ButeF54, HomS61)	☆ β ⁻ (ButeF54) Δ -28.4 (MTW)	D chem, excit (ChrisD52) chem, cross bomb (ButeF54) γ 0.50	Pt 198(n, pn) (ButeF54) Pt 198(y, p) (ChrisD52, HomS61)
1r ¹⁹⁸	50 s (ButeF54)	β (Bute F 54) Δ -25.5 (MTW) .	C excit, cross bomb (ButeF54) β 3.6 max γ 0.78	Pt ¹⁹⁸ (n, p) (ButeF54)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△■M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Major radiations: Genetic relationships approximate energies (MeV) and intensities	Principal means of production
78 ^{Pt¹⁷³}	short (SiiA66)	४ a (SiiA66)	F cross bomb, excit (SiiA66) a 6.19	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁷⁴	0.7 s (SiiA66)	2 α 80%, [EC+β ⁺] 20% (SiiA66)	B cross bomb, excit (SiiA66) a 6.03	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁷⁵	2.1 s (SiiA66)	☆ a (SiiA66)	B cross bomb, excit (SiiA66) a 5.95	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁷⁶	6.0 s (SiiA66)	α 1.4%, [EC+β [†]] 98.6% (SiiA66)	B cross bomb, excit (SiiA66) a 5.74	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁷⁷	6.6 s (SiiA66)	α 0.3%, [EC+β [†]] 99+% (SiiA66)	B cross bomb, excit (SiiA66) a 5.51	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁷⁸	21 s (SiiA66)	α 1.3%, [EC+β [†]] 98.7% (SiiA66)	B cross bomb, excit (SiiA66) a 5.44	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁷⁹	33 s (SiiA66)	Υ α 0.1%, [EC+β [†]] 99+% (SiiA66)	B cross bomb, excit (SiiA66) a 5.15	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁸⁰	50 s (SiiA66)	Υ α 0.3%, [EC+β ⁺] 99+% (SiiA66)	3 cross bomb, excit (SiiA66) a 5.14	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁸¹	51 s (SiiA66)	4 α 0.0006%, [EC+β [†]] 99+% (SiiA66)	B cross bomb, excit (SiiA66) a 5.02	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66)
Pt ¹⁸²	3.0 m (SiiA66) 2.5 m (GraeG63)	☆ α 0.02%, [EC+β [†]] 99+% (GraeG63, SiiA66) Δ -36 (NDS, MTW)	chem, decay charac a 4.84 (GraeG63) cross bomb, excit (SiiA66) daughter radiations from Ir 182	Olé on Yb, Ne ²⁰ on Er (SilA66) protons on Ir (GraeG63)
Pt ¹⁸³	6.5 m (GraeG63) 7 m (SiiA66)	* α 0.001%, [EC+β [†]] 99+% (GraeG63, SiiA66)	3 chem, decay charac a 4.73 (GraeG63) cross bomb, excit (SiiA66)	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66) protons on Ir (GraeG63)
Pt ¹⁸⁴	20 m (GraeG63) 16 m (SiiA66)		chem, decay charac (GraeG63) cross bomb, excit (SiiA66)	O ¹⁶ on Yb, Ne ²⁰ on Er (SiiA66) Ir ¹⁹³ (p, 10n) (GraeG63)
Pr 184	42 m (QaiS65)	₹ EC (QaiS65)	Chem, genet (QaiS65) parent Ir 184 (QaiS65) Y [Ir X-rays], 0.68, 1.72, 1.85 daughter radiations from Ir 184	N ¹⁴ on Ta (QaiS65)
Pt ¹⁸⁵	1.2 h (AlboG60) 1.0 h (QaiS65)	¥ [EC] (AlboG60)	genet (AlboG60) chem, genet (QaiS65) daughter 7 m Au. (AlboG60) parent Ir (QaiS65)	descendant Hg ¹⁸⁵ (AlboG60) N ¹⁴ on Ta (QaiS65)
Pt ¹⁸⁶	3.0 h (GranG63) 2.9 h (AlboG60) 2.8 h (QaiS65) 2.5 h (SmiW55) 2.0 h (a) (GraeG63)	# EC (SmiW55, AlboG60) a 1.4 x 10 ⁻⁴ % (GraeG63)	chem, genet (SmiW55, AlboG60) chem, excit (GranG63) parent 16 h Ir ¹⁸⁶ (SmiW55, QaiS65) not parent 1.7 h Ir ¹⁸⁶ (QaiS65) daughter Au ¹⁸⁶ (SmiW55)	protons on Ir (GranG63)
Pt ¹⁸⁷	2.0 h (BaranV60) 2.1 h (QaiS65) 3.1 h (GranG63) 2.2 h (AlboG60) others (KryL61, MalyT60)	₩ EC (BaranV60)	chem, genet (BaranV60) chem, excit (GranG63) parent Ir ¹⁸⁷ (BaranV60) daughter Au ¹⁸⁷ (AlboG60)	protons on Ir (GranG63)
Pt ¹⁸⁸	10.2 d (GraeG63) 10.0 d (SmiW55) others (NauR54, KarrM63, GranG63)	Υ EC (NauR54) a 3 x 10 ⁻⁵ % (GraeG63) a 5 x 10 ⁻⁵ % (KarrM63) Δ -37.6 -MTW)	A chem, genet (NauR54, SmiW55) parent Ir 188 (NauR54, SmiW55) daughter Au 188 (SmiW55) daughter Au 188 (SmiW55) A chem, genet (NauR54, SmiW55) Ir X-rays, 0.140 († 22), 0.19 († 100, complex), 0.38 († 15), 0.42 († 7) 0.42 († 7) 0.042, 0.111, 0.119, others between 0 and 0.4 daughter radiations from Ir 188 3.93	Ir 191 (p, 4n) (GranG63)

Isotope Z A	Half-life	Type of decay (*Δ*); % abundance; Mass excess (Δ*M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
78 ^{Pt¹⁸⁹}	10.9 h (LewisH64) 10.5 h (GrigE62) 11.1 h (AndeG61) others (KryL61, GranG63, PofN60, AlboG60, SmiW55, QaiS65)	★ EC (SmiW55, AlboG60) Δ -37 (MTW)	chem, excit (GranG63) parent Ir 189 (SmiW55) daughter Au 189 (SmiW55, ChacK57) descendant Hg 189 (AndeG61, PofN60, AlboG60) e 0.6	r X-rays, 0.094 († 120), 0.114 († 61), 0.141 († 124), 0.187 († 137), 0.243 († 100), 0.31 († 96, complex), 0.404 († 32), 0.56 († 230, complex), 0.722 († 156), 0.80 († 27, complex), 0.058, 0.058, 0.082, 0.092, 0.168, 0.231, 0.241, many others between 0 and 0.8 laughter radiations from Ir 189	Ir ¹⁹¹ (p,3n) (GranG63)
<u>pt</u> 190	6.9 x 10 ¹¹ y spact (MacRt6la) 5.4 x 10 ¹¹ y spact (GraeG63) others (PetrK61, GraeG61, PorsW56, PorsW54)	* α (PorsW54) % 0.0127 (WhiF56) Δ -37.3 (MTW) σ _c ≈150 (GoldmDT64)	A decay charac (PorsW56) a 3 (MacfR6la)	3.18	
Pt ¹⁹¹	3.00 d (WilkG49a) others (CorkJ54a, SwanJ53a, SmiW55, LindsJ62, KryL61, GranG63)	♀ EC (WilkG48) Δ -36 (MTW)	genet energy levels (GillL54) daughter Au ¹⁹¹ (SmiW55) e ⁻ 0.	r X-rays, 0.096 (1%), 0.129 (2%), 0.175 (1%, complex), 0.269 (1%), 0.36 (5%, complex), 0.410 (3%), 0.457 (1%), 0.539 (9%), 0.624 (1%) 0.020, 0.053, 0.069, 0.080, others between 0 and 0.6	protons on Ir (GranG63, HarmB62) Ir ¹⁹¹ (d, 2n) (WilkG49a)
Pt ¹⁹²	=10 ¹⁵ y sp act (PorsW56) >10 ¹⁴ y sp act (GraeG63)	* α (PorsW56) 0.78 (WhiF56) Δ -36.2 (MTW) σ _c <14 (to Pt ¹⁹³) 2 (to Pt ¹⁹³ m) (GoldmDT64)	E decay charac (PorsW56) a 2.	2.6 ?	
Pt ¹⁹³	<500 y yield (NauR56) >74 d, or <1 h (no activity observed (SwanJ53a)	Υ EC (L/K>1000), no β ⁻ , no β ⁺ (NauR56) Δ -34.41 (MTW)	B n-capt, chem (NauR56) Y Ir	r L X-rays	Pt ¹⁹² (n, Y) (NauR56)
Pt ^{193m}	4.3 d (WilkG49a) 3.4 d (CorkJ54a) 4.4 d (EwaG57) 4.5 d (SwanJ53a) 3.5 d (BrunnJ55)	☆ IT (SwanJ53a) Δ -34.26 (LHP, MTW)		Pt X-rays 0.01, 0.057, 0.124, 0.133	Ir ¹⁹³ (d, 2n), Pt ¹⁹² (n, Y) (WilkG49a)
Pt ¹⁹⁴		% 32.9 (WhiF56) Δ -34.72 (MTW) σ _C 1.1 (to Pt ¹⁹⁵) 0.09 (to Pt ¹⁹⁵ m) (GoldmDT64)			
Pt 195		% 33.8 (WhiF56) Δ -32.78 (MTW) σ _c 27 (GoldmDT64)			
pt ^{195m}	4.1 d (BresM60) others (HoleN48b, DShaA52, HaldB52, MMilE37, MalyT60)	 	chem, genet (?) (DShaA52) genet energy levels (Cork 1542 Repro F55) e 0.	Pt X-rays, 0.099 (11%), 0.129 (1%) (1%) 0.018, 0.028, 0.051, 0.085, 0.116, 0.126	Pt ¹⁹⁴ (n, Y). (MandeC48d, HaldB52, DShaA52, MMilE37, PoolM37, SerL47b, HubeC51) Pt ¹⁹⁴ (d, p) (KriR41c)
Pt ¹⁹⁶		% 25.2 (WhiF56) Δ -32.63 (MTW) σ _C 0.9 (to Pt ¹⁹⁷) 0.05 (to Pt ¹⁹⁷ m) (GoldmDT64)			
Pt ¹⁹⁷	18 h. (MMilE37) 20.0 h (BresM60) 17.4 h (CorkJ52a)	φ β (MMilE37) Δ =30.42 (MTW)	chem, excit (MMilE37) e 0.	0.670 max 0.063, 0.074, 0.110 Au X-rays, 0.077 (20%), 0.191 (6%)	Pt ¹⁹⁶ (n, Y) (MMilE37, SherrR41, SerL47b, HaldB52)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≅M-A), MeV (C¹²=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
78 ^{Pt} ^{197m}	78 m (HoleN48b) 80 m (SherrR41, MangS62) 88 m (ChrisD52)	# IT (HoleN48b) β 3% (HavA65) Δ -30.02 (LHP, MTW)	A	chem (SherrR41) chem, excit, cross bomb (ChrisD52) genet, genet energy levels (HavA65) parent Au 197m (PraK64, HavA65)	Υ e ⁻ β ⁻		Pt ¹⁹⁶ (n, Y) (HavA65) Pt ¹⁹⁶ (d, p) (SherrR41)
Pt ¹⁹⁸	t _{1/2} (ββ) >10 ¹⁵ y sp act (FremJ52)	% 7.19 (WhiF56) Δ -29.91 (MTW) σ _c 4 (to Pt ¹⁹⁹) 0.03 (to Pt ¹⁹⁹ m) (GoldmDT64)					
Pt ¹⁹⁹	31 m (MMilE37) 30 m (LBlaJ56) 29 m (SherrR41)	φ β (MMilE37) Δ -27.40 (MTW) σ _c ≈15 (GoldmDT64)	A	n-capt (MLenJ35, AmaE35) chem, n-capt, excit (SherrR41) parent au 199 (MMilE37, BeacL49, MeeJ49, HillR50a)	β ⁻ Υ	1.69 max 0.075 + Au K X-ray (9%), 0.197 (9%), 0.245 (4%), 0.32 (8%, doublet), 0.475 (12%, doublet), 0.540 (24%), 0.715 (3%), 0.790 (2%), 0.960 (2%)	Pt ¹⁹⁸ (n, Y) (AmaE35, MLenJ35, MMilE37, SherrR41, SerL47b, HumV51)
Pt ^{199m}	14.1 s (WahM59)	Y IT (WahM59) △ -26.98 (LHP, MTW)	В	n-capt, sep isotopes (WahM59)		Pt X-rays, 0.393 (90%) 0.018, 0.029, 0.315, 0.381	Pt ¹⁹⁸ (n, Y) (WahM59)
Pt ²⁰⁰	11.5 h (RoyL57a)	φ β (RoyL57a) Δ -27 (MTW)	В	n-capt, chem, genet (RoyL57a) parent Au ²⁰⁰ (RoyL57a)		daughter radiations from Au ²⁰⁰	Pt ¹⁹⁸ (n, Y)Pt ¹⁹⁹ (n, Y) (RoyL57a)
Pt ²⁰¹	2.3 m (FacJ62) 2.5 m (GopK63)	φ β (FacJ62, GopK63) Δ -23.5 (MTW)	В	chem, genet (FacJ62) parent Au ²⁰¹ (FacJ62)		2.66 max 0.15, 0.23, 1.76 daughter radiation from Au ²⁰¹	Hg ²⁰⁴ (n, a) (FacJ62, GopK63)
79 ^{Au 177}	1.4 s (SiiA65b)	a (SiiA65b)	С	excit, sep isotopes (SiiA65b)	a	6.11	F ¹⁹ on Yb (SiiA65b)
Au ¹⁷⁸	2.7 s (SiiA65b)	⁴ a (SiiA65b)	С	excit, sep isotopes (SiiA65b)	a	5. 91	F ¹⁹ on Yb (SiiA65b)
Au ¹⁷⁹	7.1 s (SiiA65b)	↑ a (SiiA65b)	С	excit, sep isotopes (SiiA65b)	a	5.84	F ¹⁹ on Yb (SiiA65b)
Au ¹⁸¹	10 s (SiiA65b)	❖ a (SiiA65b)	С	excit, sep isotopes (SiiA65b)	a	5.60, 5.47	F ¹⁹ on Yb (SiiA65b)
Au ¹⁸³	44 s (SiiA65b)	♣ a (SiiA65b)	С	excit, sep isotopes (SiiA65b)	a	5. 34	F ¹⁹ on Yb (SiiA65b)
Au ¹⁸⁵	7 m (AlboG60)	₩ [EC] (AlboG60)	С	genet (AlboG60) daughter Hg ¹⁸⁵ , parent Pt ¹⁸⁵ (AlboG60) possibly identical to 4.3 m Au ¹⁸⁵ (LHP)			daughter Hg 185 (AlboG60)
Au ¹⁸⁵	4.33 m (SiiA65b) 4.3 m (RasJ53)	Υ EC, β ⁺ , α ≈0.01% (ThomS49, RasJ53)	В	chem, excit (ThomS49) excit, sep isotopes (SiiA65b)	a	5.07	F ¹⁹ on Yb (SiiA65b) protons on Pt, Au (ThomS49, RasJ53)
Au ¹⁸⁶	12 m (AlboG60) ≈15 m (SmiW55)	★ EC (SmiW55, AlboG60)	В	chem, genet (SmiW55, AlboG60) parent Pt 186 (SmiW55) daughter Hg 186 (AlboG60)	Y	Pt X-rays, 0.16, 0.22, 0.30, 0.40 daughter radiations from Pt ¹⁸⁶	daughter Hg 186 (AlboG60)
Áu ¹⁸⁷	8 m (AlboG60)	₹ EC (AlboG60)	С	genet (AlboG60) parent Pt ¹⁸⁷ , daughter Hg ¹⁸⁷ (AlboG60)		Pt X-rays daughter radiations from Pt ¹⁸⁷	daughter Hg ¹⁸⁷ (AlboG60)
Au ¹⁸⁸	8 m (PofN60, AlboG60) ≈10 m (SmiW55) 4.5 m (ChacK57)	# EC (SmiW55, PofN60, AlboG60) β ⁺ (ChacK57)	В	chem, genet (SmiW55, PoN60, AlboG60) chem, excit (ChacK57) parent Pt ¹⁸⁸ (SmiW55) daughter Hg ¹⁸⁸ (PofN60, AlboG60)	Υ	Pt X-rays, 0.25, 0.33, 0.63	Ta ¹⁸¹ (C ¹² , 5n) (ChacK57) protons on Pt (SmiW55 daughter Hg ¹⁸⁸ (PofN60, AlboG60)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C''=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
79 ^{Au 189}	30 m (PofN60, AlboG60) <<40 m, activity not observed (LilG64) 42 m (SmiW55)	*	[EC] no d , lim 3 x 10 ⁻⁵ % (KarrM63)	В	chem, genet, cross bomb (SmiW55) chem, mass spect (KilPi65) parent Pt ¹⁸⁹ , daughter Hg ¹⁸⁹ (SmiW55, ChacK57)	Y e	Pt X-rays 0.027, 0.036, 0.088, 0.137, 0.154, 0.166, 0.269 daughter radiations from Pt ¹⁸⁹	Au ¹⁹⁷ (p, 9n) Hg ¹⁸⁹ (EC) (PofN60, AlboG60) Ta ¹⁸¹ (C ¹² , 4n) (SmiW55
Au ¹⁹⁰	39 m (AndeG61, JasJ61a) 45 m (PofN60)		EC (AlboG59, AlboG60, PofN60) EC 98%, β [†] 2% (JasJ61a) β [†] <1% (AlboG59) no α, lim 1 x 10 ⁻⁶ % (KarrM63) -33 (MTW)	В	genet (AndeG61, JasJ61a) daughter Hg ¹⁹⁰ (AndeG61)		Pt X-rays, 0.29 († 100, complex), 0.60 († 5, complex), other weak y's to 3.5	daughter Hg ¹⁹⁰ (AndeGél, JasJéla)
Au ¹⁹¹⁻¹⁹³	2.0 s (HenrA53)	¥	(HenrA53)	F	excit (HenrA53)		,	protons on T1, Hg (HenrA53)
Au ¹⁹¹	3.2 h (AndeG6la) others (SmiW55, GillL54)		EC (SmiW55) no a, lim 5 x 10 ⁻⁶ % (KarrM63) -34 (MTW)	A	chem, genet (SmiW55, GillL54) parent Pt ¹⁹¹ (SmiW55) daughter Hg ¹⁹¹ (SmiW55, GillL54)		Pt X-rays, 0.14 († 10), 0.30 († 60), 0.39 († 5), 0.48 († 4), 0.60 († 10), all Y's complex 0.035, 0.046, 0.054, 0.080, 0.089 many others between 0 and 2.0 daughter radiations from Pt ¹⁹¹	protons on Pt (MarkI62) Ir ¹⁹¹ (a, 4n) (WilkG49a, EwbW60) Pt ¹⁹² (d, 3n) (WilkG49a)
Au 192	4.1 h (FinR52) others (WilkG49a, EngeT53)		EC, β [†] ≃1% (WilkG49a) -33.0 (MTW)	A	chem, excit (WilkG49a) chem, genet (FinR52, GillL54) genet energy levels (GillL54) daughter Hg ¹⁹² (FinR52, GillL54)	e-	Pt X-rays, 0.137, 0.158, 0.296, 0.308, 0.317, others between 0.1 and 1.2 0.032, 0.143, 0.23, 0.30 2.2 max	daughter Hg ¹⁹² (HuqM57 GillL54) Ir ¹⁹¹ (a, 3n) (WilkG49a)
Au ¹⁹³	15.8 h (WilkG4%) 17.5 h (EwaG57) 15.3 h (FinR52)		EC, no β [†] (lim 0.08%) (EwaG57) no α, lim 1 x 10 ⁻⁵ % (KarrM63) -33 (MTW)	В	chem, genet (WilkG49a) daughter Hg ¹⁹³ (GillL54, FinR52) parent Pt ^{193m} (WilkG49a)		Pt X-rays, 0.114 (5%, complex), 0.18 (11%, complex), 0.26 (9%, doublet), 0.378 (1.4%), 0.440 (3%) 0.034, 0.095, 0.108, 0.177	Ir ¹⁹¹ (a, 2n) (WilkG49a) deuterons on Pt (WilkG49a) daughter Hg ¹⁹³ (EwaG57) protons on Pt (MarkI62)
Au ^{193m}	3.9 s (FiscV55) 3.8 s (BrunnJ55)		IT (FiscV55, BrunnJ55, GilL54) EC 0.03% (BrunnJ55) -33 (LHP, MTW)	В	genet (BrunnJ55) daughter Hg ^{193m} (GillL54, BrunnJ55) parent Pt ^{193m} (0.03%) (BrunnJ55)		Au X-rays, 0.258 (65%) 0.019, 0.030	daughter Hg ^{193m} (BrunnJ55) protons on Pt (FiscV55)
Au ¹⁹⁴	39.5 h (WilkG49a) others (StefR49)		EC ≈97%, β ⁺ ≈3% (WilkG49a) -32.21 (MTW)	A	chem, excit (WilkG49a) genet energy levels (ThieM56a) daughter Hg ¹⁹⁴ (BrunnJ55a, MerE6la, BellL64)	e ⁻	1.49 max 0.250, 0.315, many others between 0.02 and 2.4 Pt X-rays, 0.294 (12%), 0.328 (68%), 1.469 (8%), 1.596 (3%), 1.887 (4%), 2.044 (4%), many others between 0.1 and 2.4	deuterons on Pt (WilkG49a) Ir 193 (a, 3n) (WilkG49a) protons on Pt (StefR49)
Au ¹⁹⁵	183 d (HarbG63) 185 d (BonnN62) 192 d (BisA59) 199 d (BresM60) others (StefR49, WilkG49a)	l	EC (WilkG49a) -32.55 (LHP, MTW)	A	chem, genet (WilkG49a) descendant Hg ^{195m} (BradC54) daughter Hg ¹⁹⁵ (GillL54)		Pt X-rays, 0.099 (10%), 0.129 (1%) 0.018, 0.028, 0.085	deuterons on Pt (WilkG49a) Ir ¹⁹³ (a, 2n) (WilkG49a) Pt ¹⁹⁵ (p, n) (StefR49)
Au ¹⁹⁵ m	30.6 s (FiscV55) others (HubeO52)	l	IT (HubeO52a) -32.23 (LHP, MTW)	В	chem, genet (HubeO52a) excit (FiscV55) daughter Hg ^{195m} (HubeO52a, JolyR55) not daughter Hg ¹⁹⁵ (HubeO53, GillL54)	1	Au X-rays, 0.261 (77%) 0.044, 0.056, 0.180	daughter Hg ^{195m} (HubeO52a, JolyR55) protons on Pt (FiscV55)
Au ¹⁹⁶	6.18 d (IkeH63) others (BonnN62, WapA62, TilR63a, LingE62, BakM60, WilkG49a, StefR49, WafH48, KriR41c)		EC 93.8%, β ⁻ 6.2% (BergO61) β ⁺ 5 x 10 ⁻⁵ % (IkeH63) others (StefR49, WilkG49a, ThieM 56) -31.15 (MTW)	A	chem, excit (MMilE37)	β _ e _ Y	0.259 max (6%) 0.255, 0.277, 0.343 Pt X-rays, 0.333 (25%), 0.356 (94%), 0.426 (6%), 1.091 (0.2%)	Pt ¹⁹⁶ (d, 2n) (WapA62) Pt ¹⁹⁶ (p, n) (StefR49, IkeH63, MarkI62) Pt ¹⁹⁵ (d, n) (KriR41c, WilkG49a, StahP52) Ir ¹⁹³ (a, n) (EwbW60) Au ¹⁹⁷ (n, 2n) (MMilE37, WilkG49a, WapA62)
					,			,

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≡M-A), MeV (C"=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
79 ^{Au 196} m	9.7 h (BonnN62) others (KavT60, BakM60, AdemM60, VLieR59, TilR63a, WilkG49a, MMilE37)	★ IT (WapA62a) △ -30.56 (LHP, MTW)	TilR63a)	Au X-rays, 0.148 (42%), 0.188 (32%), 0.285 (5%), 0.316 (5%) - 0.069, 0.081, 0.094, 0.108, 0.135, 0.160 daughter radiations from Au 196	Pt ¹⁹⁶ (d, 2n) (WapA62a, VLieR59) Au ¹⁹⁷ (n, 2n) (MMilE37, WilkG49a, VLieR59) Au ¹⁹⁷ (p, pn) (TilR63a)
<u>Au¹⁹⁷</u>		% 100 Δ -31.17 (MTW) σ _C 98.8 (GoldmDT64)			
Au ¹⁹⁷ m	7.2 s (FiscV55) 7.4 s (FrauH47) 7.5 s (WieM45a)	★ IT (WieM45a) △ -30.76 (LHP, MTW)	197m / 7	Au X-rays, 0.130 (8%), 0.279 (75%) - 0.050, 0.117, 0.127, 0.198, 0.265	daughter Hg ^{197m} , Pt ^{197m} (HavA65)
Au ¹⁹⁸	2.697 d (LocE53, JohaK56) 2.699 d (BellRE54, RobeJ60) 2.687 d (StarS63) 2.686 d (TobJ55) 2.704 d (KeeJ58) others (SasC56, SinW51, SitL51, DieC46, HumV51, SerL47b, SherrR41, PoolM37, WriH57)	β (MMilE37) no EC(K) lim 0.01% (BashA56) no β [†] , lim 0.003% (Mim W51) Δ -29.59 (MTW) σ _c 26,000 (GoldmDT64)	MMilE37)	0.962 max average β energy: 0.32 calorimetric (ShimN56a) 0.29 calorimetric (LecM64) 0.329, 0.398 9.412 (95%), 0.676 (1%), 1.088 (0.2%)	Au ¹⁹⁷ (n, Y) (AmaE35, MMilE37, PoolM37, DzhB41, SerL47b; HumV51) Pt ¹⁹⁸ (p, n) (StefR49, StefR48)
Au ¹⁹⁹	3.15 d (BellRE55) others (WriH57, DShaA52, MMilE37, GleG64)	φ β (KriR41c) Δ -29.09 (MTW) σ _c ≈30 (GoldmDT64)	daughter Pt 199 (MMilE37, BeacL49a, MeeJ49,	0.46 max (6%), 0.30 max Y Hg X-rays, 0.158 (37%), 0.208 (8%) 0.075, 0.125, 0.145	Pt ¹⁹⁸ (n, Y)Pt ¹⁹⁹ (β ⁻) (MMilE37, HahR63, LindsJ63a) Au ¹⁹⁷ (n, Y) Au ¹⁹⁸ (n, Y) (HillR50) Pt ¹⁹⁸ (d, n) (KriR41c)
Au ²⁰⁰	48.4 m (RoyJ59) others (ButeF52a, MauW42, GirR60)	φ β (SherrR41) Δ -27.3 (MTW)		3- 2.2 max Y 0.368 (24%), 1.227 (23%), 1.593 (1%)	Hg ²⁰² (d, a) (GirR60) T1 ²⁰³ (n, a) (ButeF52a) Hg ²⁰¹ (Y, p) (ButeF52a)
Au ²⁰¹	26 m (ErdP57, ButeF52a) others (FacJ62, EutP62)	Υ β (ButeF52a) Δ −26.2 (MTW)	(December 1	1.5 max Y 0.53	Hg ²⁰² (Y, p) (ButeF50, ButeF52a, EutP62)
Au ^{202, 204}	≈25 s (ButeF52a)	φ or IT (ButeF52a)	E excit (ButeF52a)		Hg ^{202, 204} (n, p) (ButeF52a)
Au ²⁰³	55 s (ButeF52a)	Υ β (ButeF52a) Δ -23 (MTW)	1 (5 1 5 5 5 5 1	3 1.9 max Y 0.69	Hg ²⁰⁴ (Y, p) (ButeF52a)
80 ^{Hg<195}	0.7 m (RasJ53)	☆ a (RasJ53)	E chem (ThomS49, RasJ53) probably Hg ¹⁸⁵ or Hg ¹⁸⁶ (LHP)	a 5.6	deuterons on Au ¹⁹⁷ (RasJ53)
Hg 185	50 s (AlboG60)	₹ [EC] (AlboG60)	C chem, mass spect (AlboG60) parent 7 m Au ¹⁸⁵ (AlboG60)		Au ¹⁹⁷ (p, 13n) (AlboG60)
Hg ¹⁸⁶	1.5 m (AlboG60)	₩ EC (AlboG60)	B chem, mass spect (AlboG60) parent Au 186 (AlboG60)	Au X-rays, 0.125, 0.27, 0.35, 0.44 daughter radiations from Au ¹⁸⁶	Au ¹⁹⁷ (p, 12n) (AlboG60)
Hg ¹⁸⁷	3 m (AlboG60)	EC (AlboG60) a? (KarrM63)	B chem, mass spect (AlboG60) parent Au 187 (AlboG60)	Y Au X-rays, 0.175, 0.255, 0.40 daughter radiations from Au ¹⁸⁷	Au ¹⁹⁷ (p, 1ln) (AlboG60)
Hg ¹⁸⁸	3.7 m (PofN60, AlboG60) 3.0 m (a) (KarrM63)	EC (PofN60, AlboG60) a(?) (KarrM63)		Au X-rays, 0.14 5.14 (? may be Hg ¹⁸⁷) daughter radiations from Au ¹⁸⁸	Au ¹⁹⁷ (p, 10n) (PofN60, AlboG60, KarrM63a)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
80 ^{Hg} ¹⁸⁹	9.6 m (AndeG61) 9 m (PofN60, AlboG60)	*	EC, β [†] ? (PoiN60, AlboG60, AndeG61) no a, lim 3 x 10 ⁻⁵ % (KarrM63)	A	chem, mass spect (PofN60, AlboG60, AndeG61) parent Au ¹⁸⁹ (SmiW55, ChacK57) ancestor Pt ¹⁸⁹ (PofN60, AlboG60, AndeG61)	Y	Au X-rays, 0.165, 0.24, 0.32, 0.50 daughter radiations from Au ¹⁸⁹	Au ¹⁹⁷ (p, %n) (PofN60, AlboG60, AndeG61)
Hg ¹⁹⁰	20 m (AndeG61, JasJ64) 21 m (AlboG59, AlboG60, PofN60) others (GillL54, ChacK57, SmiW55)		EC (AlboG59, AlboG60, PoIN60) no β ⁺ , lim 1% (AlboG59) no a, lim 5 x 10 ⁻⁵ % (KarrM63) -31 (NDS, MTW)	A	chem, mass spect (AlboG59, AndeG61, JasJ61b) parent Au ¹⁹⁰ (AndeG61)	Y e	Au X-rays, 0.14 (complex) 0.015, 0.026, 0.049, 0.062, 0.076 daughter radiations from Au ¹⁹⁰	Au ¹⁹⁷ (p, 8n) (AlboG59, AndeG61, JasJ61b, AlboG60, PofN60)
Hg<191	90 m (GillL54)	*	(GillL54)	F	excit (GillL54)			protons on Au 197 (GillL54)
Hg<191	≈3 h (GillL54)	*	(GillL54)	F	excit (GillL54)	e ⁻	0.088	protons on Au ¹⁹⁷ (GillL54)
нg ¹⁹¹	55 m (PofN60, SmiW55) 57 m (GillL54) no 12 h Hg 191 observed (SmiW55)	*	EC (SmiW55)	A	excit (GillL54) chem, genet (SmiW55) mass spect (AndeG61a, PofN60) parent Au ¹⁹¹ (SmiW55, GillL54)		Au X-rays, 0.26 (complex) 0.170, 0.191, 0.239 daughter radiations from Au ¹⁹¹	Au ¹⁹⁷ (p,7n) (GillL54, AndeG61a, PofN60)
нg ¹⁹²	4.8 h (JasJ61) 5.7 h (FinR52) 6.3 h (VinA55a)		EC, β [†] (FinR52) β [†] <1% (JasJ61) no α, lim 4 x 10 ⁻⁶ % (KarrM63) -32 (MTW)	В	chem, excit (FinR52, GillL54) parent Au ¹⁹² (FinR52, GillL54)	ĺ	Au X-rays, 0.114 († 10), 0.157 († 20), 0.274 († 100) 0.017, 0.028, 0.034, 0.039, 0.077 daughter radiations from Au ¹⁹²	Au ¹⁹⁷ (p, 6n) (GillL54, HuqM57)
Hg ¹⁹³	≈6 h (GillL54) 4 h (MalyT58)	l	EC (GillL54) -31 (MTW)	В	genet (GillL54) daughter Hg 193m (GillL54, BrunnJ55) parent Au 193 (GillL54, FinR52)		Au X-rays, 0.187, 0.574, 0.762, 0.855, 1.04, 1.08 0.025, 0.035, 0.108, 0.174 daughter radiations from Au ¹⁹³	Au ¹⁹⁷ (p, 5n) (FireE52, GillL54, EwaG57)
Hg ^{193m}	10.0 h (FireE52) 11 h (BrunnJ58) others (VinA55a, GillL54)		EC 84%, IT 16% (GillL54) β [†] 1.5% (BrunnJ58) EC(K)/EC(L) 7.3 (BrunnJ58) no a, lim 1 x 10 ⁻⁵ % (KarrM63) -31 (LHP, MTW)	В	chem, excit (FireE52, GillL54) parent Hg ¹⁹³ (GillL54) parent Au ^{193m} (GillL54, BrunnJ55)		Hg X-rays, Au X-rays, 0.218, 0.258, 0.574, many others between 0.1 and 1.6 0.020, 0.025, 0.029, 0.036, 0.087, 0.178, 0.243, many others between 0 and 1.6 daughter radiations from Hg 193 daughter radiations from Au 193m included in above listing	Au ¹⁹⁷ (p,5n) (FireE52, GillL54, EwaG57)
Hg ¹⁹⁴	1.9 y (BellL64) 0.40 y (same activity?) (MerE61a) ≈1.6 y (BrunnJ58) 0.4 y (BrunnJ55a, MalyT58)		EC(L), no EC(K) (BellL64) EC(K) (MerE61a) no β [†] , lim 1% (MerE61a) -32.2 (BellL64, MTW)	В	chem, genet (BrunnJ55a, MerE61a, BellL64) parent Au ¹⁹⁴ (MerE61a, BrunnJ55a, BellL64)	Υ	Au X-rays daughter radiations from Au ¹⁹⁴	Au ¹⁹⁷ (p, 4n) (Brunn J 55a, BellL64)
Hg ^{194m}	0.4 s (HenrA53)	*	[IT or EC]	E	excit (HenrA53)	γ	0.048, 0.134	protons on Au and Hg (HenrA53)
нg ¹⁹⁵	9.5 h (JolyR55, BrunnJ54, HubeO53)		EC (JolyR55) -31 (MTW)	А	chem, genet, excit (GillL54) mass spect (JunB61a) daughter Hg ^{195m} (GillL54) daughter Tl ¹⁹⁵ (KniJD55) parent Au ¹⁹⁵ (GillL54) not parent Au ^{195m} (HubeO53, GillL54)		Au X-rays, 0.20 (complex), 0.261, 0.59 (doublet), 0.780, 0.930, 1.110, 1.172 0.048, 0.058, 0.099	daughter Tl ¹⁹⁵ (KniJD55, JunB6la) Au ¹⁹⁷ (p,3n) (TilR63a, GillL54)
Hg ¹⁹⁵ m	40.0 h (HubeD53, JolyR55, BrunnJ54) others (TilR63a)		EC 50%, IT 50% (JolyR55, BrunnJ54) EC 52%, IT 48% (GillL54) -31 (LHP, MTW)		chem, excit (FinR52) chem, excit, genet (GillL54) mass spect (JunB61a) parent Au ^{195m} (HubeO52, JolyR55) parent Hg ¹⁹⁵ (GillL54) not daughter Tl ¹⁹⁵ (KniJD55) ancestor Au ¹⁹⁵ (BradC54)		Hg X-rays, Au X-rays, 0.200 (35%), 0.261 (20%), 0.560 (20%) 0.0014, 0.013, 0.022, 0.034, 0.043, 0.048, 0.053, 0.058, 0.109, 0.120, 0.180 daughter radiations from Hg 195 daughter radiations from Au included in above listing	Au ¹⁹⁷ (p, 3n) (TilR63a, GillL54)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△ = M – A), MeV (C ¹² = 0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production	
80 ^{Hg} 196	t _{1/2} (a) >1 x 10 ¹⁴ y sp act (MacfR61a)	% 0.146 (NierA50a) Δ -31.84 (MTW) σ _C 880 (to Hg ¹⁹⁷) 25 (to Hg ^{197m}) (GoldmDT64)				
Hg ¹⁹⁷	65 h (HubeO51, TilR63a) others (CorkJ52, FrieG43, SherrR41, KriR40b, KriR41a)	☆ EC (FrieG43) Δ -30.75 (DWitS65, MTW)	A chem, excit, cross bomb (WuC41, FrieG43) daughter Hg ^{197m} (HubeO53) daughter Tl ¹⁹⁷ (KniJD55)	Y Au X-rays, 0.077 (18%), 0.191 (2%), 0.268 (0.15%) e 0.064, 0.074	Au ¹⁹⁷ (p,n) (TilR63a) Au ¹⁹⁷ (d,2n) (FrieG43, WuC41)	
Hg ^{197m}	24 h (BradC54, TilR63a) others (FrieG43, HubeO51, MMilE37)	T 1T 94%, EC 6% (HavA65) others (DShaA52, JolyR55) Δ -30.45 (LHP, MTW)	A n-capt (AndeEB36) chem (MMilE37) chem, excit, cross bomb (WuC41, FrieG43) parent Au ^{197m} (FrauH50a, DShaA52, HavA65) parent Hg ¹⁹⁷ (HubeO53) not daughter Tl ¹⁹⁷ (KniJD55)	Hg X-rays, 0.134 (42%), 0.279 (7%) e ⁻ 0.051, 0.082, 0.120, 0.131, 0.152, 0.162 daughter radiations from Hg ¹⁹⁷ daughter radiations from Au ¹⁹⁷ m included in above listing	Au ¹⁹⁷ (p,n) (TilR63a) Au ¹⁹⁷ (d,2n) (WuC41, FrieG43)	
Hg ¹⁹⁸		% 10.02 (NierA50a) Δ 30.97 (MTW) σ _C 0.02 (to Hg 199m) (GoldmDT64)				
Hg ¹⁹⁹		% 16.84 (NierA50a) Δ -29.55 (MTW) σ _C 2000 (GoldmDT64)				
Hg ^{199m}	43 m (SmeF65, MMiIE37, HeyF37) 44 m (HoleN47a, MacD48) others (PoolM37, WuC41, SherrR41, WieM45a)	Y IT (FrieG43) △ -29.01 (LHP, MTW)	A chem, excit (HeyF37, MMilE37) mass spect (BergI49a) not daughter Ti ¹⁹⁹ (BergI53)	Hg X-rays, 0.158 (53%), 0.375 (15%) e- 0.075, 0.144, 0.285, 0.354	Hg ¹⁹⁸ (d,p) (KriR40b) Pt ¹⁹⁶ (a,n) (SherrR41) Hg ²⁰⁰ (n,2n) (MMilE37, HeyF37) Hg ¹⁹⁹ (n,n) (FrieG43, WuC41, Berg149a)	
<u>Hg²⁰⁰</u>		% 23.13 (NierA50a) Δ -29.50 (MTW) σ _c <50 (GoldmDT64)				
Hg ²⁰¹		% 13.22 (NierA50a) Δ -27.66 (MTW) σ _c <50 (GoldmDT64)				
Hg ²⁰²		% 29.80 (NierA50a) \[\times -27.35 \cdot \text{MTW} \] \[\sigma_c 4 \text{(GoldmDT64} \right) \]				
Hg ²⁰³	46.9 d (EicG56) 46.6 d (GleG64) 47.9 d (CorkJ52) others (LyoW51, WilsH51, WriH57, CaliJ59, SherrR41, IngM47b, SerL47b, MauW42)	Υ β (FrieG43) Δ -25.26 (MTW)	A excit (KriR40b) chem, excit, n-capt (WuC41, FrieC43) mass spect (SlaH49a, BergI49)	β 0.214 max e 0.194, 0.264, 0.275 Y 0.279 (77%)	Hg ²⁰² (n, Y) (FrieG43, WuC41, IngM47b, SerL47b)	
Hg ²⁰⁴		% 6.85 (NierA50a) Δ -24.69 (MTW) σ _C 0.4 (GoldmDT64)				
Hg ²⁰⁵	5.5 m (MauW42, KriR40b) 5.6 m (LyoW51) others (WuC41, FrieG43)	φ β (KriR40b) Δ -22.2 (MTW)	A n-capt, excit (KriR40b, KriR42) sep isotopes, n-capt (LyoW51)	β 1.7 max Y 0.205	Hg ²⁰⁴ (n, Y) (LyoW51) Hg ²⁰⁴ (d, p) (KriR40b, KriR42)	
Hg ²⁰⁶	8.1 m (WolfGK64) 8.5 m (KauP62) others (NurM61)	Υ β (NurM61) Δ -20.95 (MTW)	A chem, genet (NurM61, KauP62) daughter Pb ²¹⁰ (RaD), parent Tl ²⁰⁶ (NurM61, KauP62, WolfGK64)	β [1.3 max] Y 0.31 daughter radiations from Tl ²⁰⁶	daughter Pb ²¹⁰ (NurM61, KauP62, WolfGK64) Pb ²⁰⁸ (p, 3p) (KauP62)	

Isotope Z A	Half-life		Type of decay ($^{\bullet\bullet}$); % abundance; Mass excess (\triangle =M-A), MeV (C° =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
81 ^{T1¹⁹¹}	10 m (ChacK60) <10 m (AndeG61a)	*	EC, β ⁺ (ChacK60)	В	chem, sep isotopes (ChacK60 chem, mass spect (AndeG61a		Hg X-rays, 0.511 (Y [±])	w ¹⁸² (N ¹⁴ , 5n) (ChacK60 protons on Hg (AndeG6la)
т1 ¹⁹²	ll m (AndeG6la) 10 m (DiaR63a)	*	[EC, β [†]] (AndeG6la)	В	chem, mass spect (AndeG61a; excit, cross bomb (DiaR63a)	Y e	[Hg X-rays], 0.424, [0.511 (Y [±])] 0.341	Ta ¹⁸¹ (O ¹⁶ , 5n) (DiaR63a) C ¹² on Re (DiaR63a) protons on Hg (AndeG61a)
T1 ¹⁹³	23 m (AndeG6la) 30 m (ChacK60)		EC, β [†] (ChacK60, AndeG61a) no α, lim 2 x 10 ⁻⁴ % (KarrM63)	В	chem, sep isotopes (ChacK60) chem, mass spect (AndeG61a)		Hg X-rays, 0.158, 0.169, 0.178, 0.187, 0.208, 0.216, 0.238, 0.247, 0.511 (Y*), if electrons observed by (AndeG6la) are all K-lines converted in Hg	W ¹⁸⁴ (N ¹⁴ , 5n) (ChacK60) protons on Hg (AndeG6la)
T1 ^{193m}	2.1 m (DiaR63a)	*	[IT] (DiaR63a)	С	excit, cross bomb (DiaR63a)		Tl X-rays, 0.365 0.280	Ta ¹⁸¹ (O ¹⁶ , 4n), Re ¹⁸⁵ (C ¹² , 4n) (DiaR63a)
T1 ¹⁹⁴	33.0 m (JunB60)		EC (JunB60) no a, lim l x 10 ⁻⁷ % (KarrM63) -26 (MTW)	A	chem, mass spect, genet (JunB60) daughter Pb ¹⁹⁴ (JunB60)		Hg X-rays, 0.427 0.344	protons on Hg (JunB60) daughter Pb ¹⁹⁴ (JunB60
Tl ^{194m}	32.8 m (JunB60)	*	EC, no IT observed (JunB60)	В	chem, mass spect (JunB60) not daughter Pb ¹⁹⁴ (JunB60)		Hg X-rays, 0.097 0.083	protons on Hg (JunB60)
T1 ¹⁹⁵	1.16 h (JunB61a) others (KniJD55, AndeG57)		EC (AndeG57) β [†] (weak) (JunB61a) no α, lim 3 x 10 ⁻⁷ % (KarrM63) -28 (MTW)	В	chem, genet (KniJD55) mass spect, genet energy levels (AndeG57) parent Hg ¹⁹⁵ (KniJD55) not parent Hg ^{195m} (KniJD55)	e_	Hg L X-rays, others 0.022, 0.034 1.8 max daughter radiations from Hg ¹⁹⁵	Hg ¹⁹⁶ (d, 3n) (KniJD55) protons on Hg (JunB61a)
T1 ^{195m}	3.5 s (AndeG57a) 3.6 s (DiaR63a)		IT (AndeG57a) -28 (LHP, MTW)	В	chem (AndeG57a) excit (DiaR63a) daughter Pb ¹⁹⁵ (AndeG57a)		Tl L X-rays, 0.383 (95%) 0.084, 0.096	daughter Pb 195 (AndeG57a) Re 187 (C12, 4n) (DiaR63a)
T1 ¹⁹⁶	1.84 h (JunB60) others (AndeG58, VVijR63)	*	EC (AndeG55) -27.2 (MTW)	А	chem, genet energy levels, mass spect (AndeG58, AndeG55, AndeG57, JunB60) daughter Pb ¹⁹⁶ (AndeG57)		Hg X-rays, 0.426 0.343	daughter Pb 196 (AndeG57, AndeG58, JunB60) protons on Hg (JunB60) Au 197 (a, 5n) (VVijR63)
T1 ^{196m}	1.41 h (JunB60)	- 1	EC 96%, IT 4% (JunB60) -26.8 (LHP, MTW)	A	chem, mass spect, genet energy levels (JunB60) excit (VVijR63) not daughter Pb ¹⁹⁶ (JunB60)		Hg X-rays, 0.426, others 0.071, 0.081, 0.107, others daughter radiations from Tl ¹⁹⁶	protons on Hg (JunB60) Au ¹⁹⁷ (a, 5n) (VVijR63)
T1 ¹⁹⁷	2.84 h (JunB61) others (KniJD55, AndeG57, AndeG55)		EC (AndeG55) -28.5 (MTW, DWitS65)	A	chem, excit, genet (KniJD55) mass spect, genet energy levels (AndeG55) parent Hg ¹⁹⁷ (KniJD55) not parent Hg ^{197m} (KniJD55)		Hg X-rays, 0.152, 0.426 0.067, 0.137 daughter radiations from Hg ¹⁹⁷	Au ¹⁹⁷ (a,4n) (VVijR63, KniJD55) Hg ¹⁹⁸ (d,3n) (KniJD55)
T1 ^{197m}	0.54 s (HenrA53) 0.55 s (SchmW65a) others (DiaR63a, AndeG57a)		IT (AndeG57a) -27.9 (LHP, MTW)	A	excit (HenrA53) chem (AndeG57a) excit, genet energy levels (DiaR63a)		Tl X-rays, 0.222 (40%), 0.385 (90%) 0.136, 0.207, 0.219, 0.300	daughter Pb 197m (AndeG55, AndeG57) Au 197 (a, 4n) (DiaR63a)
T1 ¹⁹⁸	5.3 h (MicM54) others (BergI53)		EC (AndeG55) $\beta^{+} \approx 0.7\%$ (GupR61) no a, lim $3 \times 10^{-7}\%$ (KarrM63) -27.5 (MTW)	A	chem, genet energy levels (Bergi53) excit (VVijR63) mass spect (MicM54) genet (JunB59, GupR61, LindgI58) daughter Pb ¹⁹⁸ (JunB59, GupR61, LindgI58) descendant Po ¹⁹⁸ (BrunC65a)	β+	Hg X-rays, 0.412 (90%), 0.65 (40%, complex), 1.20 (21%), 1.42 (24%), 2.01 (15%), 2.45 (5%), 2.78 (2%) 2.4 max 0.111, 0.201, 0.317, 0.329, others	daughter Pb 198 (JunB59 GupR61, LindgI58) Au 197 (a, 3n) (VVijR63) deuterons on Hg (BergI53)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
81 ^{T1^{198m}}	1.87 h (JunB60) 1.90 h (FiscP56) others (OrtD49, BergI53)	Y IT 55%, EC 45% (JunB60) others (FiscP56, BergI53) Δ -27.0 (LHP, MTW)	A chem, excit (OrtD49, Berg153) mass spect (MicM54, JunB60) genet energy levels (FiscP56) daughter Ph ^{198m} (NeumH50a, KarrD51)	Hg X-rays, Tl X-rays, 0.283 (30%), 0.412 (45%), 0.586 (35%), 0.635 (35%) e ⁻ 0.033, 0.046, 0.175, 0.197, 0.246 daughter radiations from Tl ¹⁹⁸ .	Au ¹⁹⁷ (a,3n) (FiscP56 MicM54, BrinGO57)
T1 ¹⁹⁹	7.4 h (JunB60a, MicM54) others (OrtD49)	 EC (OrtD49) no β[†] (IsrH51) Δ -28.5 (MTW) 	A chem (KriR40b) chem, excit (OrtD49) mass spect (MicM54, JunB60a) daughter Pb ¹⁹⁹ (NeumH50a) not parent Hg ¹⁹⁹ m (BergI53) descendant Po ¹⁹⁹ , Po ¹⁹⁹ m (BrunC65a)	Y Hg X-rays, 0.158 (5%), 0.208 (12%), 0.247 (9%), 0.455 (14%) e ⁻ 0.035, 0.125, 0.161, 0.193	Au ¹⁹⁷ (a, 2n) (VVijR63 Hg ¹⁹⁹ (d, 2n) (KriR40b
T1 ²⁰⁰	26.1 h (JansJ62) others (HerrlC57, OrtD49, MicM54)	EC (OrtD49) β [†] 0.37% (VNooB62, LHP) Δ -27.05 (MTW)	A chem, excit (OrtD49) mass spect (MicM54) daughter Pb ²⁰⁰ (NeumH50a) descendant Po ²⁰⁰ (BrunC65a)	Y Hg X-rays, 0.368 (88%), 0.579 (10%), 0.829 (8%), 1.21 (35%, complex), 1.364 (4%), 1.410 (1.6%), 1.517 (4%), others β ⁺ 1.44 max (0.06%), 1.07 max (0.3%) e ⁻ 0.285, 0.354	deuterons on Hg (KriR40b, VNooB62, GupR60a) Au ¹⁹⁷ (α, n) (OrtD49) T1 ²⁰³ (p, 4n) Pb ²⁰⁰ (β ⁻) (SakM65)
T1 ²⁰¹	74 h (HerrIC60) 72 h (NeumH50a) others (KriR40b)	☆ EC (NeumH50a) △ -27.3 (MTW)	A chem, mass spect, genet (JohaB59, Herr1C60) chem, excit, cross bomb (NeumH50a) daughter Pb ²⁰¹ JohaB59, Herr1C60) descendant Po ²⁰¹ , Po ²⁰¹ m (BrunC65a)	Y Hg X-rays, 0.135 (2%), 0.167 (8%) e- 0.016, 0.052, 0.084	daughter Pb ²⁰ 1 (NeumH50a) deuterons on Hg (KriR40b, LingdI58)
T1 ²⁰²	12.0 d (HameH57) others (MartiHC52, WilkG50b, FajK41a)	EC (KriR40b, MauW42) no β [†] , β (WilkG50b) Δ -26.13 (MTW)	A chem, excit (KriR40b, FajK4la) daughter Pb ²⁰² (HuiJ54)	Hg X-rays, 0.439 (95%), 0.522 (0.1%), 0.961 (0.07%)	Hg ²⁰² (d, 2n) (KriR40t) Hg ²⁰¹ (d, n), Tl ²⁰³ (d, t) (BornP59)
<u>T1²⁰³</u>		% 29.50 (BaiK50) Δ -25.75 (MTW) σ _c 11 (Goldm DT64)			
T1 ²⁰⁴	3.81 y (LeuH62) 3.80 y (HarbG63) 3.78 y (FinR59) 3.91 y (WahA59, NilR62) 3.68 y (FlyK65a) others (EdwJ58, MerW57, TobJ55c, WyaE61, HorrD54) SpenH64)	β 97.9%, EC 2.1% (LeuH62) β 97.5%, EC 2.5% (ChrisP64) others (LidL52, DMatE52) Δ -24.34 (MTW)	A chem, n-capt (FajK40) mass spect (MicM54)	β ⁻ 0.766 max Υ Hg X-rays	Ti ²⁰³ (n, Y) (FajK40, SerL47b)
<u>T1²⁰⁵</u>		% 70.50 (BaiK50) Δ -23.81 (MTW) σ _c 0.11 (GoldmDT64)	I :		
T1 ²⁰⁶	4.19 m (SargB53) 4.23 m (FajK40) others (PouA59, AlbuD51a, PoolM37, HeyF37)	β (FajK40, KriR42) Δ -22.26 (MTW)	A n-capt (PreiP35) chem, genet (BrodE47) excit, sep isotopes (NeumH50) daughter Bi ²¹⁰ (RaE) (BrodE47) daughter Bi ^{210m} (NeumH50, LevyHB54) daughter Hg ²⁰⁶ (NurM61, KauP62, WolfGK64)	β 1.52 max Y no Y	T1 ²⁰⁵ (n, Y) (PreiP35, PoolM37, HeyF37, NeumH50) daughter Bi ^{210m} from Bi ²⁰⁹ (n, Y) (NeumH
T1 ²⁰⁷ (AcC")	4.79 m (SargB53) 4.76 m (CuriM31, SargB39a) others (FajK40, BretE40, BaldG46)	φ β − 21.01 (MTW)	A chem, genet (CuriM31) daughter Bi ²¹¹ (AcC)	β- 1.44 Y 0.897 (0.16%)	descendant Ac ²²⁷ (HydE64)
T1 ^{207m}	1.3 s (EccD65)	☆ IT (EccD65) Δ -19.67 (LHP, MTW)	E excit (EccD65)	Y 0.35, 1.00	Pb ²⁰⁸ (t,a) (EccD65)

Isotope Z A	Half-life	Type of decay (*); % abundance; Mass excess (Δ=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		class; Identification; enetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
81 ^{T1²⁰⁸ (ThC")}	3.10 m (BaulD57) others (GuriM31)	φ β - 16.76 (MTW)		, genet (CuriM31) tter Bi ²¹² (ThC)	e -	1.80 max 0.187, 0.423, 0.495 0.511 (23%), 0.583 (86%), 0.860 (12%), 2.614 (100%)	natural source, descendant Th ²²⁸ (HydE64)
T1 ²⁰⁹	2.2 m (HageF50a)	☆ β (HageF50a) Δ -13.65 (MTW)	daugh Eng parer	n, genet (HageF50a) hter Bi ²¹³ (HageF47, glA47, HageF50a) ht Pb ²⁰⁹ (HageF47, glA47)	e ⁻	1.99 max 0.03, 0.10 Pb X-rays, 0.12 (50%), 0.45 (100%), 1.56 (100%) daughter radiations from Pb ²⁰⁹	descendant U ²³³ , Th ²²⁹ , Ac ²²⁵ (HydE64)
Tl ²¹⁰ (RaC'')	1.32 m (CuriM31) others (BisC50, DevoS37)	# β; n = 0.02% (KogA 56, KogA 57) Δ - 9.23 (MTW)	daugh	n, genet (CuriM31) ater Bi ²¹⁴ (RaC), at Pb ²¹⁰ (RaD)	e ⁻	2.3 max 0.208, 0.28 0.296 (80%), 0.795 (100%), 1.08 (19%, complex), 1.21 (17%), 1.31 (21%), 2.01 (7%), 2.09 (5%), 2.36 (8%), 2.43 (9%)	descendant Ra ²²⁶ (HydE64)
82 ^{Pb¹⁹⁴}	11 m (JunB60)	EC (JunB60)	(Ju	n, mass spect, genet nB60) at Tl ¹⁹⁴ , not parent 94m (JunB60)	٧	0.204 daughter radiations from Tl ¹⁹⁴	protone on Tl (JunB60)
Pb ¹⁹⁵	17 m (AndeG57)	EC (AndeG57)	(Ar	, mass spect ndeG57) nt T1 ^{195m} (AndeG57)	Υ e ⁻	Tl X-rays, 0.39 (doublet) 0.084, 0.096, 0.30 daughter radiations from Tl ¹⁹⁵ daughter radiations from Tl ¹⁹⁵ m included in above listing	T1 ²⁰³ {p, 9n} (AndeG57)
Pb ¹⁹⁶	37 m (AndeG57, SveJ61)	EC (AndeG57) no α, lim 3 x 10 ⁻⁵ % (KarrM63) Δ -24 (MTW)	parer not p	e, genet (AndeG57) c, mass spect (SveJ61) at T1 ¹⁹⁶ (AndeG57) arent T1 ¹⁹⁶ m anB60)		T1 X-rays, 0.192, 0.240, 0.253, 0.367, 0.503, others 0.155, 0.168, others daughter radiations from T1 ¹⁹⁶	Tl ²⁰³ (p, 8n) (AndeG57, SveJ61)
Pb ¹⁹⁷		¥ [EC] △ -24 (MTW)	F [And	eG 57]	Y	Tl X-rays, 0.386 (doublet)	[daughter Pb ^{197m}]
Pb ^{197m}	42 m (AndeG55)	EC 80%, IT 20% (AndeG57) no a, lim 3 x 10 ⁻⁴ % (KarrM63) Δ -24 (LHP, MTW)		, mass spect (AndeG55, B62)		Tl and Pb X-rays, 0.085, 0.222, 0.234, 0.386 (doublet) 0.069, 0.136, 0.146, 0.207, 0.219, 0.300 (doublet) daughter radiations from Pb ¹⁹⁷ , Tl ^{197m} included in above listing	T1 ²⁰³ (p, 7n) (AndeG55, AndeG57)
Pb ¹⁹⁸	2.4 h (JunB59, AndeG57)	± EC (AndeG55) no a, lim 1 x 10 ⁻⁷ % (KarrM63) △ -26 (MTW)	Joh parer	n, mass spect (AndeG55, taB59, JunB59) nt T1 ¹⁹⁸ (JunB59, pR61, LindgI58)	Y e ⁻	T1 X-rays, 0.117 (3%), 0.173 (28%), 0.259 (8%), 0.290 (16%), 0.38 (40%, complex), 0.575 (4%), 0.649 (2%), 0.865 (6%) 0.031, 0.088, 0.159, 0.172, 0.205, 0.270, others daughter radiations from T1 198	Tl ²⁰³ (p, 6n) (AndeG55, JohaB59, JunB59)
Pb ^{198m}	25 m (KarrD51)	EC (KarrD51)	activ	n, genet (KarrD51) ity not observed ndeG57)			protons on Tl (KarrD5l)
Pb ¹⁹⁹	90 m (AndeG55) =80 m (NeumH50a)	# EC (NeumH50a) β (weak) (AndeG57) Δ -25 (MTW)	chem (Au pares	a, genet (NeumH50a) a, mass spect ndeG55) nt T1 ¹⁹⁹ , daughter Bi ¹⁹⁹ eumH50a) endant Bi ¹⁹⁹ (NeumH50a)	e ⁻ β ⁺	T1 X-rays, 0.353 (17%), 0.367 (80%), 0.720 (10%) 0.267 2.8 max (?) daughter radiations from T1 ¹⁹⁹	T1 ²⁰³ (p, 5n) (JohaB59, AndeG55, AndeG57)
Pb ^{199m}	12.2 m (AndeG55) others (StocR56)	Y IT (AndeG55) Δ -25 (LHP, MTW)		n, mass spect (AndeG55) hter Bi ¹⁹⁹ (SiiA64)		Pb X-rays, 0.424 (20%) 0.336, 0.409 daughter radiations from Pb ¹⁹⁹	T1 ²⁰³ (p, 5n) (AndeG55)

Isotope Z A	Half-life		Type of decay (**); % abundance; Mass excess (Δ=M-A), MeV (C"=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
82Pb ²⁰⁰	21.5 h (BergK55) others (JohaB59, GerhT56a, NeumH50a, BelyB61)	ι-	EC (NeumH50a) -26 (MTW)	A	chem, genet (NeumH50a) chem, mass spect (WirB63) parent T1 ²⁰⁰ , daughter Bi ²⁰⁰ (NeumH50a) daughter Po ²⁰⁴ (KarrD51)		T1 X-rays, 0.109, 0.146 (doublet), 0.236, 0.26 (complex), 0.290 (doublet), 0.450, 0.605 0.024, 0.06, 0.133, 0.150, 0.172, 0.183, many others daughter radiations from T1 ²⁰⁰	T1 ²⁰³ (p, 4n) (JohaB59, BashE60, WirB63)
Pb ²⁰¹	9.4 h (BergK55) others (WapA54d, NeumH50a)		EC (NeumH50a) β [†] (weak) (AndeG57, BergK57) -25 (MTW)	A	chem, mass spect (JohaB59) chem, genet (NeumH50a) parent Tl ²⁰¹ , daughter Bi ²⁰¹ , daughter Bi ^{201m} (NeumH50a) parent Tl ²⁰¹ (JohaB59, HerrlC60) daughter Po ²⁰⁵ (KarrD51)	e ⁻	Tl X-rays, 0.330, 0.361, 0.406, 0.585, 0.766, 0.907, 0.946, 1.30, 1.40, others 0.244, 0.275, 0.316 0.55 max daughter radiations from Tl ²⁰¹	T1 ²⁰³ (p, 3n) (JohaB59, LindsJ60) T1 ²⁰³ (d, 4n) (WapA54d)
Pb ^{201m}	61 s (StocR56) others (FiscV55, HopN52)		IT (HopN52) -25 (LHP, MTW)	В	chem, excit (HopN52) chem, genet (StocR56) daughter Bi ²⁰¹ (StocR56)		Pb X-rays, 0.629 (51%) 0.541, 0.614	daughter Bi ²⁰¹ (StocR56) Tl ²⁰³ (p, 3n) (HopN52)
Pb ²⁰²	≈3 x 10 ⁵ y yield (HuiJ54) others (TemD47a, NeumH50a)		EC(L), no EC(K), lim 0.5% (HuiJ54) -26.08 (MTW)	A	chem, genet, mass spect (HuiJ54) parent Tl ²⁰² (HuiJ54)	Y	Tl L X-rays daughter radiations from Tl ²⁰²	T1 ²⁰³ (d, 3n) (HuiJ54)
Pb ^{202m}	3.62 h (AstB57a) others (MaeD54a, MaeD54b)		IT 90%, EC 10% (MDonJ57) -23.91 (LHP, MTW)	A	chem, excit (MaeD54a, MaeD54b) chem, mass spect (MDonJ57)		T1, Pb X-rays, 0.390 (7%), 0.422 (90%), 0.460 (8%), 0.490 (10%), 0.658 (35%), 0.787 (45%), 0.961 (90%) 0.115, 0.126, 0.302, 0.334, 0.699, 0.772 daughter radiations from T1 ²⁰²	MaeD54b)
Pb ²⁰³	52.1 h (BartlA58, Pers L61a) others (FajK40, TemD47a, KriR40b, FajK41a, BaldG46)		EC (MauW42) -24.94 (MTW)	A	chem, excit (MauW42) chem, excit, cross bomb (TemD47a) genet energy levels (WapA54d) mass spect (PersL61a) daughter Bi ²⁰³ (NeumH50a)		T1 X-rays, 0.279 (81%), 0.401 (5%), 0.680 (0.9%) 0.193, 0.264	Tl ²⁰³ (d, 2n) (TemD47a)
Pb ^{203m}	6.1s (AstB57a) others (StocR56, FiscV55, BergI55, FritA58, HopN52)	1 -	IT (HopN52) -24.11 (LHP, MTW)	A	excit (HopN52) chem, genet (StocR56, FritA58) daughter Bi ²⁰³ (StocR56, FritA58)	1	Pb X-rays, 0.825 (70%) 0.737, 0.810	daughter Bi ²⁰³ (StocR56, FritA58)
Pb ²⁰⁴		Δ	1.40 (WhiF56) 1.36 (CollC52) 1.48 (NierA38) -25.11 (MTW) 0.7 (GoldmDT64)					
Pb ²⁰⁴ m	66.9 m (BartlA58) 67.5 m (HerrlC56) others (MauW42, FajK41a, DVriH39, BaldG46)		IT (MauW42) -22.92 (LHP, MTW)	A	chem (FajK4la) chem, excit, genet (TemD47a, KarrD51) mass spect (MaeD54a) daughter Bi ²⁰⁴ (TemD47a, SunA50, KarrD51)	ľ	Pb X-rays, 0.375 (93%), 0.90 (189%, doublet) 0.287, 0.360, 0.824, 0.897	daughter Bi ²⁰⁴ (20%) (StocR58, TemD47a, SunA50, KarrD51) Tl ²⁰³ (d,n) (FajK41a)
Pb ²⁰⁵	3.0 x 10 ⁷ y sp act (WingJ58)		EC(L) (HuiJ56) no EC(K), lim 0.06% (WingJ58) -23.77 (MTW)	A	chem, genet (HuiJ56) chem, mass spect (WingJ58) daughter Bi ²⁰⁵ (HuiJ56)	Y	Tl L X-rays	Pb ²⁰⁴ (n, Y) (WingJ58)
Pb ²⁰⁶		Δ	25.1 (CollC52) 25.2 (WhiF56) 23.6 (NierA38) -23.79 (MTW) 0.03 (GoldmDT64)					
Pb ²⁰⁷		Δ	21.7 (WhiF56) 21.3 (CollC52) 22.6 (NierA38) -22.45 (MTW) 0.72 (GoldmDT64)					

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△*M-A), MeV (C'=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
Pb ²⁰⁷ m	0.80 s (BendW55, HopN52, FariU58) 0.81 s (GlagV61) 0.82 s (LasJ51) others (CamE56, ReidJ54, JamP55, StelP55, VeeN56)	₩ IT (CamE50) Δ -20.81 (LHP, MTW)	A excit, sep isotopes (CamE50) chem, genet (FrieG53) daughter Bi ²⁰⁷ (FrieG53, CamE56, MGowF55, WapA54b) daughter Po ²¹¹ m (JentW54) not daughter Po ²¹¹ , lim 0.005% (FrieG53)	Y 0.570 (98%), 1.064 (83%) e 0.482, 0.975, 1.048	daughter Bi ²⁰⁷ (FrieG53) Pb ²⁰⁷ (n,n ¹), Pb ²⁰⁸ (n, 2n) (GlagV59 Pb ²⁰⁸ (Y, n) (FariU58)
Pb ²⁰⁸		% 52.3 (CollC52, NierA38) 51.7 (WhiF56) Δ -21.75 (MTW) σ _c 0.0005 (GoldmDT64)			
Pb ²⁰⁹	3.30 h (WapA53 others (FajK41a, KriR42, MauW42, KriR40b)	# β (KriR40b, FajK41a) Δ -17.63 (MTW)	A chem (ThorRL37a, KriR40b) chem, sep isotopes (FajK41b) daughter Po 213 (HageF47, HageF50, EnglA47, MeiW49, MeiW51) daughter T1 209 (EnglA47, HageF47)	β ⁻ 0.635 max Υ no Υ	Pb ²⁰⁸ (d,p) (RamlW59) descendant U ²³³ , Th ²²⁹ Ac ²²⁵ (HydE64) Pb ²⁰⁸ (n, Y) (MauW42)
Pb ²¹⁰ (RaD)	20.4 y (HarbG59) 22.0 y (RamtH64) 22.8 y (ImrL63) 21.4 y (EckW60) 19.4 y (TobJ55b) 23.3 y (PatB59) others (CuriM31)	β; a 1.7 x 10 ⁻⁶ % (KauP62) a 2 x 10 ⁻⁶ % (WolfGK64) others (NurM61) Δ -14.73 (MTW)	A chem, genet (CuriM31) daughter Tl ²¹⁰ (RaC") daughter Po ²¹⁴ (RaCl), parent Bi ²¹⁰ (RaE); not parent Bi ^{210m} , lim 10 ⁻⁴ % (LevyHB54) parent Hg ²⁰⁶ (NurM61, KauP62, WolfGK64)	β-0.061 max e-0.030, 0.043 Y Bi L X-rays, 0.047 (4%) a 3.72 daughter radiations from Bi ²¹⁰ , Po ²¹⁰	descendant Ra 226 (HydE64)
Pb ²¹¹ (AcB)	36.1 m (SargB39a, NurM65a) 36.0 m (CuriM31)	φ ρ - 10.46 (MTW)	A chem, genet (CuriM31) daughter Po ²¹⁵ (AcA); parent Bi ²¹¹ (AcC)	β ⁻ 1.36 max Y 0.405 (3.4%), 0.427 (1.8%), 0.702 (0.4%), 0.766 (0.6%), 0.832 (3.4%) daughter radiations from Bi ²¹¹ , T1 ²⁰⁷ , Po ²¹¹	descendant Ac ²²⁷ (HydE64)
Pb ²¹² (ThB)	10.64 h (TobJ55a, MarinP53) others (ButtH52, CuriM31, DzhB55)	Υ β [−] Δ −7.55 (MTW)	A chem, genet (CuriM31) daughter Po ²¹⁶ (ThA), parent Bi ²¹² (ThC)	β 0.58 max e 0.148, 0.222 Y Bi X-rays, 0.239 (47%), 0.300 (3.2%) daughter radiations from Bi ²¹² , Po ²¹² , Ti ²⁰⁸	descendant Th ²²⁸ (HydE64)
Pb ²¹³	.10.2 m (ButeF64a)	φ β (ButeF64a) Δ ~3 (MTW)	B chem, genet (ButeF64a) parent Bi ²¹³ (ButeF64a)	daughter radiations from Bi ²¹³ , Po ²¹³ , Pb ²⁰⁹ , Tl ²⁰⁹	descendant Rn ²²¹ (ButeF64a)
Pb ²¹⁴ (RaB)	26.8 m (CuriM31)	∳ β (SargB33, RasF36) Δ -0.15 (MTW)	A chem, genet (CuriM31) daughter Po ²¹⁸ (RaA), parent Bi ²¹⁴ (RaC)	β- 1.03 max (6%), 0.67 max e- 0.037, 0.049 Y 0.053 (≈1%), 0.242 (4%), 0.295 (19%), 0.352 (36%) daughter radiations from Bi ²¹⁴ , Po ²¹⁴	descendant Ra 226 (HydE 64)
₈₃ Bi ^{≤198}	1.7 m (NeumH50a)	☆ a (TemD48)	E (TemD48) chem (NeumH50a)	a 6.2	deuterons on Pb (TemD48, NeumH50a
Bi ^{197?}	8.0 m (SiiA64) 7 m genet (NeumH50a)	★ EC 99+%, a 0.05% (NeumH50a)	D chem (TemD48, NeumH50a) parent "25 m Pb" (NeumH50a) decay charac (SiiA64) formerly assigned to Bi 198 (NeumH50a)	a 5.81	protons on Pb (TemD4: NeumH50a)
Bi ¹⁹⁹	24.4 m (SiiA64) others (NeumH50a)	Y EC 99+%, a ≈0.01% (NeumH50a, SiiA64) Δ -20 (MTW)	A chem (TemD48) chem, genet (NeumH50a, SiiA64) mass spect (SiiA64) ancestor Pb 199 (NeumH50a) parent Pb 199m (SiiA64) possible existence of 2 isomers noted by SiiA64	Y Pb X-rays 5.53 daughter radiations from Pb 199 pb 199m	protons on Pb (NeumH50a, TemD48 SiiA64)

	otope A	Half-life		Type of decay (↑; % abundance; Mass excess (△*M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
83	Bi ²⁰⁰	35 m genet (NeumH50a) others (VinA55)		EC (NeumH50a) -20 (MTW)	В	chem, genet (NeumH50a) parent Pb ²⁰⁰ (NeumH50a) daughter Po ²⁰⁰ (KarrD51a)			protons on Pb (NeumH50a)
	Bi ²⁰¹	1.85 h (StocR56) others (NeumH50a, VinA55)		EC (NeumH50) -21 (MTW)	A	chem, genet (NeumH50a) chem, mass spect (SiiA64) parent Pb ²⁰¹ (NeumH50a) parent Pb ^{201m} (StocR56) daughter Po ²⁰¹ (?)	Υ	Pb X-rays daughter radiations from $Pb^{201}m$, Pb^{201} , $T1^{201}$	protons on Pb (NeumH50a)
В	i ^{201m}	52 m (SiiA64) others (NeumH50a, VinA55)	*	a/KX-rays 0.02% (SiiA64) EC 99+%, a 0.003% (NeumH50a)	A	chem, mass spect (SiiA64) chem, genet (NeumH50a), parent Pb ²⁰¹ (NeumH50a) daughter Po ²⁰¹ (SiiA64, KarrD51a)		Pb X-rays 5.28 daughter radiations from Pb ²⁰¹ , Tl ²⁰¹	protons on Pb, Bi (SiiA64, NeumH50a)
	ві ²⁰²	95 m (KarrD51) others (VinA55)	-	EC (KarrD51) -21 (MTW)	A	chem, genet (KarrD51) daughter Po ²⁰² (KarrD51)	γ	Pb X-rays, 0.422, 0.961	daughter Po ²⁰² (KarrD51)
	Bi ²⁰³	11.8 h (StocR60a) others (StocR56, FritA58, NeumH50a)		EC (NeumH50a) β^{+} weak (NovaT58) no a, lim 6 x 10^{-7} % (NDS) a $\approx 10^{-5}$ % (DunlD52a) -21.8 (MTW)	A	chem, genet (NeumH50) parent Pb ²⁰³ (NeumH50) parent Pb ^{203m} (StocR56, FritA58) daughter Po ²⁰³ (KarrD51) daughter At ²⁰⁷ (BartoG51)	e -	1.35 max 0.045, 0.098, 0.112, 0.176, 0.737 Pb X-rays, 0.186 (6%), 0.264 (6%), 0.381 (9%), 0.82 (78%, complex), 1.034 (16%), 1.52 (31%, complex), 1.87 (35%, doublet) daughter radiations from Pb ²⁰³ daughter radiations from Pb ²⁰³ included in above listing	Pb ²⁰⁶ (p,4n) (NovaT58a, StocR60a)
	Bi ²⁰⁴	11.2 h (StocR60a) 11.6 h (WerG56) 11.0 h (FritA58) others (StocR56, TemD47a)		EC, no β [†] (TemD47a) no β [†] , lim 0.07% (StocR58) -21 (MTW)	A	chem, sep isotopes, cross bomb, genet (TemD47a) parent Pb ^{204m} (21%) (TemD47a, SunA50, KarrD51, StocR58) daughter Po ²⁰⁴ (KarrD51)		Pb X-rays, 0.21 (complex), 0.375, 0.671, 0.91 (complex), 0.98, 1.21 (complex), many others 0.063, 0.075, 0.087, 0.128, 0.133, 0.161, 0.201, 0.287, 0.360, 0.583, 0.811, 0.824, 0.897, many others daughter radiations from Pb 204m included in above listing	Pb ²⁰⁶ (p, 3n) (StocR60a) T1 ²⁰³ (a, 3n) (StocR58) Pb ²⁰⁴ (d, 2n) (TemD47a, SunA50)
	Bi ²⁰⁵	15.31 d (BrunnJ61) others (FritA58, KarrD51, VinA55)		EC (KarrD51) β [†] 0.06% (PerdC62) -21.07 (MTW)	A	chem, genet, sep isotopes (KarrD51) daughter Po ²⁰⁵ (KarrD51) daughter At ²⁰⁹ (BartoG51) parent Pb ²⁰⁵ (HuiJ56)	e-	0.98 max 0.011, 0.023, others Pb X-rays, 0.26 (3%, complex), 0.51 (4%, complex), 0.57 (14%, complex), 0.703 (28%), 0.911 (4%), 0.988 (17%), 1.044 (8%), 1.615 (4%), 1.766 (27%), 1.864 (6%), 1.906 (2%)	Pb ²⁰⁶ (d, 3n) (HerrlC61, StocR60, Bergf62, BonaE62) Bi ²⁰⁹ (p, 5n) Po ²⁰⁵ (EC) (BonaE62)
	Bi ²⁰⁶	6.243 d (BrunnJ61) others (ArbE57, AlbuD51, KriR40b)		EC (LutA44, AlbuD51) β ⁺ 8 x 10 ⁻⁴ % (PerdC62) -20.18 (MTW)	A	chem, sep isotopes (FajK4lb, TemD47a) genet energy levels (AlbuD54a, StelP55b) daughter Po ²⁰⁶ (TemD47) daughter At ²¹⁰ (NeumH50b)		Pb X-rays, 0.184 (21%), 0.343 (26%), 0.398 (10%), 0.497 (18%), 0.516 (46%), 0.558 (34%), 0.803 (99%), 0.880 (72%), 0.895 (19%), 1.019 (8%), 1.099 (13%), 1.596 (8%), 1.720 (36%)	Pb ²⁰⁶ (d, 2n) (FajK4lb, WieR63)
	Bi ²⁰⁷	30.2 y (HarbG59) 28 y (SosJ59) 38 y (AppE61) others (AlbuD55, NeumH51)		EC (GermL50, NeumH51) -20.04 (MTW)	A	chem, genet (MGowF53a) daughter At ²¹¹ (NeumH51) parent Pb ^{207m} (MGowF53, FrieG53, WapA54b, CamE56)		Pb X-rays, 0.570 (98%), 1.063 (77%), 1.771 (9%) 0.482, 0.975, 1.048 daughter radiations from Pb ²⁰⁷ m included in above listing	Pb(d, xn), daughter At ²¹¹ (HydE64)
	Bi ²⁰⁸	3.68 x 10 ⁵ y sp act, mass spect (HalpJ64) others (RoyJ58, MillC59)		EC, no β [†] lim 0.3% (MillC59) -18.88 (MTW)	В	chem (NeumH51) excit, genet energy levels (RoyJ58, MillC59)	Υ	Pb X-rays, 2.614 (100%)	Bi ²⁰⁹ (n, 2n) (RoyJ58, HalpJ64)
	Bi ²⁰⁹	>2 x 10 ¹⁸ y sp act (HinE58) 2 x 10 ¹⁷ y sp act (RieW52, PorsW56) others (FaraH51a)	% 	no a (HinE58) a (FaraH51, PorsW56) 100 (NierA38) -18.26 (MTW) 0.015 (to Bi ²¹⁰) 0.019 (to Bi ²¹⁰ m) (GoldmDT64)			a	7 3.0	

Isotope Z A	Half-life		Type of decay (); % abundance; Mass excess (△■M-A), MeV (C²=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
83 ^{Bi²¹⁰ (RaE)}	5.013 d (RobeJ56) others (LocE53, BegF52, SiegK47, CuriM31, HoleN45, TemD47a, SerL47b, LivJ36, CorkJ40, HurD40)		β ⁻ 994%, α 1.3 x·10 ⁻⁴ % (Kau P 62) others (Nur M 61, Brod E 47) -14.79 (MTW)	A	chem, genet (CuriM31) daughter Pb ²¹⁰ (RaD), parent Po ²¹⁰ (RaF); parent Ti ²⁰⁶ (BrodE47)	a	1.160 max 4.69 (5 x 10 ⁻⁵ %), 4.65 (7 x 10 ⁻⁵ %) Po X-rays (weak)	Bi ²⁰⁹ (n, Y) (SiegK47b) descendant Ra ²²⁶ (HydE64)
Bi ²¹⁰ m	≈2.6 x 10 ⁶ y yield (HugD53)		α 99.6%, β ⁻ 0.4% (LevyHB54) -14.52 (LHP, MTW)	A	chem, genet (NeumH50) chem, mass spect (LevyHB54) parent Po 210 (RaF) (0.4%), parent Tl ²⁰⁶ (99.6%) (LevyHB54) not daughter Pb 210, lim 10 ⁻⁴ % (LevyHB54) others (NeumH50)		4.96 (58%), 4.92 (36%), 4.57 (6%) 0.262 (45%), 0.30 (23%), 0.34, 0.61 daughter radiations from T1 ²⁰⁶	Bi ²⁰⁹ (n, Y) (NeumH50
Bi ²¹¹ (AcC)	2.16 m (CuriM31) 2.15 m (SpiesF54) 2.13 m (NurM65a)		a 99+%, β ⁻ 0.27% (NurM65a) a 99+%, β ⁻ 0.29% (GiaM62a) -11.84 (MTW)	A	chem, genet (CuriM31) daughter Pb ²¹¹ (AcB), parent Po ²¹¹ (AcC'), parent Tl ²⁰⁷ (AcC''); daughter At ²¹⁵ (KarlB44)	Y	6.62 (84%), 6.28 (16%) 0.351 (14%) 0.265 daughter radiations from Tl ²⁰⁷ , Po ²¹¹	descendant Ac ²²⁷ (HydE64)
Bi ²¹² (ThC)	60.60 m (AppK61) 60.5 m (CuriM31)		β 64.0%, a 36.0% (WalkJ65) β 64.2%, a 35.8% (BertG62, BertG60) others (SchupG60, BarkS61, RiceP58a, SenF56, MarinP53, FlaF62, ProsD58, FerrJ61, KovAF38) -8.13 (MTW)	A	chem, genet (CuriM31) daughter Pb ²¹² (ThB), parent Po ²¹² (ThC') and Tl ²⁰⁸ (ThC''); daughter At ²¹⁶ (KarlB43a, GhiA48, MeiW51)	e a	2.25 max 0.025, 0.036 6.09 (10%), 6.05 (25%) Tl X-rays, 0.040 (2%), 0.288 (0.5%), 0.46 (0.8%, complex), 0.727 (7%), 0.785 (1.1%), 1.620 (1.8%) daughter radiations from Tl ²⁰⁸ , Po ²¹²	descendant Th ²²⁸ (HydE64)
Bi ²¹³	47 m (HageF47) 46 m (EnglA47)		β ⁻ 97.8%, α 2.2% (GraeG64, ValliK64) -5.24 (MTW)	A	chem, genet (EnglA47, HageF47) daughter At ²¹⁷ , parent Po ²¹³ (HageF47, EnglA47, HageF50) parent Ti ²⁰⁹ (HageF50a, HageF47, EnglA47) daughter Pb ²¹³ (ButeF64a)	Y	1.39 max 0.437 5.87 daughter radiations from Po ²¹³ , Pb ²⁰⁹ , T1 ²⁰⁹	descendant U ²³³ , Th ² Ac ²²⁵ (HydE64)
Bi ²¹⁴ (RaC)	19.7 m (CuriM31) 19.9 m (DaniH56)		β ⁻ 99+% (CuriM31) a 0.021% (WaleR60) -1.19 (MTW)	A	chem, genet (CuriM31) daughter Pb ²¹⁴ (RaB), daughter At ²¹⁸ , parent Po ²¹⁴ (RaC'), parent Tl ²¹⁰ (RaC''); descendant Fr ²²² (HydE50a, HydE51a)	Y	3.26 max 0.609 (47%), 0.769 (5%), 0.935 (3%), 1.120 (17%), 1.238 (6%), 1.378 (5%), 1.40 (4%, complex), 1.509 (2%), 1.728 (3%), 1.764 (17%), 1.848 (2%), 2.117 (1%), 2.204 (5%), 2.445 (2%) 5.51 (0.008%), 5.45 (0.012%) daughter radiations from Po ²¹⁴	descendant Ra 226 (HydE64)
Bi ²¹⁵	7 m (NurM65a) 8 m (HydE53)	1	β ⁻ (HydE53) 1.7 (MTW)	A	chem, genet (HydE53) daughter At ²¹⁹ , parent Po ²¹⁵ (AcA) (HydE53)		daughter radiations from Po ²¹⁵ , Po ²¹¹	descendant Ac ²²⁷ , natural source (HydE53, HydE64)
84 ^{Po 193}	short (SiiA65b)	*	a (SiiA65b)	E	excit, decay charac (SiiA65b)	а	7.0	F ¹⁹ on Re (SiiA65b)
Po ¹⁹⁴	0.5 s (SiiA65b) others (TovP58)	*	a (SiiA65b)	В	excit, decay charac (SiiA65b)	a	6.85	F ¹⁹ on Re (SiiA65b)
Po ¹⁹⁵	3 s (SiiA65b) others (TovP58)	*	a (SiiA65b)	В	excit, decay charac (SiiA65b)	a	6. 63	F ¹⁹ on Re (SiiA65b)
Po ^{195m}	1.4 s (SiiA65b)	*	a (SiiA65b)	в	excit, decay charac (SiiA65b)	a	6.72	F ¹⁹ on Re (SiiA65b)
Po ¹⁹⁶	6 s (SiiA65b) 4 s (TovP58)	*	a (SiiA65b, TovP58)	в	excit, decay charac (TovP58, SiiA65b) formerly assigned to Po ¹⁹³ (TovP58)	a	6.53	Bi ²⁰⁹ (p, 14n) (TovP58 F ¹⁹ on Re (SiiA65b)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
84 ^{Po¹⁹⁷}	54 s (SiiA65b) 58 s (BrunC65a)	*	a (SiiA65b, BrunC65a)	В	excit (SiiA65b) chem (BrunC65a)	a	6.30	F ¹⁹ on Re (SiiA65b) Bi ²⁰⁹ (p, 13n) (BrunC65a)
Po ^{197m}	25 s (SiiA65b) 29 s (BrunC65a) others (TovP58, AttH59a)	*	a (SiiA65b, BrunC65a)	В	decay charac (TovP58) chem (AttH59a, BrunC65a) excit (SiiA65b)	a	6.39	Bi ²⁰⁹ (p, 13n) (BrunC65a, TovP58) F ¹⁹ on Re (SiiA65b) Ne ^{20, 22} on W (AttH59a)
Po ¹⁹⁸	1.7 m (SiiA65b, BrunC65a, BrunC64) 1.8 m (AttH59a, AttH59) others (AttH56)	*	a >34% (BrunC65a)	В	chem (AttH56, AttH59a) excit (SiiA65b) chem, genet (BrunC65a) ancestor Tl ¹⁹⁸ (BrunC65a) formerly assigned to Po ¹⁹⁶ (AttH56, AttH59a, AttH59, BrunC64)	a	6.16	Bi ²⁰⁹ (p, 12n) (BrunC65a) C ¹² on Pt (AttH59) F ¹⁹ on Re (SiiA65b) Ne ^{20, 22} on W (AttH59a)
Po ¹⁹⁹	5.0 m (TieE65) 5.2 m (BrunC65a) others (RosS54b, AttH59, BrunC64)	*	EC 97.3%, a 2.7% (BrunC65a)	A	chem (RosS54b) chem, mass spect (TieE65) chem, genet (BrunC65a) ancestor Tl ¹⁹⁹ (BrunC65a) formerly assigned to Po ¹⁹⁸ (RosS54b, AttH59, BrunC64)	a	5. 94	Bi ²⁰⁹ (p, lln) (BrunC65a, TieE65)
Po ¹⁹⁹ m	4.2 m (SiiA65b) 4.1 m (TieE65, BrunC65a) others (RosS54b, AttH59, AttH59a, BrunC64)	*	EC 74%, a 26% (BrunC65a)	A	chem (RosS54b) excit (SiiA65b) chem, mass spect (TieE65) chem, genet (BrunC65a) ancestor Tl ¹⁹⁹ (BrunC65a) formerly assigned to Po (RosS54, AttH59, AttH59a, BrunC64)	a	6.05	Bi ²⁰⁹ (p, lln) (TieE65, BrunC65a) F ¹⁹ on Re (SiiA65b)
Po ²⁰⁰	10.5 m (HoffR63) 11.4 m (StiA65b, TieE65, BrunC65, BrunC65a) others (KarrD51a, AttH59, ForW61a, RosS54b, BrunC64)		EC 88%, a 12% (BrunC65a) -16 (MTW)	A	chem (KarrD5la) chem, mass spect (ForW6la, TieE65) parent Bi ²⁰⁰ (KarrD5la) daughter At ²⁰⁰ (HoffR63) ancestor Tl ²⁰⁰ (BrunC65a) formerly assigned to Po ¹⁹⁹ (RosS54b, AttH59, ForW6la, BelyB61, BelyB62, BrunC64)	a	5.86	C ¹² on Pt (ForW6la, AttH59, BrunC65) Au ¹⁹⁷ (C ¹² , 9n) At ²⁰⁰ (EC) (HoffR63) Bi ²⁰⁹ (p, 10n) (BrunC64, BrunC65, TieE65)
Po ²⁰¹	15.1 m (TieE65) 15 m (HoffR63) others (ForW61a, BelyB61, AttH59, BrunC65a, BrunC65, KarrD51a, BrunC64)		EC 98.9%, a 1.1% (BrunC65a) EC 99.2%, a 0.8% (BelyB61, BelyB62) -16 (MTW)	A	chem, genet (KarrD5la, SiiA64) chem, mass spect (ForW6la, TieE65) parent Bi ^{201m} (SiiA64, KarrD5la) parent Bi ²⁰¹ (?) (KarrD5la) daughter At ²⁰¹ (HoffR63) ancestor T1 ²⁰¹ (BrunC65a)	a	5.68 daughter radiations from Bi ²⁰¹ m	Bi ²⁰⁹ (p, 9n) (BrunC64, BrunC65a, TieE65) C ¹² on Pt (AttH59, ForW61a) daughter At ²⁰¹ (HoffR63)
Po ^{201m}	8.9 m (TieE65) 9 m (HoffR63, BrunC65a, BrunC65) others (BrunC65, RosS54b)	*	a 3%, EC 97% (BrunC65a) a (RosS54b, HoffR63)	A .	chem (RosS54b) excit, decay charac (HoffR63) chem, mass spect (TieE65) ancestor Tl ²⁰¹ (BrunC65a) formerly assigned to Po ²⁰⁰ (RosS54b, AttH59, ForW61a, BelyB61, BrunC64)	a	5.78	B ²⁰⁹ (p, 9n) (TieE65, BrunC65a) C ¹² on Pt (BrunC65)
Po ²⁰²	45 m (BelyB61, HoffR63, TieE65) others (StonA57, RosS54b, BurcW54, AttH59, ForW61a, BrunC64, BrunC65, BrunC65a)		EC 98%, a 2% (StonA57) -18 (MTW)	A	chem, genet, excit (KarrD51) chem, genet, mass spect (Forw61a, Forw61) parent Bi ²⁰² (KarrD51) daughter At ²⁰² (Forw61, HoffR63) daughter Rn ²⁰⁶ (StonA57, MomF55a)	a	5.58 daughter radiations from Bi ²⁰² , _{Pb} 198	Bi ²⁰⁹ (p, 8n) (BrunC64, BrunC65a) C ¹² on Pt (ForW61a, BrunC65) Au ¹⁹⁷ (C ¹² , 7n) At ²⁰² (EC) (ForW61, HoffR63)
Po ²⁰³	42 m (BellRE56) 47 m (KarrD51)		EC 99+%, a 0.02% (BelyB62, BelyB61) -17 (MTW)	A	chem, genet (ForW61, KarrD51) parent Bi ²⁰³ (KarrD51) daughter At ²⁰³ (ForW61)	a	5.49 daughter radiations from Bi ²⁰³	Bi ²⁰⁹ (p, 7n) (BellRE56, KarrD51) Au ¹⁹⁷ (C ¹² , 6n) At ²⁰³ (EC) (ForW61)

Isotope Z. A	Half-life	Type of decay (**); % abundance; Mass excess (Δ=M-A), MeV (C"=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
84 ^{Po²⁰⁴}	3.6 h (ForW6la) others (BelyB6l, KarrD5l, RosS54b, BurcW56)	★ EC 99+%, a 0.6% (BelyB63) △ -18 (MTW)	A chem, genet (KarrD51) daughter Rn ²⁰⁸ (MomF55a) parent Bi ²⁰⁴ , parent Pb ²⁰⁰ (KarrD51) daughter At ²⁰⁴ (ThorP64)	a 5.38 daughter radiations from Bi ²⁰⁴	Bi ²⁰⁹ (p, 6n) (AxeS61) Au ¹⁹⁷ (C ¹² , 5n) At ²⁰⁴ (EC) (HoffR63, ForW61, LatR61, ThorP64) Pt ¹⁹⁶ (C ¹² , 4n) (AttH59, ForW61a) alphas on Pb (KarrD51)
Po ²⁰⁵	1.8 h (BellRE56) others (KarrD51)	☆ EC 99+%, a 0.07% (HallK51) Δ -18 (MTW)	A chem, genet, sep isotopes, excit (KarrD51) chem, mass spect (ForW61a) parent Bi ²⁰⁵ , parent Pb ²⁰¹ (KarrD51) daughter At ²⁰⁵ (BartoG51)	a 5.25	Bi ²⁰⁹ (p, 5n) (BellRE56, AxeS61) Pb ²⁰⁴ (a, 3n) (KarrD51)
Po ²⁰⁶	8.8 d (ArbE57, JohnW56) others (TemD47, BarabS57, BurcW54)	C 95%, a 5% (MomF55a) no β [†] , lim 0.1% (ArbE57) others (TemD47) Δ -18.33 (MTW)	(TemD47) chem, mass spect (ForW61a) parent Bi ²⁰⁶ (TemD47) daughter Rn ²¹⁰ (MomF55a,	Bi X-rays, 0.286 († 35), 0.338 († 40), 0.51 († 100, complex), 0.807 († 60), 1.02 († 85, complex) 0.045, 0.196, 0.248 5.22 (5%) daughter radiations from Bi ²⁰⁶	Bi ²⁰⁹ (p, 4n) (AxeS61) Pb ²⁰⁴ (a, 2n) (TemD47) Pb ²⁰⁶ (a, 4n) (JohnW56)
Po ²⁰⁷	5.7 h (BellRE56, TemD47) 6.2 h (John W56)	* EC 99+%, α ≈0.01% (TemD47) β [†] 0.5% (ArbE58a) Δ -17.14 (MTW)	(TemD47) chem, genet (StonA56) daughter Rn ²¹¹ (StonA56) daughter At ²⁰⁷ (BartoG51) e	Y Pb X-rays, 0.25 († 5), 0.35 († 4), 0.41 († 13), 0.74 († 36), 0.95 († 84), 1.15 († 6), 1.37 († 4), 2.06 († 1.6), others, all Y rays complex 0.159, 0.255, 0.315, 0.652, 0.902, many others 1.14 max 5.11	Bi ²⁰⁹ (p, 3n) (BellRE56) Pb ²⁰⁶ (a, 3n) (JohnW56)
Po ²⁰⁷ m	2.8 s (HargC62)	₩ IT (HargC62) Δ -15.75 (LHP, MTW)	B excit, critical abs (HargC62)	Po X-rays, 0.26 (42%), 0.31 (40%), 0.82 (100%)	Bi ²⁰⁹ (p, 3n) (HargC62)
Po ²⁰⁸	2.93 y (TemD50)	a (TemD47) EC ≈0.006% (AsaF57a) Δ -17.47 (MTW)	(Te-D47)	α 5.11 Y Bi X-rays, 0.285 (0.003%), 0.60 (0.006%, complex)	Bi ²⁰⁹ (d, 3n) (RamlW59) Bi ²⁰⁹ (p, 2n) (AndrC56)
Po ²⁰⁹	103 y sp act (AndrC56)	4 a 99+%, EC ≈0.5% (PerlmI50, AsaF57a)	daughter At ²⁰⁹ (BartoG51)	4.88 (99%) Y Bix-rays, 0.261 (0.4%, complex), 0.91 (0.5%) 0.173	Bi ²⁰⁹ (d, 2n) (RamlW59) Bi ²⁰⁹ (p, n) (AndrC56)
Po ²¹⁰ (RaF)	138.40 d (EicJ54) others (CurtM53, GinD53, BeamW49, TemD47, HurD40, CorkJ40, CuriM31)	φ; β stable (cons energy) (ForB58) Δ -15.95 (MTW) σ _c <0.03 (to Po ²¹¹) <0.0005 (to Po ^{211m}) (GoldmDT64)	210	G. 5.305 (100%) Y D.803 (0.0011%)	daughter Bi ²¹⁰ from natural source or Bi ²⁰⁹ (n, γ)Bi ²¹⁰ (β ⁻) (HydE64)
Po ²¹¹ (AcC')	0.52 s (SpiesF54, LeiR51) others (TovP58, WinnM54a)	a; β stable (cons energy) (ForB58) Δ -12.43 (MTW)	211	G. 7.45 (99%) Y 0.570 (0.5%), 0.90 (0.5%)	descendant Ac ²²⁷ (HydE64)
Po ^{211m}	25 s (JentW54, SpiesF54, KarnV62) others (WinnM54a)	☆ a (SpiesF54) Δ -11.00 (LHP, MTW)	genet energy levels (JentW54)	a 8.88 (7%), 7.28 (91%) Y 0.570 (92%), 1.063 (77%) [0.482, 0.975, 1.048]	Pb ²⁰⁸ (a,n) (SpiesF54) Bi ²⁰⁹ (a,pn) (PerlmI62)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△■M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (Me' and intensities	V) Principal means of production
84 ^{Po²¹² (ThC¹)}	3.04 x 10 ⁻⁷ s delay coinc (BunyD49) others (FlaF62, HillJ48, JelJ48, VNamF49, DunwJ39, BradH43, HayaT53)	φ; β stable (cons energy) (ForB58) Δ -10.37 (MTW)	genet (CuriM31) daughter Bi ²¹² (ThC); daughter Rn ²¹⁶ (MeiW49, MeiW51)	
Po ^{212m}	45 s (PerlmI62) others (KarnV62)	↑ a, no IT, lim 1.5% (PerlmI62) △ -7.44 (LHP, MTW)	chem, cross bomb, genet energy levels (PerlmI62) γ 0.57 (2%), 2.61 (2.6%)	Bi ²⁰⁹ (a,p), Pb ²⁰⁸ (B ¹¹ , Li ⁷) (PerlmI62)
Po ²¹³	4.2×10^{-6} s delay coinc (JelJ48)	¥ a (HageF47, EnglA47) △ -6.66 (MTW)	genet (HageF47, EnglA47) daughter Bi ²¹³ , parent Pb ²⁰⁹ (HageF47, EnglA47, HageF50) daughter Rn ²¹⁷ , parent Pb ²⁰⁹ (MeiW49, MeiW51)	daughter Bi ²¹³ (HydE64
Po ²¹⁴ (RaC [†])	1.64 x 10 ⁻⁴ s delay coinc (DobT61, DarG50) others (OgiK60, BallR53, DunwJ39, RotJ41a, WardAG42, JacoJ43, LunA47, BunyD48, RowS47)	β; β stable (cons energy) (For B 58) Δ -4.47 (MTW)	genet (CuriM31) daughter Bi ²¹⁴ (RaC), parent Pb ²¹⁰ (RaD) daughter Rn ²¹⁸ (StuM48) q 7.69 (100%); also long ran principally 9.06 (0.0022% following decay of Bi ²¹⁴ 9 0.799 (0.014%)	
Po ²¹⁵ (AcA)	1.778 x 10 ⁻³ s delay coinc (VolY61) others (WardAG42)	4 α 99+%, β 0.00023% (AviP50) α 99+%, β 0.0005% (KarlB44) Δ -0.52 (MTW)	genet (CuriM31) daughter Rn ²¹⁹ (An), parent Pb ²¹¹ (AcB); parent At ²¹⁵ (KarlB44) daughter Bi ²¹⁵ (HydE53)	descendant Ac ²²⁷ , from Ra ²²⁶ (n, Y) Ra ²²⁷ , β ⁻), or natural source (HydE64)
Po ²¹⁶ (ThA)	0.145 s (DiaH63) others (WardAG42)	φ; β stable (cons energy) (ForB58) others (KarlB43a) Δ 1.78 (MTW)	genet (CuriM31) daughter Rn ²²⁰ (Tn), parent Pb ²¹² (ThB) daughter radiations from P etc.	descendant Th ²²⁸ (HydE64)
Po ²¹⁷	<10 s (MomF56)	* α (MomF56) no β ⁻ , lim 0.1% (ValliK64) Δ 6 (MTW)	genet (MomF56) daughter Rn ²²¹ (MomF56, MomF52)	daughter Rn ²²¹ (MomF52)
Po ²¹⁸ (RaA)	3.05 m (CuriM31)	Ψ α 99+%, β 0.0185% (WaleR59a) others (HieF52) Δ 8.38 (MTW)	chem, genet (CuriM31) daughter Rn ²²² (Rn), parent Pb ²¹⁴ (RaB); parent At ²¹⁸ (KarlB43)	descendant Ra ²²⁶ , from natural source (HydE64)
85 ^{At²⁰⁰}	0.9 m (HoffR63) others (BartoG51)	a (HoffR63) a, EC (BartoG51)	chem, excit (BartoG51) chem, excit, genet (HoffR63) parent Po ²⁰⁰ (HoffR63)	Au ¹⁹⁷ (C ¹² , 9n) (HoffR63)
At 201	1.5 m (HoffR63) others (BartoG51)	¥ a, EC (HoffR63)	chem, excit, genet (HoffR63) a 6.35 parent Po ²⁰¹ (HoffR63) daughter Fr ²⁰⁵ (GrifR64) Po ²⁰¹	Au ¹⁹⁷ (C ¹² , 8n) (ThomT62)
At ²⁰²	3.0 m (LatR61, HoffR63) others (ForW61)	Y EC 88%, a 12% (LatR61) Δ −10 (MTW)	chem, mass spect (ForW61) chem, excit, genet (HoffR63) daughter radiations from [ForW61] daughter radiations from [ForW63]	Au ¹⁹⁷ (C ¹² , 7n) (Thom T62)
At ²⁰³	7.4 m (LatR61, HoffR63) othera (ForW61, BartoG51, BurcW56)	± EC 86%, α 14% (LatR61) Δ −11 (MTW)	chem, excit (BartoG51, dillJF50) chem, mass spect (ForW61) parent Po ²⁰³ (ForW61) daughter radiations from P Bi 199, etc.	o ²⁰³ , Au ¹⁹⁷ (C ¹² , 6n) (ThomT62)
At ²⁰⁴	9.3 m (LatR61, HoffR63) 8.9 m genet (ThorP64) others (ForW61)	Υ EC 95.5%, α 4.52% (Latr61) Δ -11 (MTW)	chem, mass spect (ForW61) a 5.95 chem, genet (ThorP64) chem, excit (HofR63) parent Po ²⁰⁴ (ThorP64) Bi ²⁰⁰]	Au ¹⁹⁷ (C ¹² , 5n) (HoffR63, ForW61, LatR61) Bi ²⁰⁹ (a, 9n) (ThorP64)

Isotope Z A	Half-life	Type of decay (**); % abundance; Mass excess (Δ=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
85 ^{At 204}	≈25 m genet (BartoG51)	♀ EC (BartoG51)	G chem, excit, genet (BartoG51) activity not observed (ThorP64, LatR61)		alphas on Bi ²⁰⁹ (BartoG51)
At ²⁰⁵	26.2 m (HoffR63, LatR61) others (BartoG51, BurcW54, ForW61, BurcW56)	★ EC 82%, α 18% (LatR61) Δ -13 (MTW)	A chem, mass spect (ForW61) chem, excit, genet (BartoG51, MillJF50) parent Po ²⁰⁵ (BartoG51) daughter Fr ²⁰⁹ (GrifR64)	daughter radiations from Po ²⁰⁵ , Bi ²⁰¹ , Pb ²⁰¹ , Pb ²⁰¹ m, Ti ²⁰¹	Au ¹⁹⁷ (C ¹² , 4m) (ThomT62) Bi ²⁰⁹ (a, 8m) (BartoG51) Au ¹⁹⁷ (N ¹⁴ , 6m)[Rn ²⁰⁵] (EC) (HoffR63, ForW61)
At ²⁰⁶	32.8 m (ThorP64) 29.5 m (LatR61) 31 m (HoffR63)	★ a ≈88%, EC ≈12% (LatR61) Δ -12 (MTW)	chem, genet (ThorP64) parent Po ²⁰⁶ (ThorP64)	a 5.70 (88%) Y BhX-rays, Po X-rays, 0.068 (10%) e 0.052, 0.064 daughter radiations from Bi ²⁰² , Po ²⁰⁶	Au ¹⁹⁷ (C ¹² , 3n) (ForW61, LatR 61, HoffR 63) Au ¹⁹⁷ (N ¹⁴ , 5n) Rn ²⁰⁶ (EC) (HoffR 63) Bi ²⁰⁹ (a, 7n) (ThorP64)
At ²⁰⁶	2.9 h (StonA56) 2.6 h (BartoG51)	★ EC (BartoG51)	G chem, excit, genet (BartoG51) activity not observed (ThorP64)		alphas on Bi (BartoG51)
At ²⁰⁷	1.8 h (BurcW54, StonA57, ForW61) 2.0 h (BartoG51)	Υ EC ≈90%, α≈10% (BartoG51, TemD48a) Δ -13.41 (LHP, MTW)	A chem, excit, genet (TemD48a, BartoG51) parent Po 207, parent Bi 203 (BartoG51) daughter Rn 207 (BurcW54, StonA57) daughter Fr 211 (GrifR64)	a 5.76 daughter radiations from Po ²⁰⁷ , Bi ²⁰³ , Pb ²⁰³	B; ²⁰⁹ (a, 6n) (TemD48a, BartoG51) Au ¹⁹⁷ (N ¹⁴ , 4n) Rn ²⁰⁷ (EC) (HoffR63)
At ²⁰⁸	1.6 h (StonA56, ForW61) 1.7 h (BartoG51)	Φ EC 99+%, α 0.5% (HydE50) Δ -12 (MTW)	ThorP64)	Po X-rays, 0.18 (25%), 0.25, 0.66 (100%) 5.65 daughter radiations from Bi ²⁰⁴	Bi ²⁰⁹ (a, 5n) (ThorP64)
At ²⁰⁸	6.3 h genet (BartoG51)	★ EC (BartoG51)	G chem, excit, genet (BartoG51) activity not observed (ThorP64)		alphas on Bi ²⁰⁹ (BartoG51)
At ²⁰⁹	5.5 h (ForW61, BartoG51)	* EC ≈95%, α ≈5% (BartoG51) Δ -12.89 (MTW)	(BartoG51) chem, mass spect (ForW61)	Y Po K X-rays, 0.195 (23%), 0.545 (62%), 0.780 (94%) e 0.076, 0.102, 0.178, 0.451, 0.686 a 5.65 (5%)	Bi ²⁰⁹ (q,4n) (RamlW59)
At ²¹⁰	8.3 h (KellE49)	Υ EC 99+%. α 0.17% (HoffR53) Δ -12.12 (MTW)	parent Po ²¹⁰ (RaF) (KellE49, BartoG51) parent Bi ²⁰⁶ (NeumH50b)	Y Po X-rays, 0.245 (79%), 1.180 (100%), 1.436 (29%), 1.483 (46%), 1.599 (14%) e 0.023, 0.031, 0.043, 0.152, 0.229 a 5.52 (0.05%), 5.44 (0.05%), 5.36 (0.06%)	Bi ²⁰⁹ (a, 3n) (RamlW59)
At ²¹¹	7.21 h (AppE61) others (GrayP56, CorsD40, KellE49, CrofP64)	★ a 40.9%, EC 59.1% (NeumH51) -11.64 (MTW)	KallE40)	a 5.868 Y Po X-rays, 0.67 (weak) daughter radiations from Po ²¹¹	Bi ²⁰⁹ (a, 2n) (RamiW59)
At ²¹²	0.30 s (JonWB63) others (RitJ62, WinnM54a)		!	a 7.66 (80%), 7.60 (20%) e 0.047, 0.059	Bi ²⁰⁹ (a, n) (JonWB63)

Isotope Z A	Half-life	Type of decay (♠ % abundance; Mass (△±M-A), MeV (C Thermal neutro cross section (σ), h	excess C ¹² =0); on	Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
85 ^{At^{212m}}	0.12 s (JonWB63) others (RitJ62)	a, no IT, lim 1% (JonWB63) β , EC unstable (energy) (MTW) Δ -8.42 (LHP, MT)	(cons	excit, decay charac (JonWB63)	1 3	7.88 (20%), 7.82 (80%) 0.047, 0.059	Bi ²⁰⁹ (a, n) (JonWB63)
At ²¹³	[short] (KeyJ51)	☆ a (KeyJ51) Δ -6.5 (MTW)	E	genet, decay charac (KeyJ51) descendant Pa ²²⁵ (KeyJ51)	a	9. 2	descendant Pa ²²⁵ (KeyJ51)
At ²¹⁴	≈2 x 10 ⁻⁶ s est (MeiW51)	a (MeiW49) EC unstable (contenergy) (MTW) Δ -3.42 (MTW)	8	genet (MeiW49) daughter Fr ²¹⁸ (MeiW49, MeiW51)	a	8.78 (99%)	descendant Pa ²²⁶ (MeiW49, MeiW51)
At ²¹⁵	≈10 ⁻⁴ s delay coinc (GhiA48, MeiW51)	☆ a (KarlB44, GhiA △ -1.25 (MTW)	A48) A	genet (KarlB44, GhiA48) daughter Fr ²¹⁹ , parent Bi ²¹¹ (AcC) (GhiA48, MeiW51, MeiW49) daughter Po ²¹⁵ (AcA), parent Bi ²¹¹ (AcC) (KarlB44)		8.01 daughter radiations from Bi ²¹¹ , etc.	descendant Pa ²²⁷ (HydE64)
At ²¹⁶	≈3 x 10 ⁻⁴ s delay coinc (MeiW49, MeiW51)		(cons	genet (GhiA48) daughter Fr ²²⁰ , parent Bi ²¹² (ThC) (GhiA48, MeiW51) parent Bi ²¹² (ThC) (KarlB43a)	a	7.80 (97%)	descendant Pa ²²⁸ (HydE64)
At ²¹⁷	0.0323 s delay coinc (DiaH63) others (HageF47, HageF50, EnglA47)	a (EnglA47, Hage β unstable (cons (MTW) Δ 4.38 (MTW)		daughter Fr ²²¹ , parent Bi ²¹³ (EnglA47, HageF47, HageF50, CranT48)	a.	7.07 (99+%) daughter radiations from Bi ²¹³ , etc.	descendant Ac 225 (EnglA47, HageF47)
At ²¹⁸	1.5-2.0 s (WaleR48) others (KarlB43)	α (KarlB43) α 994%, β 0.1% (WaleR48) Δ 8.11 (MTW)	E	genet (KarlB43, WaleR59a) daughter Po ²¹⁸ (RaA), parent Bi ²¹⁴ (RaC) (KarlB43, WaleR48, WaleR59a)	a	6.70 (94%), 6.65 (6%) daughter radiations from Rn ²¹⁸ , Bi ²¹⁴ , etc.	daughter Po ²¹⁸ (KarlB43, WaleR48)
At ²¹⁹	0.9 m (HydE53)	Υ α ≈97%, β ≈3% (1 Δ 10.5 (MTW)	HydE53) E	chem, genet (HydE53) daughter Fr ²²³ (AcK), parent Rn ²¹⁹ (An), parent Bi ²¹⁵ (HydE53)	a	6.28 daughter radiations from Bi ²¹⁵ , Rn ²¹⁹ , etc.	descendant Ac ²²⁷ , natural source (HydE53)
86 ^{Rn} <202	short (NurM66)	☆ a (NurM66)	F	excit (NurM66)	a	6. 90	O ¹⁶ on Pt, N ¹⁴ on Au, C ¹² on Hg (NurM66)
Rn<202	1 s (NurM66)	☆ a (NurM66)	F	excit (NurM66)	a	6.85	O ¹⁶ on Pt, N ¹⁴ on Au, C ¹² on Hg (NurM66)
Rn ^{201?}	3 s (NurM66)	☆ a (NurM66)	E	cross bomb, excit (NurM66)	a	6.77	Au ¹⁹⁷ (N ¹⁴ , 10n), O ¹⁶ on Pt (NurM66)
Rn<202	<1 s (NurM66)	☆ a (NurM66)	F	excit (NurM66)	a	6.69	O ¹⁶ on Pt, N ¹⁴ on Au, C ¹² on Hg (NurM66)
Rn ²⁰²	13 s (NurM66)	☆ a (NurM66)	r	cross bomb, excit (NurM66)	a	6.6 4	Au ¹⁹⁷ (N ¹⁴ , 9n), O ¹⁶ on Pt, C ¹² on Hg (NurM66)
Rn ²⁰³	45 s (NurM66)	☆ a (NurM66)	C	cross bomb, excit (NurM66)	a	6. 50	Au ¹⁹⁷ (N ¹⁴ , 8n), O ¹⁶ on Pt, C ¹² on Hg (NurM66)
Rn ^{203m}	28 s (NurM66)	☆ a (NurM66)	r	cross bomb, excit (NurM66)	a	6.55	Au ¹⁹⁷ (N ¹⁴ , 8n), O ¹⁶ on Pt, C ¹² on Hg (NurM66)

sotope . A	Half-life		Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C''=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
6 ^{Rn 204}	75 s (NurM66)	l	a (NurM66) -7 (MTW)	В	cross bomb, excit (NurM66)	a	6.42 [daughter radiations from Po ²⁰⁰]	Au ¹⁹⁷ (N ¹⁴ , 7n), O ¹⁶ on Pt, C ¹² on Hg (NurM66)
Rn ²⁰⁵	1.8 m (NurM66)	l	a (NurM66) -7 (MTW)	В	cross bomb, excit (NurM66) 6.29 a (t _{1/2} 3 m) formerly assigned to Rn ²⁰⁴ (StonA57, MomF55)	a	6.26	Au ¹⁹⁷ (N ¹⁴ , 6n), O ¹⁶ on Pt, C ¹² on Hg (NurM66)
Rn ²⁰⁶	6.5 m (BurcW54, (NurM66) others (StonA57, BarabS57, WinnM54a)		a 65%, EC 35% (StonA57, MomF55a) a 22%, EC 78% (BarabS57) -9 (MTW)	В	chem, genet (BurcW54, StonA57) parent Po ²⁰² (StonA57, MomF55a) 6.29 a (t _{1/2} 3 m) formerly assigned to Rn ²⁰⁴	a	6.26 daughter radiations from At ²⁰⁶ , Po ²⁰² , etc.	Au ¹⁹⁷ (N ¹⁴ , 5n) (BurcW54, StonA57, NurM66) C ¹⁶ on Hg, O ¹⁶ on Pt (NurM66)
Rn ²⁰⁷	11 m (BurcW54) 10 m (StonA57)		EC 96%, a 4% (StonA57, MomF55a) -9 (MTW)	A	chem, genet (BurcW54) parent At ²⁰⁷ (BurcW54, StonA57)	a	6.15 daughter radiations from At ²⁰⁷ , Po ²⁰³ , etc.	Au ¹⁹⁷ (N ¹⁴ , 4n) (StonA5 BurcW54)
Rn ²⁰⁸	23 m (MomF55a) 21 m (StonA57)		EC ≈80%, a ≈20% (MomF55a, StonA57) -10 (MTW)	В	chem, genet (MomF55a) parent Po ²⁰⁴ (MomF55a)	a	6.15 daughter radiations from At ²⁰⁸ , Po ²⁰⁴ , Bi ²⁰⁴	Au ¹⁹⁷ (N ¹⁴ , 3n) (StonA5 protons on Th ²³² (MomF55a)
Rn ²⁰⁹	30 m (MomF55a)		EC 83%, a 17% (MomF55a) -9 (MTW)	В	chem, genet (MomF55a) daughter Ra ²¹³ , parent At ²⁰⁹ (MomF55a, MomF52)	a	6.04 daughter radiations from Po ²⁰⁵ , At ²⁰⁹	daughter Ra ²¹³ , from protons on Th ²³² (MomF55a)
Rn ²¹⁰	2.42 h (CrofP64) 2.7 h (MomF52, MomF55a) 2.1 h (GhiA49)		a≈96%, EC≈4% (MomF55a) -9.74 (MTW)	A	chem, genet (MomF55a, MomF52) parent Po ²⁰⁶ (MomF52, MomF55a)	a	6.04 daughter radiations from At ²¹⁰ , Po ²⁰⁶	protons on Th ²³² (MomF52, MomF55a
Rn ²¹¹	15 h (CrofP64) 16 h (MomF52, MomF55a)		EC 74%, a 26% -8.75 (MTW)	A	chem, genet (MomF52) mass spect (AstG63) parent At ²¹¹ (MomF52, MomF55a) parent Po ²⁰⁷ (StonA56)	Y	5.85 (9%), 5.78 (17%) At X-rays, 0.445 (29%), 0.680 (74%), 0.865 (18%), 0.946 (21%), 1.13 (23%), 1.37 (38%) 0.053, 0.065, 0.073, 0.153, 0.168, 0.200, 0.237, 0.349, 0.584, 0.665 daughter radiations from At 211, Po 211	protons on Th ²³² (MomF55, MomF55a
Rn ²¹²	25 m (CrofP64) 23 m (GhiA49, HydE50, MomF52)	1	a (HydE50) -8.66 (MTW)	A	chem, genet (HydE50, GhiA49) daughter Fr ²¹² , parent Po ²⁰⁸ (HydE50, MomF52)	a	6.27	daughter Fr ²¹² (HydE5
Rn ²¹⁵	≈10 ⁻⁶ s est (MeiW52)		a (MeiW52) -1.2 (MTW)	В	genet (MeiW52) daughter Ra ²¹⁹ , parent Po ²¹¹ (AcC') (MeiW52)	a	8.6 daughter radiations from Po ²¹¹	descendant U ²²⁷ (HydE64)
Rn ²¹⁶	4.5 x 10 ⁻⁵ s delay coinc (RuiC61)		a (MeiW49, MeiW51) β stable (cons energy) (ForB58) 0.25 (MTW)	A	genet (MeiW49, MeiW51) daughter Ra ²²⁰ , parent Po ²¹² (ThC ¹) (MeiW49, MeiW51)		8.05 daughter radiations from Po ²¹²	descendant U ²²⁸ (HydE64)
Rn ²¹⁷	5.4 x 10 ⁻⁴ s delay coinc (RuiC61) others (MeiW51)		a (MeiW51) ß stable (cons energy) (ForB58) 3.65 (MTW)	A	genet (MeiW49, MeiW51) daughter Ra ²²¹ , parent Po ²¹³ (MeiW49, MeiW51)		7.74 daughter radiations from Po ²¹³	descendant U ²²⁹ (MeiW49, MeiW51, HydE64)
Rn ²¹⁸	0.035 s delay coinc (DiaH63) others (RuiC61, StuM48)		a (StuM48) β stable (cons energy) (ForB58) 5.22 (MTW)	A	genet (StuM48) daughter Ra ²²² , parent Po ²¹⁴ (RaC') (StuM48)		7.14 (99.8%) 0.609 (0.2%) daughter radiations from Po ²¹⁴	descendant U ²³⁰ (HydE64)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△ *M-A), MeV (C''=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
86 ^{Rn²¹⁹ (An)}	4.00 s (RodenH61) 3.92 s (CuriM31)	φ α; β unstable (cons energy) (MTW) Δ 8.85 (MTW)		chem, genet (CuriM31) daughter Ra ²²³ (AcX), parent Po ²¹⁵ (AcA) daughter At ²¹⁹ (HydE53)	γ	6.82 (81%), 6.55 (11%), 6.42 (8%) Po X-rays, 0.272 (9%), 0.401 (5%) 0.179, 0.255, 0.308 daughter radiations from Po ²¹⁵ , etc.	descendant Th ²²⁷ (HydE64)
Rn ²²⁰ (Tn)	55.3 s (GinJ63) 56.3 s (RodenH61) 54.5 s (CuriM31) 51.5 s (SchmH55)	α; β stable (cons energy) (ForB58) Δ 10.61 (MTW) σ _c <0.2 (GoldmDT64)	A	chem, genet (CuriM31) daughter Ra ²²⁴ (ThX), parent Po ²¹⁶ (ThA)		6.29 (100%) 0.55 (0.07%) daughter radiations from Po ²¹⁶	natural source, descendant Th ²²⁸ (HydE64)
Rn ²²¹	25 m (MomF56)	* β =80%, α =20% (MomF56) Δ 14 (MTW)	В	chem, genet (MomF56, MomF52) parent Fr ²²¹ , parent Po ²¹⁷ (MomF56, MomF52)	a	6.0 daughter radiations from Fr ²²¹ , Po ²¹⁷ , etc.	protons on Th ²³² (MomF52)
Rn ²²² (Rn)	3.8229 d (MarinP56) 3.825 d (TobJ55, TobJ51, RobeJ56a, CuriM31)	α; β stable (cons energy) (For B 58) no β , lim 1 x 10 ⁻⁴ % (Karl B 46) Δ 16.39 (MTW) σ _c 0.7 (GoldmDT 64)	A	chem, genet (CuriM31) daughter Ra ²²⁶ , parent Po ²¹⁸ (RaA)	a Y	5.49 (100%) 0.510 (0.07%) daughter radiations from Po ²¹⁸ , etc.	natural source (HydE64)
Rn ²²³	43 m (ButeF64)	* [β¯] (BellA61)	В	genet, chem (BellA61, ButeF64) ancestor Ra ²²³ (AcX) (BellA61, ButeF64)		daughter radiations from Fr ²²³	protons on Th ²³² (BellA61, ButeF64)
Rn ²²⁴	1.9 h (ButeF64)	Υ [β¯] (BellA61)	В	genet, chem (BellA61, ButeF64) ancestor Ra ²²⁴ (ThX) (BellA61, ButeF64)			protons on Th ²³² (BellA61)
87 ^{Fr²⁰⁴}	2.0 s (GrifR64)	♣ a (GrifR64)	c	excit, decay charac (GrifR64)	a	7.03	Au ¹⁹⁷ (O ¹⁶ , 9n) (GrifR 64)
Fr ²⁰⁵	3.7 s (GrifR64)	✿ a (GrifR64)	В	excit, genet (GrifR64) parent At 201 (GrifR64)	a	6.92 daughter radiations from At ²⁰¹	Au ¹⁹⁷ (O ¹⁶ , 8n) (GrifR64)
Fr ²⁰⁶	15.8 s (GrifR64)	☆ a (GrifR64) Δ -0 (MTW)	В	excit, cross bomb (GrifR64)	a	6.80	Au ¹⁹⁷ (O ¹⁶ , 7n), Tl ²⁰³ (C ¹² , 9n) (GrifR64)
Fr ²⁰⁷	19 s (GrifR64)	↑ a (GrifR64) Δ -2 (MTW)	В	excit, cross bomb (GrifR64)	a	6. 78	Au ¹⁹⁷ (O ¹⁶ , 6n), T1 ²⁰³ (C ¹² , 8n) (Griff 64)
Fr ²⁰⁸	37 s (GrifR64)	☆ a (GrifR64) Δ -2 (MTW)	В	excit, cross bomb (GrifR64)	a	6.66	Au ¹⁹⁷ (O ¹⁶ , 5n), T1 ²⁰³ (C ¹² , 7n) (Griff(64)
Fr ²⁰⁹	55 m (GrifR64)	↑ a (GrifR64) Δ -3 (MTW)	В	genet, excit, cross bomb (GrifR64) parent At ²⁰⁵ (GrifR64)	a	6.66	Au ¹⁹⁷ (O ¹⁶ , 4n), Tl ²⁰³ (C ¹² , 6n) (GrifR64)
Fr ²¹⁰	2.6 m (GrifR64)	☆ a (GrifR64) △ -3 (MTW)	В	excit, cross bomb (GrifR64)	a	6. 56	T1 ²⁰³ (C ¹² , 5n), T1 ²⁰⁵ (C ¹² , 7n), Au ¹⁹⁷ (O ¹⁶ , 3n) (Griff64)
Fr ²¹¹	3.1 m (GrifR64)		В	chem, genet, excit (GrifR64) parent At ²⁰⁷ (GrifR64)	a	6.56 daughter radiations from At ²⁰⁷	T1 ²⁰³ (C ¹² , 4n), T1 ²⁰⁵ (C ¹² , 6n) (GriR64)
Fr ²¹²	19.3 m (HydE50)	☆ EC 56%, a 44% (HydE50) △ -4 (MTW)	A	chem, genet (HydE50) chem, mass spect (MomF52) parent Rn ²¹² , parent At ²⁰⁸ (HydE50, MomF52)	a	6.42 (16%), 6.39 (17%), 6.35 (11%) daughter radiations from Rn ²¹² , At ²⁰⁸	protons on Th ²³² (HydE 50)

Isotope Z A	Half-life		Type of decay (*Δ*); % abundance; Mass excess (Δ=M-A), MeV (C¹=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
87 ^{Fr²¹³}	34 s (GrifR64)		a 99+%, EC 0.5% (Grifr64) -3.55 (MTW)	A	chem, genet, excit, cross bomb (GrifR64) parent At ²⁰⁹ (GrifR64)	a	6.78	T1 ²⁰⁵ (C ¹² , 4n), Pb ²⁰⁸ (B ¹¹ , 6n) (Griff 64)
Fr ²¹⁷	[short] (KeyJ51)		a (KeyJ51) EC unstable (cons energy) (MTW) 4.4 (MTW)	E	genet, decay charac (KeyJ51) descendant Pa ²²⁵ (KeyJ51)	a	8.3	descendant Pa ²²⁵ (KeyJ51)
Fr ²¹⁸	5 x 10 ⁻³ s est (MeiW51)		a (MeiW51) EC unstable (cons energy) (MTW) 7.00 (MTW)	В	genet (MeiW49, MeiW51) daughter Ac ²²² , parent At ²¹⁴ (MeiW49, MeiW51)	a	7.85 (93%) daughter radiations from At ²¹⁴	descendant Pa ²²⁶ (MeiW49, MeiW51)
Fr ²¹⁹	0.02 s delay coinc (MeiW51)		α (GhiA48) β stable (cons energy) (ForB58) 8.61 (MTW)	A	genet (GhiA48) daughter Ac ²²³ , parent At ²¹⁵ (GhiA48, MeiW49, MeiW51)	a	7.31 daughter radiations from At ²¹⁵	descendant Pa ²²⁷ (HydE64)
Fr ²²⁰	27.5 s (MeiW51)		a (GhiA48) p, EC unstable (consenergy) (MTW) 11.47 (MTW)	A	genet (GhiA48) daughter Ac ²²⁴ , parent At ²¹⁶ (GhiA48, MeiW49, MeiW51)		6.68 (85%), 6.64 (13%) daughter radiations from At ²¹⁶ , etc.	descendant Pa ²²⁸ (HydE64)
Fr ²²¹	4.8 m (HageF50) others (EnglA47)		a (EnglA47, HageF47) no β¯, lim 0.1% (ValliK64) β¯ unstable (cons energy) (MTW) 13.27 (MTW)	A	chem, genet (HageF47, EnglA47) daughter Ac ²²⁵ , parent At ²¹⁷ (EnglA47, HageF47, CranT48, HageF50) daughter Rn ²²¹ (MomF56, MomF52)		6.34 (82%), 6.12 (15%) At X-rays, 0.218 (14%) 0.122, 0.202 daughter radiations from At ²¹⁷ , etc.	ancestor Th ²²⁹ (EnglA47, HageF47, HageF50)
Fr ²²²	14.8 m (HydE50a)		β ⁻ 99+%, α 0.01-0.1% (HydE51a) 16.34 (MTW)	В	chem, genet (HydE50a) parent Ra ²²² , ancestor Bi ²¹⁴ (RaC) (HydE50a, HydE51a)		daughter radiations from Ra ²²² , etc.	protons on Th ²³² (HydE50a)
Fr ²²³ (AcK)	22 m genet (PereyM56, AdlJ55, PereyM39)		β ⁻ (PereyM39a, GuiM47) $α \approx 4 \times 10^{-3}\%$ (HydE53) $α \approx 6 \times 10^{-3}\%$ (AdlJ55, PereyM56) 18.40 (MTW)	A	chem, genet (PereyM39, PereyM39b) daughter Ac 227, parent Ra 223 (AcX) (PereyM39, PereyM39a, PereyM39b, PereyM41, PereyM46, GuiM47, LecM50) parent At 219 (HydE53)	e-	1.15 max 0.031, 0.045, 0.062, 0.075 Ra L X-rays, 0.050 (40%), 0.080 (13%), 0.234 (4%)	natural source (HydE64)
Fr ²²⁴	<2m (ButeF64)	1	[β ⁻] (BellA61) 22 (MTW)	F	genet (BellA61) daughter Rn ²²⁴ , parent Ra ²²⁴ (ThX) (BellA61)			daughter Rn ²²⁴ (BellA61)
88 ^{Ra²¹³}	2.7 m (MomF55a)	1	a (MomF52) -0 (MTW)	В	chem, genet (MomF52) parent Rn ²⁰⁹ (MomF52, MomF55a)	a	6. 91	Pb ²⁰⁶ (C ¹² , 5n), protons on Th ²³² (MomF52, MomF55)
Ra ²¹⁹	≈10 ⁻³ s est (MeiW52)	1	a (MeiW52) 9.4 (MTW)	В	genet (MeiW52) daughter Th ²²³ , parent Rn ²¹⁵ (MeiW52)		8.0 daughter radiations from Rn ²¹⁵ , Po ²¹¹	descendant U ²²⁷ (HydE64)
Ra ²²⁰	0.023 s (RuiC61)	1	a (MeiW51) 10.27 (MTW)	A	genet (MeiW49, MeiW51) daughter Th ²²⁴ , parent Rn ²¹⁶ (MeiW49, MeiW51)		7.46 (99%) 0.465 (1%) daughter radiations from Rn ²¹⁶ , Po ²¹²	descendant U ²²⁸ (HydE64)
Ra ²²¹	30 s (MeiW51) 28 s (TovP58)		a (MeiW51) β stable (cons energy) (ForB58) 12.96 (MTW)	A	chem, genet (MeiW49, MeiW51) daughter Th ²²⁵ , parent Rn ²¹⁷ (MeiW49, MeiW51)		6.76 (30%), 6.67 (20%), 6.61 (34%), 6.59 (8%) Rn X-rays, 0.091 (3.5%), 0.151 (13%), 0.175 (2%) daughter radiations from Rn 217, etc.	descendant U ²²⁹ (MeiW49, MeiW51, RuiC61)

Isotope Z A	Half-life	Type of decay (*); % abundance; Mass excess (Δ=M-A), MeV (C"=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
88 ^{Ra²²²}	38 s (StuM48) 37 s (AsaF56)	a (StuM48) β stable (cons energy) (ForB58) Δ 14.32 (MTW)	A chem, genet (StuM48) daughter Th ²²⁶ , parent Rn ²¹⁸ (StuM48) daughter Fr ²²² (HydE50a, HydE51a)	a 6.56 (96%) 9 0.325 (4%), 0.473 (0.007%), 0.52 (0.004%), 0.85 (0.003%) daughter radiations from Rn ²¹⁸ , etc.	descendant U ²³⁰ (StuM48)
Ra ²²³ (AcX)	11.435 d (KirH65) 11.2 d (CuriM31) 11.7 d (HageG54) others (BaeA53, SeaG47a)	φ stable (cons energy) (ForB58) Δ 17.26 (MTW) σ _C 130 (GoldmDT64)	A chem, genet (CuriM31) daughter Th ²²⁷ (RdAc), parent Rn ²¹⁹ (An); daughter Ac ²²³ (MeiW51) daughter F ²²³ (AcK) (PereyM39, PereyM39a, PereyM39b, PereyM41, PereyM46, GuiM47, LecM50) descendant Rn ²²³ (BellA61, ButeF64)	a 5.75 (9%), 5.71 (54%), 5.61 (26%), 5.54 (9%) Rn X-rays, 0.149 (10%, complex) 0.270 (10%), 0.33 (6%, complex 0.024, 0.046, 0.056, 0.126, 0.136, 0.171 daughter radiations from Rn 219, Po 215, Pb 211, etc.	·)
Ra ²²⁴ (ThX)	3.64 d (CuriM31) others (SeaG47a)	α; β stable (cons energy) (ForB58) Δ 18.82 (MTW) σ _C 12 (GoldmDT64)	A chem, genet (CuriM31) daughter Th ²²⁸ (RdTh), parent Rn ²²⁰ (Tn); daughter Ac ²²⁴ (GhiA48, MeiW49, MeiW51) descendant Rn ²²⁴ (BellA61, ButeF64)	a 5.68 (94%), 5.45 (6%) Rn X-rays, 0.241 (3.7%), 0.29 (0.008%), 0.41 (0.004%), 0.65 (0.009%) e 0.144, 0.225 daughter radiations from Rn 220 Po 216, Pb 212, etc.	daughter Th ²²⁸ , from natural source (HydE64)
Ra ²²⁵	14.8 d (HageF50) others (EnglA47)	φ (EnglA47, HageF47) no α, lim 10 ⁻⁴ % (MalkL60) others (MomF56) Δ 22.01 (MTW)	A chem, genet (EnglA47, HageF47) daughter Th ²²⁹ , parent Ac ²²⁵ (EnglA47, HageF47, HageF50)	 β- 0.36 max e- 0.021, 0.035 Y Ac L X-rays, 0.040 (33%) daughter radiations from Ac²²⁵, etc. 	descendant U ²³³ , Th ²²⁹ (HydE64)
Ra ²²⁶	1602 y sp act (MartiG59) 1622 y sp act (KohT49) 1617 y sp act (SebW 56) 1590 y sp act (CuriM31) others (GorsG58, GorsG59)	α; β stable (cons energy) (ForB58) Δ 23.69 (MTW) σ _C 20 (GoldmDT64)	Rn ²²² (Rn)	a 4.78 (95%), 4.60 (6%) Rn X-rays, 0.186 (4%), 0.26 (0.007%), 0.42 (2 x 10 ⁻⁴ %), 0.61 (2 x 10 ⁻⁴ %) e ⁻ 0.087, 0.170 daughter radiations from Rn ²²² , Po ²¹⁸ , Pb ²¹⁴ , Bi ²¹⁴ , Po ²¹⁴	natural source (HydE64)
Ra ²²⁷	41.2 m (ButiJP53)	φ ρ (PeteS49) Δ 27.18 (MTW)	207	β- 1.31 max e- 0.008, 0.023 Υ [Ac X-rays], 0.291 (4%), 0.498 (0.6%)	Ra ²²⁶ (n, Y) (PeteS49)
Ra ²²⁸ (MsTh ₁)	6.7 y (CuriM31)	β; no a, lim 2 x 10 ⁻⁶ % (FeaN57) Δ 28.96 (MTW) σ _C =36 (GoldmDT64)	A chem, genet (CuriM31) daughter Th ²³² , parent Ac ²²⁸ (MsTh ₂)	β 0.05 max e 0.005 daughter radiations from Ac ²²⁸ , Th ²²⁸ , Ra ²²⁴ , etc.	natural source (HydE64)
Ra ²²⁹	[short] (DepF52)	☆ [β¯] (DepF52)	F n-capt, genet (DepF52) [parent Ac ²²⁹] (DepF52)		Ra ²²⁸ (n, Y) (DepF52)
Ra ²³⁰	1 h (JenkW52)	↑ β (JenkW52) Δ 35 (LHP, MTW)	D chem (JenkW52) parent Ac ²³⁰ (JenkW52)	β 1.2 max	[Th ²³² (d, 3pn)] (JenkW52)
89 ^{Ac²²¹}	[short] (KeyJ51)	☆ a (KeyJ51) EC unstable (consenergy) (MTW) △ 14.6 (MTW)	E genet, decay charac (KeyJ51) descendant Pa ²²⁵ (KeyJ51)	a 7.6	ancestor Pa ²²⁵ (KeyJ51)
Ac ²²²	5.5 s (MeiW52) 4.2 s (TovP58)	a (MeiW51) EC unstable (consenergy) (MTW) Δ 16.55 (MTW)	B genet (MeiW49, MeiW51) daughter Pa ²²⁶ , parent Fr ²¹⁸ (MeiW49, MeiW51, MeiW52)	a 7.00 (93%) daughter radiations from Fr ²¹⁸ , etc.	daughter Pa ²²⁶ (MeiW49, MeiW51, MeiW52) Ra ²²⁶ (p, 5n) (TovP58)

Isotope Z A	Half-life	Type of decay (); % abundance; Mass excess (Δ=M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
89 ^{Ac²²³}	2.2 m (MeiW51)	↑ а 99%, ЕС 1% (MeiW51) Δ 17.82 (МТW)	daughter Pa ²²⁷ , parent	a 6.66 (38%), 6.65 (42%), 6.57 (13%) Fr L X-rays, 0.082 (0.2%), 0.096 (0.2%) daughter radiations from Fr ²¹⁹ , etc.	daughter Pa ²²⁷ (MeiW51)
Ac ²²⁴	2.9 h (MeiW51)	Y EC ≈90%, α ≈10% (MeiW51) β unstable (consenergy) (MTW) Δ 20.21 (MTW)	daughter Pa ²²⁸ , parent Fr ²²⁰ , parent Ra ²²⁴	Ra X-rays, 0.132 (28%), 0.217 (62%) 0.067, 0.080 6.20 (3%), 6.14 (3%), 6.04 (3%) daughter radiations from Fr ²²⁰ , etc.	daughter Pa ²²⁸ (MeiW5)
Ac ²²⁵	10 J d (HageF50, EnglA47)	a (EnglA47, HageF47) β stable (cons energy) (ForB58) Δ 21.62 (MTW)	EnglA47) daughter Ra 225, parent Fr 221	a 5.83 (54%), 5.79 (28%), 5.73 (10%, doublet) Fr X-rays, 0.099, 0.150, 0.187 0.020, 0.032, 0.044, 0.081 daughter radiations from Fr 221, At 217, etc.	descendant U ²³³ , Th ²²⁹ Ra ²²⁶ (d, 3n) (HydE64)
Ac ²²⁶	29 h (StreK50)	β ⁻ ≈80%, EC ≈20% (StepF57d) α? (weak) (MCoyJ64) Δ 24.31 (MTW)	daughter Pa ²³⁰ , parent Th ²²⁶ e (StreK48, StreK50, MeiW50)	1.2 max 0.053, 0.067 Think Line X-rays, Raix-rays, 0.158 (32%), 0.185 (9%), 0.230 (47%), 0.253 (11%) 5.44? daughter radiations from Th ²²⁶ , etc.	Ra ²²⁶ (d, 2n) (HydE64)
Ac ²²⁷	21.6 y (TobJ55) 22.0 y (HollaJ50) 21.7 y (CuriI44) 21.2 y (ShimN56b) others (CuriM31)	β 99% (PereyM39, PeteS49a) a 1.4% (NurM65a) a 1.2% (MeyS14, PereyM39, PereyM46, PeteS49a) Δ 25.87 (MTW) σ _C 830 (GoldmDT64)	daughter Pa ²³¹ , parent Th ²²⁷ e (RdAc); parent Fr ²²³ (PereyM39,	0.046 max 0.005, 0.010 Th L X-rays, 0.070 [0.08%], 0.166, 0.190 4.95 (1.2%, doublet), 4.86 (0.18%, doublet) daughter radiations from Th 227, Ra, 223, Fr 223, etc.	Ra ²²⁶ (n, Y)Ra ²²⁷ (β ⁻) (PeteS49) natural source (HydE64)
Ac ²²⁸ (MsTh ₂)	6.13 h (CuriM31)	☆ β [−] ; Δ 28.91 (MTW)	daughter Ra 228 (MsTh 1), e	2.11 max 0.040, 0.054, 0.110 Th X-rays, 0.34 (15%, complex), 0.908 (25%), 0.96 (20%, complex)	natural source (HydE64)
Ac ²²⁹	66 m (DepF52)	φ β (DepF52) Δ 31 (MTW)	B chem, n-capt (DepF52) daughter Ra ²²⁹ (DepF52)		Ra ²²⁸ (n, Y)[Ra ²²⁹]β ⁻ (DepF52)
Ac ²³⁰	<1 m genet (JenkW52)	φ β (JenkW52) Δ 34 (MTW)	F genet (JenkW52) daughter Ra ²³⁰ (JenkW52)	- 2.2 max	daughter Ra ²³⁰ (JenkW 52)
Ac ²³¹	15 m (TakaK60a)	 β⁻ (TakaK60a) Δ 35.9 (MTW) 		2.1 max 0.185, 0.28, 0.39, 0.71	Th ²³² (Y,p) (TakaK60a)
90 ^{Th²²³}	0.9 s (TovP58) =0.1 s est (MeiW52)	a (MeiW52) EC unstable (consenergy) (MTW) Δ 19.5 (MTW)	B genet (MeiW52) daughter U ²²⁷ , parent Ra ²¹⁹ (MeiW52)	7.56 [daughter radiations from Ra ²¹⁹ , etc.]	daughter U ²²⁷ (MeiW52)
Th ²²⁴	1.05 a (TovP58)	a (MeiW51) β stable (cons energy) (ForB58) Δ 20.00 (MTW)	220	7.18 (79%), 6.91 (19%) Ra X-rays, 0.177 (9%), 0.235 (0.4%), 0.297 (0.3%), 0.410 (0.8%) daughter radiations from Ra 220, etc.	daughter U ²²⁸ (MeiW51, RuiC61)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≡M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Major radiations: Genetic relationships and intensities	Principal means of production
90 ^{Th²²⁵}	8.0 m (MeiW51)	α ≈90%, EC ≈10% (MeiW51) Δ 22.30 (MTW)	A chem, genet (MeiW49, MeiW51) daughter U ²²⁹ , parent Ra ²²¹ , parent Ac ²²⁵ (MeiW49, MeiW51) MeiW51) daughter U ²²⁹ , parent Ra ²²¹ , parent Ac ²²⁵ (MeiW49, MeiW51) a 6.80 (8%), 6.75 (6%), 6.50 (12%), 6.48 (13%) (5.80 (8%), 6.75 (6%), 6.50 (12%), 6.48 (13%) (5.81 (13%), 0.322 (27%), 0.362 (5%), 0.352 (12%), 0.352 (12%), 0.352 (12%), 0.352 (12%) (5%), 0.322 (12%), 0.362 (5%), 0.45 (1%), 0.49 (1%) daughter radiations from Ra ²²¹ , etc.	daughter U ²²⁹ (MeiW49, MeiW51)
Th ²²⁶	30.9 m (StuM48)	α (StuM48) β stable (cons energy) (ForB58) Δ 23.19 (MTW)	A chem, genet (StuM48) daughter U ²³⁰ , parent Ra ²²² (StuM48) daughter Ac ²²⁶ (StreK48, StreK50) a 6.34 (79%), 6.22 (19%) Ra X-rays, 0.111 (3.4%), 0.131 (0.34%), 0.20 (0.4%, complex), 0.242 (1.2%) e 0.094, 0.107 daughter radiations from Ra ²²² , Rn ²¹⁸ , etc.	daughter U ²³⁰ (HydE64)
Th ²²⁷ (RdAc)	18.2 d (HageG54) others (PeteS4%, CuriM31)	α; β stable (cons energy) (ForB58) Δ 25.82 (MTW) σ _f ≈1500 (GoldmDT64)	A chem, genet (CuriM31) daughter Ac ²²⁷ , parent Ra ²²³ (AcX) daughter Pa ²²⁷ (MeiW51, GhiA48) daughter U ²³¹ (CranW50) daughter Tail (CranW50) daughter U ²³¹ (CranW50) a 6.04 (23%), 5.98 (24%), 5.76 (21%), 5.72 (14%, doublet) Ra X-rays, 0.050 (8%), 0.237 (15%, complex), 0.31 (8%, complex) 0.013, 0.026, 0.044, others daughter radiations from Ra ²²³ , Rn ²¹⁹ , Po ²¹⁵ , etc.	daughter Ac ²²⁷ , from natural source or from Ra ²²⁶ (n, Y) Ra ²²⁷ (β) (HydE64)
Th ²²⁸ (RdTh)	1.910 y (KirH56) others (CuriM31)	α; β stable (cons energy) (ForB58) Δ 26.77 (MTW) σ _c 123 (GoldmDT64) σ _f <0.3 (GoldmDT64)	daughter Ac 228 (MsTh.); Y Ra L X-rays, 0.084 (1.6%), 0.132	natural source daughter U ²³² Ra ²²⁶ (n, γ) Ra ²²⁷ (β ⁻) Ac ²²⁷ (n, γ) Ac ²²⁸ (β ⁻) (HydE64)
Th ²²⁹	7340 y genet (HageF50) others (EnglA47)	 φ; β stable (cons energy) (For B58) Δ 29.61 (MTW) σ_f 32 (GoldmDT64) 	A chem, genet (EnglA47,	daughter U ²³³ (HydE64)
Th ²³⁰ (Io)	8.0 x 10 ⁴ y sp act (HydE49) 7.5 x 10 ⁴ y sp act (AttR62) 8.2 x 10 ⁴ y genet (CuriM30) t _{1/2} (SF) ≥1.5 x 10 ¹⁷ y (SegE52)	 φ; stable (cons energy) (ForB58) Δ 30.87 (MTW) σ_c 23 (GoldmDT64) σ_f ≤0.001 (GoldmDT64) 	A chem, genet (CuriM31) daughter U ²³⁴ (U _{II}), parent Ra ²²⁶ ; daughter Pa ²³⁰ (StuM48a) a 4.68 (76%), 4.62 (24%) Y Ra L X-rays, 0.068 (0.6%), 0.142 (0.07%), 0.184 (0.014%), 0.253 (0.017%) e (0.07%), 0.184 (0.014%), 0.253 (0.017%) 0.051, 0.064 daughter radiations from Ra ²²⁶ , Rn ²²² , etc.	natural source (HydE64)
Th ²³¹ (UY)	25.52 h (CabM58) 25.6 h (JafAH51) 25.5 h (KniG49) others (CuriM31, GratO32, NisY38)	★ β ⁻ ; Δ 33.83 (MTW)	-235	Th ²³⁰ (n, Y) (BaranS60, HoltzM66) daughter U ²³⁵
Th ²³²	1.41 x 10 ¹⁰ y sp act, (FarlT60) others (KovAF38, PicE56, MackR56, SenF56) t _{1/2} (SF): >10 ²¹ y (FleG58) others (PocA55, SegE52)	 φ; β stable (cons energy) (ForB58) % 100 (AstF35, DempA36) Δ 35.47 (MTW) σc τ.4 (Goldm:DT64) σf <0.0002 (GoldmDT64) 	A chem, genet (CuriM31) parent Ra ²²⁸ (MsTh ₁) a 4.01 (76%), 3.95 (24%) Y [Ra L X-rays] e 0.042, 0.055 daughter radiations from Ra ²²⁸ , Ac ²²⁸ , Th ²²⁸ , Ra ²²⁴ , etc.	natural source (HydE64)
Th ²³³	22.12 m (JenkE55) 22.4 m (DroB57) 22.3 m (BunkM50a) 22.5 m (SeaG47) others (RutW52, GrossA41)	P (SeaG47) Δ 38.76 (MTW) σ _c 1500 (GoldmDT64) σ _f 15 (GoldmDT64)	A chem, n-capt (MeiL38) parent Pa 233 (MeiL38, GrossA41, SeaG41a, HahO41, SeaG47) β 1.23 max 0.009, 0.024, 0.036, 0.051, 0.067, 0.082 γ 2.7%), 0.171 (0.7%), 0.187 (2.7%), 0.171 (0.7%), 0.195 (0.3%), 0.453 (1%), 0.67 (0.25%), 0.895 (0.14%)	Th ²³² (n, Y) (MeiL38, SeaG47, SeaG41a, GrossA41)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△≛M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
90 ^{Th²³⁴ (UX₁)}	24.10 d (KniG48) others (SargB39a, CuriM31)	β ⁻ ; no α, lim 10 ⁻⁴ % (DeuS 55) Δ 40.64 (MTW) σ _c 1.8 (GoldmDT 64) σ _f - 0.01 (GoldmDT 64)	A chem, genet (CuriM31) daughter U ²³⁸ , parent Pa ^{234m} (UX ₂); ancestor Pa ²³⁴ (UZ) (ZijW54)	β 0.191 max e 0.012, 0.025, 0.072, 0.088 Y Pa L X-rays, 0.063 (3.5%, doublet), 0.093 (4%, doublet) daughter radiations from Pa ²³⁴ m	natural source (HydE64)
Th ²³⁵	<<10 m genet (HarvB50)	Υ [β̄] (HarvB50)	F n-capt, genet (HarvB50) [parent Pa ²³⁵] (HarvB50)		Th ²³⁴ (n, Y) (HarvB50)
91 ^{Pa²²⁴}	0.6 s (TovP58)	☆ a (TovP58)	F decay charac (TovP58)		Th ²³² (p, 9n) (TovP58)
Pa ²²⁵	0.8 s (TovP58) 2.0 s (KeyJ51)	* α (KeyJ51) Δ 25 (MTW)	E excit, decay charac (KeyJ51, TovP58) ancestor Ac ²²¹ , Fr ²¹⁷ , At ²¹³ (KeyJ51)		Th ²³² (p,8n) (TovP58, KeyJ51)
Pa ²²⁶	1.8 m (MeiW51)	★ a 74%, EC 26% (MCoyJ64) △ 25.96 (MTW)	B chem, genet (MeiW49, MeiW51) parent Ac ²²² (MeiW49, MeiW51, MeiW52)	a 6.86 (38%), 6.82 (34%) daughter radiations from Ac ²²² , Th ²²⁶ , etc.	Th ²³² (p, 7n) (MeiW49, MeiW51, MeiW52)
Pa ²²⁷	38.3 m (MeiW51) others (OConP48)	☆ a ≈85%, EC ≈15% (MeiW51) △ 26.83 (MTW)	A chem, genet (GhiA48) parent Ac ²²³ , parent Th ²²⁷ (RdAc) (GhiA48, MeiW51) daughter Np ²³¹ (MagL50)	Y [Th X-rays], Ac L X-rays, 0.065 (6%, complex), 0.110 (2%) a 6.47 (43%), 6.42 (23%, complex), 6.40 (8%), 6.36 (7%) daughter radiations from Ac 223, etc.	Th ²³² (d, 7n) (MeiW56, SubV63) Th ²³² (p, 6n) (MeiW56, HillM58)
Pa ²²⁸	22 h (MeiW51)	★ EC ≈98%, α ≈2% (MeiW51) Δ 28.86 (MTW)	A chem, genet (GhiA48) daughter U ²²⁸ , parent Ac ²²⁴ , parent Th ²²⁸ (RdTh) (GhiA48, MeiW49, MeiW51)	Y Th X-rays, 0.14 (3%), 0.20 (9%), 0.28 (5%), 0.33 (18%), 0.41 (13%), 0.46 (32%), 0.95 (93%), 1.57 (7%), 1.85 (4%), all Y's complex e 0.040, 0.054, 0.110 a 6.11 (1%, complex), 6.08 (0.4%), 6.03 (0.2%), 5.80 (0.2%), other daughter radiations from Ac 224, etc.	Th ²³² (d, 6n) (HydE64) Th ²³⁰ (d, 4n) (HillM58)
Pa ²²⁹	1.5 d (HydE49b)	F EC 99+%, α 0.25% (SlaLM51) others (MeiW51) Δ 29.88 (MTW)	A chem, genet (HydE49a) parent Ac ²²⁵ (HydE49a) daughter U ²²⁹ (MeiW51, MeiW49)	Y Th X-rays e 0.023, 0.038 a 5.67 (0.05%), 5.62 (0.07%, complex), 5.58 (0.10%), 5.54 (0.03%)	daughter U ²²⁹ (MeiW51, SubV63) Th ²³⁰ (d, 3n) (HydE49a) Th ²³² (p, 4n) (SubV63)
Pa ²³⁰	17.7 d (OsbD49) 17.0 d (StuM48) others (HydE49a, HydE49b)	# EC 89.6%, β 10.4%, α 0.0032% (BastG65a) β ? (≈0.03%) (OngP55a) others (BriaJ65a, MCoyJ64, MeiW51) Δ 32.17 (MTW) σ _f 1500 (GoldmDT64)	parent U ²³⁰ (StuM48,	β- 0.41 max e- 0.034, 0.048 Y Th X-rays, 0.45 (18%, complex), 0.51 (8%, complex), 0.91 (24%, complex), 0.954 (50%) a 5.26-5.34 (complex) daughter radiations from U ²³⁰ , Th ²²⁶ , etc.	Th ²³² (p, 3n) (TewH55, MeiW56) Th ²³² (d, 4n) (MeiW56) Th ²³⁰ (d, 2n) (HydE64)
Pa ²³¹	3.25 x 10 ⁴ y sp act (KirH61) 3.43 x 10 ⁴ y sp act (VWinQ49) 3.2 x 10 ⁴ y sp act (GrossA30)	α; β stable (cons energy) (For B58) Δ 33.44 (MTW) σ _c 200 (GoldmDT64) σ _f 0.010 (GoldmDT64)	A chem, genet (CuriM31) daughter Th ²³¹ (UY), parent Ac ²²⁷ ; daughter U ²³¹ (CranW50)	a 5.06 (10%), 5.02 (23%), 5.01 (24%), 4.95 (22%), 4.73 (11%) Y Ac X-rays, 0.027 (6%), 0.29 (6%, complex) e 0-0.10, 0.195, 0.323, 0.350 daughter radiations from Ac 227, Th 227, Fr 223, Ra 223, etc.	natural source (HydE64)
Pa ²³²	1.31 d (BrowCI54) others (JafAH50, OsbD49, GofJ49, StuM48)	β (GofJ49) no EC, lim 2% (BrowCI52a) Δ 35.95 (MTW) EC unstable (consenergy) (MTW) σ _C ≈760 (GoldmDT64) σ _f ≈700 (GoldmDT64)	A chem, genet (GofJ49) parent U ²³² (GofJ49, OsbD49)	β 1.3 max (0.7%), 0.32 max e 0.028, 0.043, 0.091 Y U X-rays, 0.107 (5%, doublet), 0.150 (12%), 0.39 (9%, doublet), 0.46 (9%, doublet), 0.57 (8%, doublet), 0.87 (51%, complex), 0.971 (40%)	Pa ²³¹ (n, Y), Th ²³² (d, 2n) (HydE64) Th ²³² (p, n) (TewH55)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
91 ^{Pa²³³}	27.0 d (MIsaL56, WriH57) 27.4 d (GrossA41) others (StuM48, GofJ49)	β (MeiL38, GrossA41, SeaG41a) Δ 37.51 (MTW) σc 21 (to Pa 234m) (GoldmDT64) σ _f <0.1 (GoldmDT64)	A chem, genet (MeiL38, GrossA41, SeaG41a) daughter Th ²³³ (MeiL38, GrossA41, SeaG41a, HahO41, SeaG47) parent U ²³³ (SeaG47) daughter Np ²³⁷ (HageF47, MagL47)	β 0.568 max (5%), 0.257 max e 0.013, 0.023, 0.036, 0.054, 0.065, 0.185, 0.197, 0.291 Y U X-rays, 0.31 (44%, complex)	Th ²³² (n, Y) Th ²³³ (β ⁻) {MeiL38, GrossA41, SeaG41a, HahO41, SeaG47) Th ²³² (d, n) (StuM48, GofJ49)
Pa ²³⁴ (UZ)	6.75 h (BjoS62) 6.66 h (ZijW54) 6.7 h (CuriM31)	φ; β-; 40.38 (MTW) σ _f <5000 (GoldmDT64)	A chem, genet (CuriM31) parent U ²³⁴ (U _{II}); daughter Pa 234m (UX ₂) (ZijW54)	β 1.3 max (\$2%), 1.13 max (13%), 0.53 max e 0.024, 0.039, 0.080, 0.095, 0.112 Y U X-rays, 0.100 (50%), 0.126 (26%), 0.22 (14%), 0.36 (13%), 0.56 (15%), 0.70 (24%), 0.90 (70%), 1.08 (12%), (many of the Y rays are complex)	natural source (HydE64
Pa ^{234m} (UX ₂)	1.175 m (BareF51) 1.14 m (CuriM31)	β 99+%, IT 0.13% (BjoS63a) others (FeaN38a, BradH45d, ZijW54) Δ 40.45 (LHP, MTW) σ _f <500 (GoldmDT64)	A chem, genet (CuriM31) daughter Th ²³⁴ (UX ₁), parent U ²³⁴ (U _{II}); parent Pa ²³⁴ (UZ) (ZijW54)	β 2.29 max Y U L X-rays, 0.765 (0.30%), 1.001 (0.60%)	natural source (HydE64
Pa 235	23.7 m (MeiW50) others (HarvB50)	β (MeiW50, HarvB50) Δ 42.3 (MTW)	B chem, excit, sep isotopes (MeiW50) genet (HarvB50) [daughter Th ²³⁵] (HarvB50)	β 1.4 max Y no Y	Th ²³⁴ (n, Y)[Th ²³⁵]β ⁻ (HarvB50)
Pa ²³⁶	12 m (WolzG63) others (CranW54)	φ β (WolzG63) Δ 45 (MTW)	D chem, decay charac (WolzG63)	β 3.3 max Y U L X-rays	U ²³⁸ (d, a) (WolzG63)
Pa ²³⁷	39 m (TakaK60)	 β (TakaK60) Δ 47.7 (MTW) 	B chem, excit (TakaK60)	β 2.3 max Y U X-rays, 0.090 († 50), 0.145 († 45), 0.205 († 55), 0.275 († 20), 0.330 († 40), 0.405 († 30), 0.46 († 100), 0.55 († 30), 0.59 († 25), 0.75 († 50), 0.80 († 45), 0.87 († 100), 0.92 († 100), 1.04 († 35), 1.32 († 10), 1.42 († 15)	U ²³⁸ (Y, p) (TakaK60)
92 ^{U 227}	1.3 m (MeiW52)	☆ a (MeiW52) A 29 (MTW)	B chem, genet (MeiW52) parent Th 223 (MeiW52)	a 6.8 daughter radiations from Th ²²³ , etc.	Th ²³² (a, 9n) (MeiW52)
U ²²⁸	9.1 m (RuiC61) others (MeiW51)	a ≥95%, EC ≤5% (RuiC61) others (MeiW51) EC unstable (cons energy) (MTW) Δ 29.23 (MTW)	A chem, genet (MeiW49, MeiW51) parent Th ²²⁴ , parent Pa ²²⁸ (MeiW49, MeiW51) daughter Pu ²³² (JameR48, OrtD51a)	a 6.69 († 70), 6.60 († 29) Th X-rays, 0.152 (0.2%), 0.187 (0.3%), 0.246 (0.4%) daughter radiations from Th ²²⁴ , etc.	Th ²³² (a, 8n) (RuiC61)
U ²²⁹	58 m (MeiW51)	☆ EC ≈80%, a ≈20% (MeiW51) Δ 31.20 (MTW)	A chem, genet (MeiW49, MeiW51) parent Th 225, parent Pa 229 (MeiW49, MeiW51) daughter Pu 233 (ThomT57)	Pa X-rays 6.36 (13%), 6.33 (4%), 6.30 (3%) daughter radiations from Th ²²⁵ , Pa ²²⁹ , etc.	Th ²³² (a,7n) (MeiW49, MeiW51)
U ²³⁰	20.8 d (StuM48)	 α (StuM48) β stable (cons energy) (ForB58) Δ 31.60 (MTW) σ_f 	A chem, genet (StuM48) daughter Pa ²³⁰ (StuM48, OsbD49) daughter Pu ²³⁴ (PerlmI49, OrtD5la) parent Th ²²⁶ (StuM48)	a 5.89 (67%), 5.82 (32%) Y Th L X-rays, 0.072 (0.54%), 0.156 (doublet, 0.034%), 0.231 (0.18%) e 0.054, 0.068 daughter radiations from Th ²²⁶ , Ra ²²² , etc.	daughter Pa ²³⁰ (HydE6
U ²³¹	4.3 d (CranW50) 4.2 d (OsbD49)	EC 99+%, a 0.0055% (CranW50) Δ 33.8 (MTW) σ _f ≈400 (GoldmDT64)	A chem, sep isotopes, genet (OsbD49) genet (CranW50) parent Th ²²⁷ (RdAc), parent Pa ²³¹ (CranW50)	Pa X-rays, 0.026, 0.084 (7%), 0.218 (1%) e- 0.040, 0.054, 0.063 a 5.46	Th ²³⁰ (a, 3n) (HollaJ56c) Pa ²³¹ (d, 2n) (OsbD49) Th ²³² (a, 5n) (CranW50)

Isotope Z A	Half-life	Type of decay % abundance; M: (△≡M-A), MeV Thermal neu cross section (Ø	ass excess (C ¹² =0); tron	Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
₉₂ U ²³²	72 y sp act, calorim (ChilJ64) others (SelP54, JameR49, GofJ49) t _{1/2} (SF) ≈8 x 10 ¹³ y (HydE57)	# a (GofJ49) β stable (cons (ForB58) Δ 34.60 (MTW) σ _c 78 (GoldmDT6) σ _f 77 (GoldmDT6)	energy)	chem, genet (GofJ49) daughter Pa ²³² (GofJ49, OsbD49) daughter Pu ²³⁶ (JameR49) parent Th ²²⁸ (RdTh) (GofJ49)	γ	5.32 (68%), 5.27 (32%) Th L X-rays, 0.058 (0.21%), 0.129 (0.082%), 0.270 (0.0038%), 0.328 (0.0034%) 0.040, 0.054 daughter radiations from Th ²²⁸ , Ra ²²⁴ , Rn ²²⁰ , etc.	daughter Pa ²³² (GofJ49 Th ²³² (a,4n) (HydE64)
U ²³³	1.62 x 10 ⁵ y sp act + mass spect (HydE52) 1.63 x 10 ⁵ y sp act + mass spect (DokY59a, LineG45) 1.61 x 10 ⁵ y sp act (PopD61) others (SeaG52)	α (SeaG52) β stable (cons (ForB58) Δ 36.94 (MTW) σ _c 49 (GoldmDT6 σ _f 524 (GoldmDT	energy)	chem, genet (SeaG47, SeaG52) daughter Pa ²³³ (SeaG47) parent Th ²²⁹ (EnglA47, HageF47, HageF50)	Y	4.82 (83%), 4.78 (15%) Th X-rays, 0.029 († 60), 0.042 († 310), 0.055 († 68), 0.097 († 100), 0.119 († 40, complex), 0.146 († 35, doublet), 0.164 († 27), 0.22 († 45, complex), 0.291 († 23), 0.32 († 43, doublet) 0.023, 0.038 daughter radiations from Th 229, Ra 225, Ac 225, etc.	${\rm Th}^{232}({\rm n},\gamma){\rm Th}^{233}(\beta^-)$ ${\rm Pa}^{233}(\beta^-)$ (SeaG47)
υ ²³⁴ (^U Π)	2.47 x 10 ⁵ y sp act (FleE52, WhiP65) others (KieC52, KieC49, GoldiA49, ChambO46) t _{1/2} (SF) 2 x 10 ¹⁶ y (GhiA52)	# a; β stable (cons (ForB58) % 0.0057 (LouM5 others (WhiF5: Δ 38.i6 (MTW) σ _c	6) 6)	chem, genet, mass spect (CuriM31) daughter Pa ²³⁴ m (UX ₂), daughter Pa ²³⁴ (UZ), parent Th ²³⁰ (Io)	1 3	4.77 (72%), 4.72 (28%) Th L X-rays, 0.053 (0.2%), 0.117, 0.48 (4 x 10 ⁻⁵ %, complex), 0.58 (1.2 x 10 ⁻⁵ %) daughter radiations from Th ²³⁰ , Ra ²²⁶ , Rn ²²² , etc.	daughter Pu ²³⁸ descendant Th ²³⁴ (HydE64)
U ²³⁵ (AcU)	7.1 x 10 ⁸ y sp act (FleE52, WhiP65) 7.1 x 10 ⁸ y radiogenic Pb ratios (NierA39) 6.9 x 10 ⁸ y sp act (DerA65) 6.8 x 10 ⁸ y sp act (WurE57) t _{1/2} (SF) 1.9 x 10 ¹⁷ y (SegE52) others (BaldE54)	α; β stable (cons (ForB58) 0.7196 (GrunB others (LouM5 WhiF56) Δ 40.93 (MTW) σ _c 101 (GoldmDT6 of 577 (GoldmDT6 101 (GoldmDT6 of 101 (GoldmDT6	61) 6, 64)	chem, mass spect (CuriM31) parent Th ²³¹ (UY)		4.58 (8%, doublet), 4.40 (57%), 4.37 (18%) Th X-rays, 0.143 (11%), 0.185 (54%), 0.204 (5%) daughter radiations from Th ²³¹ , etc.	natural source
U ²³⁵ m	26.1 m (ShimS65) 26.5 m (AsaF57) 26.6 m* (HuiJ57a)	¥ IT (AsaF57, H △ 40.93 (LHP, N		genet (AsaF57) chem, genet (HuiJ57a) daughter Pu ²³⁹ (AsaF57, HuiJ57a) not daughter Np ²³⁵ , lim 2% (GinJ58)	e ⁻	≤0.0001 (100 eV)	daughter Pu ²³⁹ (AsaF5 HuiJ57a)
u ²³⁶	2.39 x 10 ⁷ y sp act (FleE52) 2.46 x 10 ⁷ y sp act (JafAH51a) t _{1/2} (SF) 2 x 10 ¹⁶ y (HydE57)	# a (GhiA51a) β stable (cons (ForB58) Δ 42.46 (MTW) σ _c 6 (GoldmDT64)	energy)	chem, n-capt, mass spect (GhiA51a)	γ	4.49 (76%), 4.44 (24%) [Th L X-rays] 0.032, 0.045	U ²³⁵ (n, Y) (HydE64)
u ²³⁷	6.75 d (WagF53) 6.63 d (MelaL48) others (WahA48, JameR49, ShermL58)	φ β (Nis Y 40a, N Δ 45.41 (MTW)	AMilE40a) A	chem, excit (NisY40a, MMilE40a) parent Np ²³⁷ (WahA48) daughter Pu ²⁴¹ (SeaG49a)	e-	0.248 max 0.008, 0.011, 0.038, 0.089, 0.186 0.026 (2%), 0.060 (36%), 0.165 (2.0%), 0.208 (23%), 0.267 (0.76%), 0.332 (1.4%, doublet), 0.370 (0.17%, doublet)	U ²³⁶ (n, Y) {RasJ57, YamaT66} U ²³⁸ (n, 2n) (MMilE40a NisY40a, WahA48)
<u>u²³⁸</u>	4.51 x 10 ⁹ y sp act (KovAF55, NierA39) others (KieC49, LeacR57) t _{1/2} (SF): 6.5 x 10 ¹⁵ y sp act (KuzB59) 1.0 x 10 ¹⁶ y sp act (FleR64, KurOP56) 8.0 x 10 ¹⁵ y sp act (SegE52, SchaG46, ParkPL58) 5.8 x 10 ¹⁵ y sp act (GerlE59)	a; β stable (cons (ForB58) % 99.276 (WhiF56 others (LouM5 Δ 47.33 (MTW) σc - (0.0005 (Goldmorf) σf	6) 6) 64)	chem, genet, mass spect (CuriM31) parent Th ²³⁴ (UX ₁) (BecH1896)	γ	4.20 (75%), 4.15 (25%) [Th L X-rays] 0.030, 0.043 daughter radiations from Th ²³⁴ , Pa ²³⁴ m	natural source (HydE64

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△≥M-A), MeV (C''=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships Major radiations: approximate energies (MeV) and intensities	Principal means of production
92 ^{U 239}	23.54 m (MitA43) 23.5 m (FeaN47a, MelaL47) others (IrvJ39, SeaG49)	φ β (MMilE39) Δ 50.60 (MTW) σ _c 22 (GoldmDT64) σ _f 14 (GoldmDT64)	A n-capt (MeiL37) parent Np ²³⁹ (MMilE40, StarK42) β 1.29 max 0.011, 0.023, 0.052, 0.069 Np L X-rays, 0.044 (4%), 0.075 (51%) daughter radiations from Np ²³⁹	U ²³⁸ (n, Y) (MeiL37, IrvJ39, MMilE39, StarK42)
_U 240	14.1 h (KniJD53)	★ β (KniJD53) Δ 52.74 (MTW)	A chem, n-capt (StuM49) parent Np 240m (KniJD53, HydE48a) daughter Pu 244 (ButlJP56a, DiaH56) B 0.36 max 0.022, 0.038 Np L X-rays daughter radiations from Np 240m	U ²³⁸ (n, Y)U ²³⁹ (n, Y) (HydE64)
93 ^{Np²³¹}	≈50 m (MagL50)	↑ a (MagL50) Δ 35.7 (MTW) EC unstable (consenergy) (MTW)	B chem, genet, excit, sep isotopes (MagL50) a 6.29 daughter radiations from Pa ²²⁷ etc.	U ²³³ (d,4n) (MagL50)
Np ²³²	≈13 m (MagL50)	♀ EC (MagL50) Δ 37 (MTW)	D chem (MagL50) Y U X-rays, hard Y rays (MagL50)	U ²³⁵ (d, 5n), U ²³⁸ (d, 8n), U ²³³ (d, 3n) (MagL50)
Np ²³³	35 m (MagL50)	★ EC 99+%, a ≈10 ⁻³ % (MagL50) Δ 38 (MTW)	B chem, excit, sep isotopes a 5.54 (MagL50) U X-rays, Y rays observed	U ²³³ (d, 2n), U ²³⁵ (d, 4n) (MagL50)
Np ²³⁴	4.40 d (HydE49b) others (OsbD49)	# EC (OrtD5la) no a, lim 0.01% (HydE4%) β + ≈0.05% (PresRJ55) Δ 40.0 (MTW) σ _f ≈900 (GoldmDT64)	isotopes (Jamer49) daughter Pu ²³⁴ (PerlmI49, Orthola) 0.45, 0.50, 0.75, 0.95, 1.21, 1.56 (all radiations complex)	U ²³³ (d, n) (HydE64) U ²³⁵ (d, 3n) (HydE64) U ²³⁵ (p, 2n) (HydE64) U ²³³ (a, p2n) (VanR58a, HydE64)
Np ²³⁵	410 d (JameR52) others (HydE49b)	2 EC 99+%, a 1.6 x 10 ⁻³ % (GinJ58) others (HoffR56) Δ 41.05 (MTW)	(JameR49) a 5.02	U ²³⁵ (d, 2n) (HydE64) daughter Pu ²³⁵ (HydE64) U ²³³ (a, pn) (VanR58a, HydE64) U ²³⁵ (a, p3n) (HydE64)
Np ²³⁶	22 h (JameR49)	# EC 51%, β 49% (GinJ59a) EC(K)/β 0.75 (GrayP56) others (OrtD51) Δ 43.41 (MTW)	A chem, genet, sep isotopes, excit (JameR49) parent Pu ²³⁶ (JameR49, JameR49a, HydE49b, GhiA52) A chem, genet, sep isotopes, e 0.52 max e 0.025, 0.040 U X-rays, 0.642, 0.688	U ²³⁵ (d, n) (HydE64) U ²³⁵ (a, p2n) (HydE64)
Np ²³⁶	$t_{1/2}^{(\beta^{-})} > 5 \times 10^{3} \text{ y sp}$ act (StuM 55)	β [−] (?), no α observed (StuM55) σ _f 2500 (GoldmDT64)	A chem, mass spect (GinJ58, StuM55)	U ²³⁵ (d, n) (GinJ58, StuM55)
Np ²³⁷	2.14 x 10 ⁶ y sp act (BrauF60) 2.2 x 10 ⁶ y sp act (MagL48) t _{1/2} (SF) >10 ¹⁸ y (DruV61a)	# a (WahA48); β stable (cons energy) (ForB58) Δ 44.89 (MTW) σ _c 170 (GoldmDT64) σ _f 0.019 (GoldmDT64)	A chem, genet, excit (WahA48) daughter U ²³⁷ (WahA48) parent Pa ²³³ (MagL47, HageF47) A. 78 (75%, complex), 4.65 (12%, doublet) Pa L X-rays, 0.030 (14%), 0.086 (14%), 0.145 (1%) 0.009, 0.024, 0.036, 0.051, 0.067, 0.082 daughter radiations from Pa ²³³ , U ²³³ , etc.	U ²³⁸ (n, 2n)U ²³⁷ (β ⁻) (WahA48)
Np ²³⁸	2.10 d (FreeM50) others (SeaG49, JameR49a)	β (SeaG46, SeaG49) no EC(K), lim 1% (RasJ55a) EC unstable (consenergy) (MTW) Δ 47.47 (MTW) σ _f 1600 (GoldmDT64)	isotopes (SeaG46) e 0.022, 0.039	Np ²³⁷ (n, Y) (HydE64) U ²³⁸ (d, 2n) (SeaG46) U ²³⁸ (p, n) (MCorG54)
Np ²³⁹	2.346 d (WisL56) 2.37 d (CohD59) 2.34 d (ConnR59) others (PhiK46, DavD65, SeaG46, JameR49)	φ β (MMilE40) Δ 49.32 (MTW) σ _C 25 (to Np ²⁴⁰) 35 (to Np ²⁴⁰ m) (GoldmDT64) σ _f <1 (GoldmDt64)	A chem, n-capt, genet, excit (MMilE39, MMilE40) daughter U ²³⁹ (MMilE40, StarK42) parent Pu ²³⁹ (KenJ49, SeaG49) daughter Am ²⁴³ (StreK50a) A chem, n-capt, genet, excit (MMilE39, MilE40) b - 0.713 max (11%), 0.437 max 0.02-0.04, 0.048, 0.088, 0.106, 0.156 Y UX-rays, 0.106 (23%), 0.209 (4%), 0.228 (12%), 0.278 (14%)	U ²³⁸ (n, Y) U ²³⁹ (β ⁻) (MMilE40, StarK42)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△zM-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
93 ^{Np²⁴⁰}	63 m (LesR60) others (OrtD51a)		β (OrtD5la) 52.2 (MTW)	A	chem, cross bomb (OrtD51a) chem, mass spect (LesR60) not daughter Np ²⁴⁰ m, lim 5% (LesR60)	1.	0.89 max 0.16, 0.25, 0.44, 0.56, 0.60, 0.92, 1.00, 1.16	U ²³⁸ (a,pn) (VanR58a, HydE64)
Np ²⁴⁰ m	7.3 m (KniJD53, HydE48a)	1	β ⁻ (HydE48a) 52.3 (LHP, MTW)	A	chem, genet (HydE48a, KniJD53) daughter U ²⁴⁰ (HydE48a, KniJD53) not parent Np ²⁴⁰ , lim 5% (LesR60) descendant Pu ²⁴⁴ (ButlJP56a, DiaH56)	e Y	2.16 max 0.022, 0.038 0.56 (21%), 0.60 (13%), 0.92 (3%, complex), 1.5 (3%, complex)	daughter U ²⁴⁰ (HydE64)
Np ²⁴¹	16 m (VanR59, LesR60)		β (VanR59) 54.3 (MTW)	A	chem, mass spect (LesR60)	β	1.4 max	U ²³⁸ (a,p) (VanR59, LesR60)
Np ²⁴¹	3.4 h (LesR60)	*	[p¯] (LesR60)	в	chem, mass spect (LesR60)			U ²³⁸ (a,p) (LesR60)
94 ^{Pu²³²}	36 m (OrtD5la)		a ≥2%, EC ≤98% (OrtD51a) 38.4 (MTW)	В	chem, sep isotopes, excit, genet (OrtD51a) parent U ²²⁸ (OrtD51a, JameR48)	a	6.59 daughter radiations from Np ²³² , U ²²⁸ , etc	U ²³³ (a, 5n) (ThomT57) U ²³⁵ (a, 7n) (HydE64)
Pu ²³³	20 m (ThomT57)	4	EC 99+%, a 0.1% (ThomT57) 40.04 (MTW)	В	chem, excit, genet (ThomT57) parent U ²²⁹ (ThomT57)	a.	6.31 daughter radiations from Np ²³³ , U ²²⁹ , Th ²²⁵ , etc.	U ²³³ (a, 4n) (ThomT57)
Pu ²³⁴	9.0 h (OrtD51a) 8.5 h (Perlm149) others (HigG52a)	1	EC 94%, a 6% (AsaF57a) 40.34 (MTW)	A	chem, genet, sep isotopes, excit (HydE49b, PerlmI49) parent U ²³⁰ , parent Np ²³⁴ (PerlmI49, OrtD51a) daughter Cm ²³⁸ (HigG52a)		6.20 (4%), 6.15 (1.9%) Np X-rays daughter radiations from Np ²³⁴ , U ²³⁰ , etc.	U ²³⁵ (a, 3n) (VanR58a) U ²³⁵ (a, 5n) (HydE64)
Pu ²³⁵	26 m (OrtD5la, ThomT57)		EC 99+%, a 0.003% (ThomT57) 42.2 (MTW)	в	chem, excit, sep isotopes (OrtD5la, ThomT57)		Np X-rays 5.86	U ²³⁵ (a,4n), U ²³³ (a,2n) (ThomT57, OrtD5la)
Pu ²³⁶	2.85 y (HoffD57) others (JameR49) t _{1/2} (SF) 3.5 x 10 ⁹ y (GHiA52)	Δ	a (JameR49) β stable (cons energy) (ForB58) 42.90 (MTW) 170 (GoldmDT64)	A	chem, excit, sep isotopes, cross bomb, genet (JameR49) parent U ²³² (JameR49) daughter Cm ²⁴⁰ (SeaG49b) daughter 22 h Np ²³⁶ (JameR49, JameR49a, HydE49b, GhiA52)	Y	5.77 (69%), 5.72 (31%) U L X-rays, 0.048 (0.31%), 0.109 (0.012%) 0.028, 0.043 daughter radiations from U ²³² , etc.	daughter Np ²³⁶ (HydE64) U ²³⁵ (a, 3n) (VanR58a)
Pu ²³⁷	45.6 d (HoffD57a) 44 d (ThomT57) 40 d (HoffR53) others (JameR49a)	Δ	EC 99+%, a 0.0033% (ThomT57) EC 99+%, a 0.002% (HoffD57a) 45.12 (MTW) 2500 (GoldmDT64)	A	chem, sep isotopes, crc bomb (JameR49) chem, genet energy levels (HoffD58) chem, mass spect (ThomT57)	e-	Np X-rays, 0.060 (5%) 0.026, 0.032, 0.038, 0.042, 0.056 5.66 († 21), 5.37 († 79)	U ²³⁵ (a, 2n) (VanR58a) Np ²³⁷ (d, 2n) (JameR49a)
Pu ^{237m}	0.18 s (StepF57a)	ı	IT (StepF57a) 45.26 (MTW)	A	genet (StepF57a) daughter Cm ²⁴¹ (StepF57a)		Pu L X-rays, 0.145 (2%) 0.125 (75%), 0.140 (23%)	daughter Cm ²⁴¹ (StepF57a)
բս ²³⁸	86.4 y genet (HoffD57b) others (SeaG49b, JafAH49) t _{1/2} (SF) 4.9 x 10 ¹⁰ y (HydE57) others (DruV61a, SegE52)	Δ	a (SeaG46) β stable (cons energy) (ForB58) 46.18 (MTW) 500 (GoldmDT64) 16.8 (GoldmDT64)	A	chem, sep isotopes, excit (SeaG46, SeaG46a, SeaG49) daughter Np ²³⁸ (JameR49, JafAH49, SeaG46a, KenJ49a, SeaG46) daughter Cm ²⁴² (SeaG49b)	Y	5.50 (72%), 5.46 (28%) U L X-rays, 0.099 (8 x 10^{-3} %), 0.150 (1 x 10^{-3} %), 0.77 (5 x 10^{-5} %, complex) 0.024, 0.039	daughter Np ²³⁸ from Np ²³⁷ (n, Y) (HydE64) daughter Cm ²⁴² (HydE64)
Pu ²³⁹	24, 390 y sp act (DokY59) 24, 413 y sp act (MarkT59) 24, 181 y calorimeter (DetF65, StouJ47) others (FarwG54, CunB49) t _{1/2} (SF) 5.5 x 10 ¹⁵ y (SegE52)	Δ	a (KenJ49) β stable (cons energy) (ForB58) 48.60 (MTW) 274 (GoldmDT64) 741 (GoldmDT64)	А	chem, genet, mass spect (KenJ49) daughter Np ²³⁹ (KenJ49, SeaG49) parent U ^{235m} (AsaF57, HuiJ57a)	Y	5.16 (88%, doublet), 5.11 (11%) U X-rays, 0.039 (0.007%), 0.052 (0.020%), 0.129 (0.005%), 0.375 (0.0012%), 0.414 (0.0012%), 0.65 (8 x 10 ⁻⁵ %, complex), 0.77 (2 x 10 ⁻⁵ %, doublet) 0.008, 0.019, 0.033, 0.047	$U^{238}(n, Y)U^{239}(\beta^-)$ $Np^{239}(\beta^-)$ (KenJ49, SeaG49)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△±M-A), MeV (C'=0); Thermal neutron cross section (σ), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
94 Pu ²⁴⁰	6580 y genet (IngM51) others (DokY59, ButlJP56a, WestE51, FarwG54) t1/2 (SF): 1.34 x 10 ¹¹ y (WatD62b) 1.45 x 10 ¹¹ y (MalkL63) others (BarcF54, ChambO54)		A chem, n-capt, mass spect (ChambO44, FarwG46, BartlA44) daughter Cm ²⁴⁴ (FrieA54)	a 5.17 (76%), 5.12 (24%) Y U L X-rays, 0.65 (complex, 2 x 10 ⁻⁵ %) e 0.026, 0.040	multiple n-capt from U ²³⁸ , Pu ²³⁹ (HydE64)
Pu ²⁴¹	13.2 y (BrowF60) others (HallG56, MKenD53, RosB56, SmiH61, ThomS50d)	β 99+%, α 2.3 x 10 ⁻³ % (BrowF60, SmiH61) others (AsaF57a, SeaG49a, GhiA50, IvaR63) Δ 52.98 (MTW) σ _C σ _f 950 (GoldmDT64)	A chem, n-capt, mass spect, excit, genet (SeaG49a, SeaG49, GhiA50) parent Am 241 (SeaG49a, CunB49a) parent U ²³⁷ (SeaG49a) daughter Cm 245 (FrieA54)	β 0.021 max α 4.90 (0.0019%), 4.85 (0.0003%) Υ U X-rays, 0.145 (1.6 x 10 ⁻⁴ %) daughter radiations from Am ²⁴¹	multiple n-capt from U ²³⁸ , Pu ²³⁹ , etc. (HydE64)
Pu ²⁴²	3.79 x 10 ⁵ y sp act (ButlJP56a) 3.73 x 10 ⁵ y sp act (ButlJP56) others (MecJ56, ThomS50d) t _{1/2} (SF): 7.1 x 10 ¹⁰ y (MecJ56) 7.4 x 10 ¹⁰ y (MalkL63) 6.6 x 10 ¹⁰ y (ButlJP56) others (DruV61a)	α (ThomS50d) β stable (cons energy) (ForB58) Δ 54.74 (MTW) σ _c σ _f <0.2 (GoldmDT64)	A chem, mass spect, n-capt, genet (ThomS50d) daughter Am ²⁴² (AsaF60, OKelG50) daughter Cm ²⁴⁶ (FrieA54)	а 4.90 (76%), 4.86 (24%) Y [U L X-гауя]	multiple n-capt from U ²³⁸ , Pu ²³⁹ , etc. (HydE64) daughter Am ²⁴² (ButlJP56, HydE64)
Pu ²⁴³	4.98 h (EngeD53) others (SulJ51, ThomS51)	φ β (SulJ51) Δ 57.77 (MTW) σ _c 170 (GoldmDT64)	A chem, n-capt, cross bomb (SulJ51) genet (ThomS51) parent Am 243 (ThomS51)	β- 0.58 max e- 0.019, 0.036 Y Am L X-rays, 0.084 (21%), 0.381 (0.7%)	Pu ²⁴² (n, Y) (HydE64, SulJ51, ThomS51)
Pu ²⁴⁴	=7.6 x 10 ⁷ y genet (DiaH56) =7.5 x 10 ⁷ y genet (ButlJP56a) t _{1/2} (SF) 2.5 x 10 ¹⁰ y (FieP55a)	[a] (StuM54a) β stable (cons energy) (ForB58) Δ 59.83 (MTW) 1.8 (GoldmDT64)	A chem, n-capt, mass spect, genet (StuM54a, ButiJP56a, DiaH56) ancestor Np ^{240m} , parent U ²⁴⁰ (ButlJP56a, DiaH56) daughter Am ^{244m} (FieP55a)	a [4.58] daughter radiations from U ²⁴⁰ , Np ²⁴⁰ m	multiple n-capture from U ²³⁸ , Pu ²³⁹ , etc. (HydE64, EngeD55, StuM54a)
Pu ²⁴⁵	10.1 h (FieP55) 10.6 h genet (ButlJP56a) others (BrowCI55)	\$\frac{\phi}{\phi}\$ \(\theta^{-}\) (Fie P55) \$\Delta\$ 63 (MTW) \$\sigma_{c}\$ = 260 (Goldm DT 64)	B chem, n-capt (FieP55, BrowCI55) parent Am ²⁴⁵ (ButlJP56a, FieP55)	daughter radiations from Am ²⁴⁵	Pu ²⁴⁴ (n, Y); multiple n-capt from U ²³⁸ , Pu ²³⁹ , etc. (HydE64, ButlJP56a)
Pu ²⁴⁶	10.85 d (HoffD56) others (EngeD55)	φ β (EngeD55) Δ 65.3 (MTW)	A chem, n-capt, mass spect (EngeD55) parent Am ²⁴⁶ (EngeD55)	β- 0.33 max (10%), 0.15 max 0.020, 0.038, 0.055, 0.156 Y Am X-rays, 0.044 (30%), 0.180 (10%), 0.224 (25%) daughter radiations from Am ²⁴⁶	multiple n-capt from U ²³⁸ (EngeD55, HydE64)
95 ^{Am²³⁷}	≈1.3 h (HigG52a)	★ EC 99+%, a 0.005% (HigG52a) Δ 47 (MTW)	B chem, excit (HigG52a)	a 6.02	Pu ²³⁹ (p, 3n), Pu ²³⁹ (d, 4n) (HigG52a)
. Am ²³⁸	1.9 h (GlasR60) others (HigG52a)	EC (StreK50a) no α, lim 3 x 10 ⁻⁴ % (HigG52a) Δ 48 (MTW)	B chem, excit (StreK50a)	Pu X-rays, 0.36 (12%), 0.58 (29%), 0.98 (80%, doublet), 1.35 (76%)	Pu ²³⁹ (p, 2n) (GlasR60) Pu ²³⁹ (d, 3n) (StreK50a, HydE64) Np ²³⁷ (a, 3n) (HydE64)
Am ²³⁹	12.1 h (GlasR60) 12 h (SeaG49a)	EC 99+%, a 0.005% (GlasR60) EC 99+%, a 0.003% (HigG52a) A 49.41 (MTW)	A chem, excit (SeaG49a) genet energy levels (SmiW57) daughter Bk ²⁴³ (ThomS50b)	Y Pu X-rays, 0.209 (5%), 0.228 (18%, doublet), 0.278 (17%) e** 0.02-0.04, 0.048, 0.088, 0.106, 0.156 5.78	Pu ²³⁹ (p,n) (StreK50a) Pu ²³⁹ (d,2n) (GlasR60, HigG52a, SeaG49a) Np ²³⁷ (a,2n) (SeaG49a)

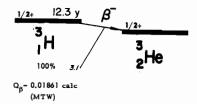
Isotope Z A	Half-life		Type of decay (*); % abundance; Mass excess (Δ*M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
₉₅ Am ²⁴⁰	51.0 h (GlasRé0) others (SeaGé9a)	1	EC (SeaG49a) no a, lim 0.2% (HigG52a) 51 (MTW)		chem, excit (SeaG49) chem, excit, cross bomb (StreK50a) genet energy levels (SmiW57)		Pu X-rays, 0.90 (23%), 1.00 (77%) 0.022, 0.038, 0.079, 0.094	Pu ²³⁹ (d,n) (StreK50a) Pu ²³⁹ (a,p2n) (GlasR56 VanR58) Np ²³⁷ (a,n) (StreK50a, HydE64)
Am ²⁴¹	458 y sp act (HallG57, WallJ58, HallG56) others (HarvB52) t _{1/2} (SF) 2 x 10 ¹⁴ y (DruV61) others (MikV59)	Δ •c	a (SeaG49a) β stable (cons energy) (ForB58) 52.96 (MTW) 700 (to Am ²⁴²) 100 (to Am ²⁴² m) (GoldmDT64) 3.0 (GoldmDT64)	A	chem, n-capt, excit, mass spect (SeaG49a) daughter Pu ²⁴¹ (SeaG49a, CunB49a)	Y	5.49 (85%), 5.44 (13%) Np L X-rays, 0.060 (36%), 0.101 (0.04%, complex), 0.208 (6 x 10 ⁻⁴ %), 0.335 (8 x 10 ⁻⁴ %, complex), 0.37 (4 x 10 ⁻⁴ %, complex), 0.663 (5 x 10 ⁻⁴ %), 0.722 (3 x 10 ⁻⁴ %) 0.022, 0.038, 0.054	daughter Pu ²⁴¹ (HydE64
Am ²⁴²	16.01 h (KeeT53) others (BaranS55, SeaG49b)	Δ	β 84%, EC 16% (HoffR59) others (BarnR59, HoffR55, BaranS55) 55.48 (MTW) 2900 (GoldmDT64)		chem, n-capt, genet (MannWM49, SeaG49b) parent Cm ²⁴² (MannWM49, SeaG49b, AsaF60) parent Pu ²⁴² (OKelG50, AsaF60) daughter Am ^{242m} (AsaF60)	e-	0.67 max 0.021, 0.037 Pu X-rays, Cm L X-rays	Am ²⁴¹ (n, Y), or multiple n-capt from U ²³⁸ , Pu ²³⁹ , etc (HydE64)
Am ²⁴² m	152 y (BarnR59) others (StreK50a)	Δ σ _C	IT 99+%, a 0.48% (BarnR59, AsaF60) 55.52 (LHP, MTW) 2000 (GoldmDT64) 6000 (GoldmDT64)	A	chem, mass spect, n-capt (SeaG49a, StreK50a) parent Am ²⁴² (AsaF60) parent Np ²³⁸ (SeaG49a, StreK50a, AsaF60)		5.21 (0.41%) 0.028, 0.044 Am L X-rays, Np X-rays, 0.049 (0.20%), 0.087 (0.036%), 0.110 (0.025%), 0.163 (0.025%) daughter radiations from Am ²⁴² , Np ²³⁸	Am ²⁴¹ (n, Y) (SeaG49a, MannWM49, AsaF60)
Am ²⁴³	7.95 x 10 ³ y sp act (WallJ58) 7.65 x 10 ³ y sp act (BeadA60) others (BarnR59, ButlJP57, HulE57, AsaF54, DiaH53)	Δ	a (StreK50a) β stable (cons energy) (ForB58) 57.18 (MTW) 74 (GoldmDT64) <0.07 (GoldmDT64)	A	chem, mass spect (StreK50a) parent Np ²³⁹ (StreK50a) daughter Pu ²⁴³ (ThomS51)	Y	5.28 (87%), 5.23 (11.5%) Np L X-rays, 0.044 (4%), 0.075 (50%) [0.011, 0.023, 0.052, 0.069] daughter radiations from Np ²³⁹	multiple n-capt from U ²³⁸ , Pu ²³⁹ , etc. (HydE 64, StreK50a)
Am ²⁴⁴	10.1 h (VanS62)	Δ	β ⁻ (VanS62) 59.90 (MTW) 2300 (GoldmDT64)	A	chem, n-capt, sep isotopes, genet (VanS62) parent Cm ²⁴⁴ (VanS62)	e -	0.387 max 0.020, 0.037, 0.077, 0.094 Cm X-rays, 0.099 (5%), 0.154 (19%), 0.746 (66%), 0.900 (25%)	Am ²⁴³ (n, Y) (VanS62)
Am ²⁴⁴ m	26 m (GhiA54a)	-	β ⁻ 99+%, EC 0.039% (FieP55a) 60.02 (LHP, MTW)	A	chem, n-capt (StreK50a) chem, genet (FieF55a) parent Cm ²⁴⁴ (ReynF50, FieP55a) parent Pu ²⁴⁴ (FieP55a)	e ⁻	1.50 max 0.020, 0.037 Cm L X-rays	Am ²⁴³ (n, Y) (StreK50a)
Am ²⁴⁵	2.07 h (ButLJP56a) others (BrowCI55, FieP55)		β (BrowCI55, FieP55) 61.93 (MTW)	В	D' Dec.	e-	0.91 max 0.125 Cm X-rays, 0,253	daughter Pu ²⁴⁵ (ButlJP56a, FieP55, BrowCI55, HydE64)
Am ²⁴⁶	25.0 m (EngeD55) others (BrowCI55)	1	β (EngeD55, BrowCI55) 64.9 (MTW)	A	chem, genet (BrowCI55, EngeD55) parent Cm ²⁴⁶ (BrowCI55) daughter Pu ²⁴⁶ (EngeD55)	' :	2.10 max (7%), 1.60 max Cm X-rays, 0.799 (29%), 1.07 (65%, complex)	daughter Pu ²⁴⁶ (EngeD55,. HydE64)
96 ^{Cm 238}	2.5 h (StreK48)	1	EC <90%, a >10% (CarrR52) 49.39 (MTW)	В	chem (StreK48) chem, genet (HigG52a) parent Pu ²³⁴ (HigG52a)	a	6.51 daughter radiations from Pu ²³⁴	Pu ²³⁹ (a, 5n) (GlasR 56, StreK48) Pu ²³⁸ (a, 4n) (GlasR 56)
Cm ²³⁹	2.9 h (VanR58) 3 h (CarrR52)		EC, no a (lim 0.1%) (CarrR52) 51 (MTW)	В	chem, excit (CarrR52) chem, genet energy levels (VanR58)	Υ	Am X-rays, 0.188 daughter radiations from Am ²³⁹	Pu ²³⁹ (a,4n) (CarrR52)

Isotope Z A	Half-life	Type of decay (★); % abundance; Mass excess (△=M-A), MeV (C ¹² =0); Thermal neutron cross section (σ), barns	Genetic relationships approximate	r radiations: te energies (MeV) intensities Principal means of production
96 ^{Cm 240}	26.8 d (SeaG49b) t _{1/2} (SF) 7.9 x 10 ⁵ y (GhiA52)	☆ a (SeaG4%) no EC, lim 0.5% (HigG52) △ 51.72 (MTW)	A chem, genet (SeaG49b) parent Pu ²³⁶ (SeaG49b) daughter Cf ²⁴⁴ (ChetA56)	6.25 (28%) Pu ²³⁹ (a, 3n) (GlasR 56) iations from Pu ²³⁶
Cm ²⁴¹	35 d (Hi g G52)	★ EC 99%, a 1.0% (GlasR56) Δ 53.73 (MTW)	(SeaG49b, HigG52, GlasR59) parent Pu ^{237m} (StepF57a) c = 0.123, 0.350 5.94 daughter radi	0.475 (95%), 0.60 Pu ²³⁹ (a, 2n) (GlasR56) initions from Pu ²³⁷ initions from Pu ²³⁷ above listing
Cm ²⁴²	162.5 d (GloK54, HannG50) 164.4 d (FlyK65a) others (HutWP54) t _{1/2} (SF) 7.2 x 10 ⁶ y (HannG51)		daughter Am. SeaG49b) daughter Cf ²⁴⁶ (HulE51) parent Pu ²³⁸ (SeaG49b) 0.102 (4 x (2.5 x 10 ⁻³ daughter Cf ²⁴⁶ (HulE51) (3.2 x 10 ⁻⁴ (3 x 10 ⁻⁵ % e ⁻ 0.022, 0.039	, 0.044 (0.041%), 10 ⁻³ %), 0.158 %), 0.58 %, complex), 0.89 Am ²⁴¹ (n, Y), or multiple n-capt from U ²³⁸ , Pu ²³⁹ , etc. (HydE64)
Cm ²⁴³	32 y sp act + mass spect (AsaF57a, HydE64) others (ThomS50b)	4 a (ReynF50) EC 0.3% (ChoG58) Δ 57.19 (MTW) σ _c 250 (GoldmDT64) σ _f 660 (GoldmDT64)	(ReynF50) doublet), 5 (11.5%) doublet Bk ²⁴³ (ThomS50b) Y Pu X-rays, 0 (12%), 0.27	multiple n-capt from U ²³⁸ , Pu ²³⁹ , etc. (HydE64, ReynF50) 8 (14%) 048, 0.088, 0.106,
Cm ²⁴⁴	17.6 y sp act + mass spect (CarnW61) others (FrieA54, StevC54) t _{1/2} (SF) 1.31 x 10 ⁷ y (MetD65) 1.46 x 10 ⁷ y (MalkL63a) others (GhiA52)	α (ReynF50) β stable (cons energy) (ForB58) Δ 58.47 (MTW) σ _c 15 (GoldmDT64)	FieP55a) 0.100 (0.00 daughter Am ²⁴⁴ (VanS62) (0.0013%),	U ²³⁸ , Pu ²³⁹ , Am ²⁴³ etc. (HydE64) 0.262 (1.4 x 10 ⁻⁴ %), 10 ⁻⁴ %, doublet),
Cm ²⁴⁵	9.3 x 10 ³ y genet, mass spect (CarnW61) others (HuiJ57b, BrowCI55, FrieA54)	α (HulE51) β stable (cons energy) (ForB58) Δ 61.02 (MTW) σ _c 200 (GoldmDT64) σ _f 1900 (GoldmDT64)	A chem, decay charac, genet (HulE51) chem, mass spect (StevC54, HulE54) daughter Bk ²⁴⁵ (HulE54, HulE51) parent Pu ²⁴¹ (FrieA54) 5.36 (80%), 9 (14%) daughter radi Am ²⁴¹	229 220 242
Cm ²⁴⁶	5.5 x 10 ³ y genet (CarnW61) others (ButJJP56b, BrowCI55, FrieA54) t _{1/2} (SF) 1.7 x 10 ⁷ y (MetD65) others (FrieS56)	α (FrieA54, StevC54) β stable (cons energy) (ForB58) Δ 62.64 (MTW) σ _c 15 (GoldmDT64)	A chem, mass spect (StevC54, FieP56) parent Pu ²⁴² (FrieA54) daughter Am ²⁴⁶ (BrowCI55) daughter Cf ²⁵⁰ (ButlJP56b)	229 220 244
Cm ²⁴⁷	$t_{1/2}$ (a) 1.6×10^7 y genet + mass spect (FieP63) $t_{1/2}$ (a) >4 x 10^7 y genet + mass spect (DiaH57, StevC54)	* [a] (DiaH57, StevC54) Δ 65.56 (MTW) σ _c 180 (GoldmDT64)	A chem, mass spect (StevC54, DiaH57) daughter Cf ²⁵¹ (EasT57)	multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , etc. (HydE64, DiaH57, StevC54)
Cm ²⁴⁸	4.7 x 10 ⁵ y sp act (ButlJP56b) t _{1/2} (SF) 4.6 x 10 ⁶ y (ButlJP56b)	4 a 8%, SF 11% (ButlJP56b) β stable (cons energy) (ForB58) Δ 67.43 (MTW) σ _c 6 (GoldmDT64)	B chem, genet (ButlJP56b) daughter Cf ²⁵² (ButlJP56b) The property of the control of the cont] (ButlJP56b) multiple n-capt from
Cm ²⁴⁹	64 m (EasT58) 65 m (FieP56)	Υ β (FieP56) Δ 70.8 (MTW)	B n-capt, chem (FieP56) β 0.9 max	Cm ²⁴⁸ (n, Y) (EasT58) multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , etc. (ThomS54, FieP56, HydE64)

Isotope Z A	Half-life		Type of decay (♣); % abundance; Mass excess (△≥M-A), MeV (C²=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
96 ^{Cm²⁵⁰}	t _{1/2} (SF): 1.7 x 10 ⁴ y (GrouCR66) 2 x 10 ⁴ y (HuiJ57b) others (FieP56)	1	SF (HuiJ57b) 73 (MTW)	A	chem, decay charac (HuiJ57b) chem, mass spect (GrouCR66)	SF	fission fragments, neutrons, Y rays, electrons, daughter radiations	multiple n-capt from U ²³⁸ (HuiJ57b, HydE64)
97 ^{Bk²⁴³}	4.6 h (ThomS 50b, GhiA54) 4.5 h (ChetA56b) others (HulE51)		EC 99+%, a 0.15% (ChetA56b) 58.70 (MTW)	A	chem, genet (ThomS50, ThomS50b) parent Cm ²⁴³ (ThomS50b) parent Am ²³⁹ (ThomS50b)		6.76 (0.023%), 6.72 (0.019%), 6.57 (0.038%), 6.54 (0.029%), 6.21 (0.020%) Cm X-rays, 0.755, 0.84, 0.946	Am ²⁴¹ (a, 2n) (ThomS50b Cm ²⁴² (d, n) (HulE51) Am ²⁴³ (a, 4n) (ChetA56b (HydE64)
Bk ²⁴⁴	4.4 h (ChetA56b)		EC 99+%, a 0.006% (ChetA56b) 61 (MTW)	в	chem, excit, genet (ChetA56b) parent Cm ²⁴⁴ (ChetA56b, GuseL56)	1 :	6.67 (0.003%), 6.62 (0.003%) Cm X-rays, 0.145 († 7), 0.188 († 16), 0.218 († 100), 0.334 († 10), 0.490 († 14), 0.892 († 88), 0.922 († 17), 1.16 († 11, doublet)	Am ²⁴³ (a, 3n) (ChetA56b [Cm ²⁴⁴ (d, 2n)], [Cm ²⁴⁴ (p, n)], Am ²⁴¹ (a, n) (HydE64)
Bk ²⁴⁵	4.98 d (MagL56) others (HulE51)	-	EC 99+%, a 0.11% (MagL56) 61.84 (MTW)	A	chem, excit, decay charac (HulE51) daughter Cf ²⁴⁵ (ChetA56) parent Cm ²⁴⁵ (HulE51, HulE54)	γ	6.36 (0.018%), 6.32 (0.017%), 6.15 (0.021%), 6.12 (0.016%), 5.89 (0.024%) Cm X-rays, 0.253 (31%), 0.39 (3%, doublet) 0.125	Am ²⁴³ (a, 2n) (ChetA56b) Cm ²⁴⁴ (d, n) (HulE51) Cm ²⁴² (a, p) (HulE51) (HydE64)
Bk ²⁴⁶	1.8 d (HulE54)	1	EC (HulE54) 64 (MTW)	В	chem, decay charac, excit (HulE54, ChetA56b)	٧	Cm X-rays, 0.800 (40%), 1.07 (12%, complex)	Cm ²⁴⁴ (a, pn), Am ²⁴³ (a, n) (HulE54, ChetA56b, HydE64)
Bk ²⁴⁷	1.4 x 10 ³ y (MileJ65) others (ChetA56b)	1	a, no EC (ChetA56b) 65.47 (MTW)	В	chem, decay charac (ChetA56b)		5.68 (37%), 5.52 (58%) Am X-rays, 0.084 (40%), 0.27 (30%) daughter radiations from Am ²⁴³ etc.	daughter Cf ²⁴⁷ , Cm ²⁴⁴ (a, p), Cm ²⁴⁵⁻⁶ (a, pxn) (HydE64, ChetA56b)
Bk ²⁴⁸	16 h (ChetA56b) 23 h genet (HulE56)		β ⁻ 70%, EC 30% (ChetA56b) 67.9 (MTW)	В	n-capt, chem, genet (ChetA56b) parent Cf ²⁴⁸ (HulE56, ChetA56b)	1.	0.65 max Cm X-rays daughter radiations from Cf ²⁴⁸	Bk ²⁴⁷ (n, Y) (ChetA56b) Cm ²⁴⁵ (a, p) (HulE56) (HydE64)
Bk ²⁴⁸	>9 y sp act + mass spect (MilsJ65) t _{1/2} (β ⁻) >10 ⁴ y genet (MilsJ65)	*	?	В	chem, mass spect (MilsJ65)			Cm ²⁴⁶ (a, pn) (MilsJ65)
Bk ²⁴⁹	314 d (EasT57) others (MagL54, DiaH54) t _{1/2} (SF): 6 x 10 ⁸ y (HydE57) >1.5 x 10 ⁹ y (EasT57)	Δ σ.	β 99+%, α 0.0022% (EasT57) others (MagL54, DiaH54) 69.86 (MTW) 500 (GoldmDT64)		chem, genet (ThomS54, GhiA54a, DiaH54) chem, mass spect (FieP56) parent Cf ²⁴⁹ (GhiA54a, MagL54)	ā	0.125 max 5.42 (0.0015%) 0.32 (3 x 10 ⁻⁵ %, doublet) daughter radiations from Cf ²⁴⁹ , Am ²⁴⁵	multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , etc. (ThomS54, DiaH54, MagL54, FieP56, HydE64)
Bk ²⁵⁰	193.3 m (VanS59) others (GhiA54a, MagL54)	1	β¯ (GhiA54a) 72.95 (MTW)	A	n-capt, chem, genet (GhiA54a) parent Cf ²⁵⁰ (GhiA54a) daughter Es ²⁵⁴ (HarvB55, JonM56)	e ⁻	1.76 max (11%), 0.73 max 0.019, 0.036 Cf L X-rays, 0.990 (47%), 1.032 (39%)	Bk ²⁴⁹ (n, Y) (GhiA54a) daughter Es ²⁵⁴ (HarvB55, JonM56) (HydE64)
98 ^{Cf²⁴⁴}	25 m (ChetA56) others (ThomS50c, ThomS50a, GhiA51, GhiA54, GuseL56)	1	a (ChetA56) 61.43 (MTW)	A	chem, excit, genet (ThomS50a, ChetA56) parent Cm ²⁴⁰ (ChetA56) daughter Fm ²⁴⁸ (GhiA58)	a	7. 18	Cm ²⁴⁴ (a, 4n) (ChetA56) Cm ²⁴² (a, 2n) (ChetA56) U ²³⁸ (C ¹² , 6n) (HydE64)
Cf ²⁴⁵	44 m (ThomS50c) others (ThomS50a, GhiA51, GhiA54)		EC 70%, a 30% (ChetA56) 63.38 (MTW)	В	chem, excit, genet (ChetA56) parent Bk ²⁴⁵ (ChetA56) not parent Cm ²⁴⁰ (ChetA56) daughter Fm ²⁴⁹ (PerelV59)	a	7.12 daughter radiations from Bk ²⁴⁵ . Cm ²⁴¹	Cm ²⁴⁴ (a, 3n) (ChetA56) Cm ²⁴² (a, n) (ChetA56) U ²³⁸ (C ¹² , 5n) (GhiA51, GhiA54) (HydE64)
Cf ²⁴⁶	35.7 h (HulE51) t _{1/2} (SF) 2.1 x 10 ³ y (HulE53)	1	a (GhiA51) 64.11 (MTW)	A	chem, genet (GhiA51) parent Cm ²⁴² (HulE51) daughter Es ²⁴⁶ (GhiA54)	a Y	6.76 (78%), 6.72 (22%) Cm L X-rays daughter radiations from Cm ²⁴²	Cm ²⁴⁴ (a, 2n) (ChetA56, HulE51) U ²³⁸ (C ¹² , 4n) (GhiA51) (HydE64)

Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C''=0); Thermal neutron cross section (♂), barns	Class; Identification; Genetic relationships	Major radiations: approximate energies (MeV) and intensities	Principal means of production
98 ^{Cf²⁴⁷}	2.5 h (HulE54, ChetA56b) others (GhiA54)	★ EC (HulE54) △ 66 (MTW)	B chem (HulE54) chem, excit (ChetA56b)	Bk X-rays, 0.295 (1%), 0.417, 0.460 c 0.164	Cm ²⁴⁴ (a, n) (HulE54) Cm ²⁴⁵⁻⁶ (a, xn) (HydE64) U ²³⁸ (N ¹⁴ , p4n) (GhiA54)
Cf ²⁴⁸	350 d genet (HulE57a) others (GhiA54) t _{1/2} (SF) ≥1.5 x 10 ⁴ y (HulE57a)	a (GhiA54, HulE54) β stable (cons energy) (ForE58) Δ 67.26 (MTW)	chem, genet (GhiA54, (HulE54) parent Cm ²⁴⁴ (HulE54) daughter 16 h Bk ²⁴⁸ (HulE56, ChetA56b) daughter Fm ²⁵² (FrieA56) daughter Es ²⁴⁸ (ChetA56a)	a 6.27 (82%), 6.22 (18%) Y [Cm L X-rays]	Cm ²⁴⁵⁻²⁴⁸ (a, xn) (HulE54) Ú ²³⁸ (N ¹⁴ , p3n) (GhiA54) daughter Bk ²⁴⁸ , Es ²⁴⁸ , Fm ²⁵² (HydE64)
Cf ²⁴⁹	360 y genet (EasT57) others (MagL54, GhiA54a) t _{1/2} (SF): 1.5 x 10 ⁹ y (HydE57) others (DiaH54, MagL54)	α (ThomS54) β stable (cons energy) (ForB58) Δ 69.74 (MTW) σ _c 270 (GoldmDT64) σ _f 1735 (GoldmDT64)	A chem, genet (ThomS54, GhlA54a) chem, genet, mass spect (DiaH54, MagL54, FieP56) daughter Bk 249 (GhlA54a, MagL54)	a 5.81 (84%) Y Cm X-rays, 0.333 (16%), 0.388 (72%)	daughter Bk ²⁴⁹ (GhiA54a, DiaH54, MagL54, HydE64) multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , etc. (HydE64)
Cf ²⁵⁰	13.2 y genet (MetD65) 13 y (PhiL63) others (EasT57,	\$\frac{\pi}{\pi}\$ a (GhiA54a) \$\beta\$ stable (cons energy) (ForB58) \$\Delta\$ 71.19 (MTW) \$\sigma_c\$ 1500 (GoldmDT64) \$\sigma_f\$ <350 (GoldmDT64)	A chem, genet (ThomS54, GhiA54a) chem, mass spect (DiaH54, MagL54) daughter Bk ²⁵⁰ (GhiA54a) daughter Fm ²⁵⁴ (PhiL63) parent Cm ²⁴⁶ (ButlJP56b)	a 6.03 (83%), 5.99 (17%) e 0.023, 0.038 Y [Cm L X-rays]	multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , etc. (MagL54) daughter Bk ²⁵⁰ (GhiA54a, PhiL63) daughter Fm ²⁵⁴ (LedC63) (HydE64)
Cf ²⁵¹	~800 y genet (EasT57) others (MagL54)		A chem, mass spect (DiaH54, MagL54) parent Cm ²⁴⁷ (EasT57)	a 5.85 (45%), 5.67 (55%) Y Cm X-rays, 0.18	multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , etc. (EasT57, MagL54, DiaH54, HydE64)
Cf ²⁵²	2.646 y (MetD65) others (MagL54, EasT57, FieP56, GhiA54a) t _{1/2} (SF): 85 y (MetD65) others (GhiA54a, EasT57, MagL54, SevK61)	4 a 96.9%, SF 3.1% (MetD65) a 97.0%, SF 3.0% (AsaF66a) β stable (cons energy) (ForB58) Δ 76.05 (MTW) σ _c 30 (GoldmDT64)	A chem (ThomS54, GhiA54a) chem, mass spect (StuM54, MagL54, DiaH54) parent Cm ²⁴⁸ (ButlJP56b)	a 6.12 (82%), 6.08 (15%) e 0.022, 0.038 Y Cm L X-rays * fission fragments, neutrons, Y rays, electrons, daughter radiations	multiple n-capt from U ²³⁸ , Pu ²³⁷ , Cm ²⁴⁴ , etc. (GhiA54, DiaH54, MagL54, FieP56, HydE64)
Cf ²⁵³	17.6 d genet (MetD65) 17 d genet (EasT57) 18 d (DiaH54, MagL54) others (ChoG54)	β 99+%, α 0.31% (GrouCR66) Δ 79.3 (MTW)	A chem, genet (ChoG54, DiaH54, MagL54) chem, mass spect (FieP56) parent Es ²⁵³ (ChoG54, MagL54) [daughter Fm ²⁵⁷] (HulE64)	β ⁻ 0.27 max a 5.98 daughter radiations from Es ²⁵³	multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , Cf ²⁵² , etc. (MagL54, Thom554, ChoG54, HydE64)
Cf ²⁵⁴	60.5 d (PhiL63, MetD65) others (HuiJ57b, FieP56, HarvB55)	Y SF 99+%, α ≈0.2% (AsaF66a) β stable (cons energy) (ForB58) Δ 81 (MTW) σ _c <2 (GoldmDT64)	A chem, genet (HarvB55) chem, mass spect (FieP56) daughter Es ^{254m} (HarvB55, FieP56) not daughter Fm ²⁵⁷ (HulE64)	SF fission fragments, neutrons, Y rays, electrons, daughter radiations a 5.84	multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , Cf ²⁵² , etc. (FieP56, DiaH60) daughter Es ^{254m} (0.08%) (HarvB55, FieP56) (HydE64)
99 ^{Es 245}	1.3 m (GhiA61a, MikV66)	↑ a 17%, EC 83% (MikV66) Δ 66 (MTW)	B cross bomb (GhiA61a) cross bomb, excit, genet (MikV66) parent Cf ²⁴⁵ (MikV66)	a 7.70 daughter radiations from Cf ²⁴⁵	U ²³⁵ (N ¹⁴ , 4n), U ²³⁸ (N ¹⁴ , 7n) (MikV66) Np ²³⁷ (C ¹² , 4n), Pu ²⁴⁰ (B ¹⁰ , 5n) (GhiA61a)
Es ²⁴⁶	7.3 m (GhiA54) 7.7 m (MikV66) others (GuseL56)	↑ a 10%, EC 90% (MikV66) Δ 68 (MTW)	D chem, decay charac, genet (GhiA54) excit, genet (MikV66) parent Cf ²⁴⁶ (GhiA54, MikV66)	a 7.33	U ²³⁸ (N ¹⁴ , 6n) (GhiA54, MikV66, HydE64)

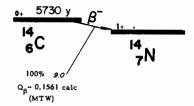
Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△¤M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
99 ^{Es 247}	5.0 m (MikV66)		a≈7%, EC≈93% (MikV66) 68 (MTW)	С	excit (MikV66)	a	7.33	U ²³⁸ (N ¹⁴ , 5n) (MikV66)
Es 248	25 m (ChetA56a)		EC 99+%, a =0.3% (ChetA56a) 70 (MTW)	в	chem, excit, genet (ChetA56a) parent Cf ²⁴⁸ (ChetA56a)	a	6.88	Cf ²⁴⁹ (d, 3n) (ChetA56a) (HydE64)
Es 249	2 h (HarvB56)		EC 99+%, a 0.13% (HarvB56) 71.15 (MTW)	В	chem, excit (HarvB56)	a	6.77	Bk ²⁴⁹ (a, 4n) (HarvB56) Cf ²⁴⁹ (d, 2n) (ChetA56a) Cf ²⁴⁹ (a, p3n) (HarvB56) (HydE64)
Es ²⁵⁰	8 h (HarvB56)	1	EC (HarvB56) 73 (MTW)	в	chem, excit (HarvB56)	Y	[Cf X-raye]	Bk ²⁴⁹ (a,3n), Cf ²⁴⁹ (d,n), Cf ²⁴⁹ (a,t) (HydE64)
Es ²⁵¹	1.5 d (HarvB56)		EC 99+%, a 0.53% (HarvB56) 74.5 (MTW)	В	chem, excit (HarvB56)	a	6.49	Bk ²⁴⁹ (a, 2n) (HarvB56)
Es ²⁵²	≈140 d (HarvB56)		a, no β, lim 3%, no EC (HarvB56) EC and β unstable (consenergy) (MTW) 77.1 (MTW)	В	chem, excit (HarvB56)	1	6.64 (82%), 6.58 (13%) Bk X-rays, 0.074 (0.07%), 0.154 (0.07%), 0.198 (0.08%), 0.228 (0.23%), 0.278 (0.21%), 0.40 (1.1%, complex)	Bk ²⁴⁹ (a,n) (HarvB56) Cf ²⁵² (d,2n) (MHarW65)
Es ²⁵³	20.47 d (HalvS66) 20.7 d (GrouCR66) 20.03 d (JonM56) others (FieP54, ChoG54) t 1/2 (SF): 6.4 x 10 ⁵ y (MetD65) 7 x 10 ⁵ y (JonM56) others (FieP54, StuM54)	Δ	a (ThomS54) β stable (cons energy) (ForB58) 79.03 (MTW) 300 (to Es ^{254m})	A	chem, genet (ThomS54, ChoG54, StuM54) daughter Cf ²⁵³ (ChoG54, MagL54) daughter Fm ²⁵³ (AmiS57) descendant Fm ²⁵⁷ (SikT65)	e ⁻	6.64 (90%) 0.017, 0.027, 0.035, 0.040 Bk X-rays, 0.387 (0.05%, complex), 0.429 (0.008%, doublet)	daughter Cf ²⁵³ (from multiple n-capt) (JonM56, StuM54, ThomS54, HydE64)
Es ²⁵⁴	276 d (UniJ66) 480 d (SchumR58, JonM56) others (HarvB55) t _{1/2} (SF) 7 x 10 ⁵ y (MHarW65)	Δ	a, pc 6 ⁻ , lim 3 x 10 ⁻⁴ % (MHarW66) 82.00 (MTW) <40 (GoldmDT64)	A	chem, genet (HarvB55, JonM56) parent Bk ²⁵⁰ (HarvB55, JonM56) not parent Fm ²⁵⁴ , lim 3 x 10 ⁻⁴ % (MHarW66)	Y	6.44 (93%) Bk X-rays, 0.063 (2.0%), 0.27 (0.12%, complex), 0.31 (0.22%, doublet), 0.39 (0.07%, complex) 0.011, 0.018, 0.030, 0.037 daughter radiations from Bk ²⁵⁰ , Cf ²⁵⁰	multiple n-capt from U238, Pu ²³⁹ , Cm ²⁴⁴ , Cf ²⁵² , Es ²⁵³ , etc. (JonM56, HarvB55, HydE64)
Es 254m	39.3 h (UniJ62) others (FieP54, JonM56, ChoG54) t _{1/2} (SF) >10 y (FieP54)		β ⁻ 99+%, EC 0.08% (PhiL63) others (HarvB55) 82.10 (MTW)	A	n-capt, chem, decay charac (FieP54, ChoG54, HarvB55) parent Fm ²⁵⁴ (FieP54, ChoG54) parent Cf ²⁵⁴ (HarvB55, FieP56)	e ⁻	1.13 max (25%), 0.43 max 0.020, 0.038 Fm X-rays, 0.65 (31%), 0.69 (38%, complex) -daughter radiations from Fm ²⁵⁴	multiple n-capt from 'U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , Cf ²⁵² , Es ²⁵³ , etc. (FieP54, ChoG54, HydE64)
Es ²⁵⁵	38.3 d (HalvS66) others (GrouCR66, MHarW66, JonM56, ChoG54) t _{1/2} (SF) >170 y (GrouCR66)		β ⁻ 91.5%, α 8.5% (GrouCR66) 84 (MTW)	В	chem, genet (ChoG54, JonM56) parent Fm ²⁵⁵ (ChoG54, JonM56)	a	6.31 daughter radiations from Fm ²⁵⁵ , [Bk ²⁵¹]	multiple n-capt from U ²³⁸ , Pu ²³⁹ , Cm ²⁴⁴ , Cf ²⁵² , Es ²⁵³ , etc. (JonM56, ChoG54, DiaH60, FieP56, GhiA55a, HydE64)
Es ²⁵⁶	short (ChoG55)	*	[β¯] (ChoG55)	F	(ChoG55)			E ²⁵⁵ (n, Y) (ChoG55, HydE64)
100 ^{Fm 248}	0.6 m genet (GhiA58) others (GuseL56)	1	[a] (GhiA58) 72 (MTW)	В	genet, chem (GhiA58) parent Cf ²⁴⁴ (GhiA58) daughter 102 ²⁵² (MikV66a, ChiA67)			Pu ²⁴⁰ (C ¹² , 4n) (GhiA58) U ²³⁸ (O ¹⁶ , 6n) (GuseL56) (HydE64)
Fm ²⁴⁹	≈2.5 m (PerelV59)		a (PerelV59) p unstable (cons energy) (MTW) 73.8 (MTW)	l	genet, excit, decay charac (PerelV59) parent Cf ²⁴⁵ (PerelV59)	a	7.9	U ²³⁸ (O ¹⁶ , 5n) (PerelV59)


Isotope Z A	Half-life	Type of decay (♣); % abundance; Mass excess (△=M-A), MeV (C'=0); Thermal neutron cross section (σ), barns		Class; Identification; Genetic relationships			Major radiations: approximate energies (MeV) and intensities	Principal means of production
100 ^{Fm²⁵⁰}	30 m (AmiS57a, AttH54) others (DoneE62)	1	a, EC ? (AmiS57a) 74.10 (MTW)	В	chem, excit (AttH54, AmiS57a) daughter 102 ²⁵⁴ (GhiA58, DoneE65, MikV66a, GhiA67)		7.44	Cf ²⁴⁹ (a, 3n) (AmiS57a) U ²³⁸ (O ¹⁶ , 4n) (AttH54) (HydE64)
Fm ²⁵¹	7 h (AmiS57a)		EC ≈99%, a ≈1% (AmiS57a) 76 (MTW)	В	chem, excit (AmiS57a)		6.89 [Es X-rays] daughter radiations from Es ²⁵¹	Cf ²⁴⁹ (a, 2n) (AmiS57a)
Fm ²⁵²	22.7 h (FrieA56) others (Ami557a) t _{1/2} (SF) >8 y (FrieA56)		a (FricA56) ß stable (cons energy) (ForB58) 76.84 (MTW)	В	chem, genet (FrieA56) chem, excit (AmiS57a) parent Ci ²⁴⁸ (FrieA56) daughter 102 ²⁵⁶ (DoneE64)	a	7.05	Cf ²⁵⁰⁻²⁵² (a, xn) (FrieA56) Cf ²⁴⁹ (a, n) (AmiS57a)
Fm ²⁵³	3 d (AmiS57) >10 d (FrieA56)	1	EC 89%, a 11% (AmiS57) 80 (MTW)	В	chem (FieP56) chem, genet (AmiS57) parent Es ²⁵³ (AmiS57)		6.96 (9%), 6.91 (2%) daughter radiations from Es ²⁵³	Cf ²⁵² (a, 3n) (FrieA56, AmiS57)
Fm ²⁵⁴	3.24 h (JonM56) others (FieP54, StuM54, ChoG54, HarvB54) t _{1/2} (SF): 246 d (JonM56) 220 d (FieP54) 200 d (ChoG54)		a 99+%, SF 0.055% (JonM56) β stable (cons energy) (ForB58) 80.93 (MTW)	A	chem, genet (HarvB54, ChoG54, FieP54, StuM54) daughter Es 254m (ChoG54, FieP54) not daughter Es 254, lim 3 x 10 ⁻⁴ % (MHarW66) parent Cf ²⁵⁰ (PhiL63)	Y	7.20 (82%), 7.16 (17%) Cf L X-raye 0.019, 0.036	daughter Es ²⁵⁴ m (StuM54a, ChoG54, HydE64)
Fm ²⁵⁵	20.1 h (AsaF64) others (JonM56, ChoG54) t _{1/2} (SF): 1 x 10 ⁴ y (PhiL63) others (HydE57)		a (ChoG54) β stable (cons energy) (ForB58) 83.82 (MTW)	В	chem, genet (ChoG54) daughter Es ²⁵⁵ (ChoG54, JonM56) daughter Md ²⁵⁵ (PhiL58)	Y	7.03 (93%) Cf L X-rays, 0.059 (0.9%, doublet), 0.081 (1.1%, doublet) 0.032, 0.05-0.07	daughter Es ²⁵⁵ (ChoG54, JonM56, HydE64)
Fm ²⁵⁶	2.7 h (PhiL58, SikT65) others (ChoG55)		SF 97%, α 3% (SikT65) β stable (cons energy) (ForB58) 85.44 (MTW)	В	chem, decay charac (ChoG55) daughter Md ²⁵⁶ (PhiL58)		fission fragments, neutrons, Y rays, electrons, daughter radiations 6.86	Es ²⁵⁵ (n, Y)[Es ²⁵⁶](β ⁻) (ChoG55, HydE64) daughter Md ²⁵⁶ (PhiL58, SikT65)
Fm ²⁵⁷	80 d (SikT65) 79 d (HulE64) 94 d (GrouCR66) others (AsaF66b) t _{1/2} (SF) 100 y (HulE64) 94 y (AsaF66b) others (GrouCR66)		a (HulE64) 88.6 (MTW)		chem, [genet], excit [parent Cf ²⁵³], not parent Cf ²⁵⁴ (HulE64) ancestor Es ²⁵³ , daughter Md ²⁵⁷ (SikT65)	Y	6.53 (94%) Cf X-rays, 0.180 (8%), 0.242 (10%) 0.037, 0.045, 0.055, 0.106 daughter radiations from Cf ²⁵³ , Es ²⁵³	multiple n-capt from Pu ²⁴² , Am ²⁴³ , Cm ²⁴⁴ etc. (HulE64, AsaF66b
Fm ²⁵⁸ ?	≈11 d (GatR63) ≤2 h (GrouCR66)	*	SF (GatR63)		chem, decay charac (GatR63) activity not observed (GrouCR66)			multiple n-capt from Cm ²⁴⁴ (GatR63)
101 ^{Md²⁵⁵}	0.6 h (SikT65) ≈0.5 h (PhiL58)	1	EC 90%, a 10% (SikT65) 84.4 (MTW)	В	chem, genet (PhiL58) parent Fm ²⁵⁵ (PhiL58)	a	7.34 daughter radiations from Fm ²⁵⁵	Es ²⁵³ (a, 2n) (PhiL58) B ¹¹ , C ¹² , C ¹³ on Cf ²⁵² (SikT65)
Md ²⁵⁶	1.5 h (PhiL58, SikT65) others (GhiA55)	1	EC 97%, a 3% (SikT65) 86.9 (MTW)	в	chem (GhiA55) chem, genet (PhiL58) parent Fm ²⁵⁶ (PhiL58)	a	7.18 daughter radiations from Fm ²⁵⁶	Es ²⁵³ (a,n) (GhiA55) B ¹¹ , C ¹² , C ¹³ on Cf ²⁵² (SikT65)
Md ²⁵⁷	3 h (SikT65)		EC ≈92%, a ≈8%, no SF, lim 10% (SikT65) 89 (MTW)	D	chem, excit, decay charac (SikT65) parent Fm ²⁵⁷ (SikT65)	a	7.25 ?, 7.08	B ¹¹ , C ¹² , C ¹³ on Cf ²⁵² (SikT65)
102 ²⁵¹	0.8 s (GhiA67)	*	a (GhiA67)	E	excit, decay charac, cross bomb (GhiA67)	a	8.68 ? (20%), 8.58 (80%)	Cm ²⁴⁴ (C ¹² , 5n) (GhiA67)
102 ²⁵²	2.1 s (GhiA67) 5 s (MikV66a) 3 s (GhiA58, GhiA59)		a ≈70%, SF ≈ 30% (GhiA59) a (MikV66a) 83 (LHP, MTW)	С	excit, decay charac (GhiA59) excit, genet, cross bomb, decay charac (MikV66a, GhiA67) parent Fm ²⁴⁸ (MikV66a, GhiA67) formerly assigned to 102 ²⁵⁴	a	8.41	Cm ²⁴⁴ (C ¹² , 4n) (GhiA67 GhiA59) Cm ²⁴⁴ (C ¹³ , 5n) (GhiA67) Pu ²³⁹ (O ¹⁸ , 5n) (MikV66a)

Isotope Z A	Half-life		Type of decay (★); % abundance; Mass excess (△±M-A), MeV (C'=0); Thermal neutron cross section (♂), barns		Class; Identification; Genetic relationships		Major radiations: approximate energies (MeV) and intensities	Principal means of production
102 ²⁵³	95 s (MikV66a) 100 s (GhiA67)	1	a (MikV66a, GhiA67) 84 (LHP, MTW)	С	excit, cross bomb, genet (MikV66a) excit, cross bomb, genet (GhiA67) parent Fm ²⁴⁹ (MikV66a, GhiA67)	a	8.02	Cm ²⁴⁴ (C ¹³ , 4n), Cm ²⁴⁶ (C ¹² , 5n) (GhiA67) Pu ²⁴² (O ¹⁶ , 5n), Pu ²³⁹ (O ¹⁸ , 4n) (MikV66a)
102 ²⁵⁴	55 s (GhiA67) 50 s (DubG66) 75 s (MikV66a) others (DoneE65, ZagB65)		a (ZagB65, GhiA67, MikV66a) no SF, lim 0.06% (FleG66) 84.8 (LHP, MTW)	c	genet (GhiA58, GhiA59) genet, excit (DoneE65) excit, decay charac, cross bomb (MikV66a, GhiA67) parent Fm ²⁵⁰ (GhiA58, GhiA59, DoneE65, MikV66a, GhiA67)		8.10	Cm ²⁴⁶ (C ¹² , 4n) (GhiA67, GhiA58, GhiA59) Cm ²⁴⁶ (C ¹³ , 5n), Cm ²⁴⁴ (C ¹³ , 3n) GhiA67) Pu ²⁴² (O ¹⁶ , 4n) (MikV66a) Am ²⁴³ (N ¹⁵ , 4n) (DoneE65, ZagB65, MikV66) U ²³⁸ (Ne ²² , 6n) (DoneE65)
102 ²⁵⁵	180 s (DubG66, GhiA67) 2 m (AkaGN66)		a (AkaGN66, DubG66, GhiA67) 87 (LHP, MTW)	С	excit, cross bomb, decay charac (AkaGN66) excit, cross bomb, decay charac (DubG66, GhiA67)	a	8,11	Cm ²⁴⁶ (C ¹³ , 4n), Cm ²⁴⁸ (C ¹² , 5n) (GhiA67) Pu ²⁴² (O ¹⁸ , 5n) (DubG66) U ²³⁸ (Ne ²² , 5n) (AkaGN66, DubG66)
102 ²⁵⁶	2.7 s (GhiA67) 6 s (AkaGN66) 9 s (DubG66) 8 s (KuzV65, DoneE64)		a (DoneE64, AkaGN66, GhiA67) SF 0.5% (Kuz V 65) 87.83 (LHP, MTW)	С	genet, excit (DoneE64) excit, cross bomb, decay charac (DubG66, GhiA67) chem (?) (ChubY66) parent Fm ²⁵² (DoneE64)	a	8.43	Cm ²⁴⁸ (C ¹² , 4n), Cm ²⁴⁸ (C ¹³ , 5n), Cm ²⁴⁶ (C ¹³ , 3n) (GhiA67) Pu ²⁴² (O ¹⁸ , 4n) (KuzV65) U ²³⁸ (Ne ²² , 4n) (DoneE64, AkaGN66)
102 ²⁵⁷	20 s (GhiA67)		a (GhiA67) 90 (LHP, MTW)	E	excit, cross bomb, decay charac (GhiA61, GhiA67)	a	8.27 (50%), 8.23 ? (50%)	Cm ²⁴⁸ (C ¹³ , 4n), Cm ²⁴⁸ (C ¹² , 3n) (GhiA67) B ¹⁰ , B ¹¹ on Cf ²⁵⁰⁻²⁵² (GhiA61)
103 ^{Lw} ²⁵⁶	≈45 s (DubG66)	*	a, EC (?) (DubG66)	F	excit (DubG66)			Am ²⁴³ (O ¹⁸ , 5n) (DubG66)
258, 103 ^{Lw²⁵⁹}	8 s (GhiA61)	*	α (GhiA61)	Е	cross bomb, excit, decay charac (GhiA61, GhiA67a) formerly assigned to Lw ²⁵⁷ (GhiA61)	a	8.6	B ¹⁰ , B ¹¹ on Cf ²⁵⁰⁻²⁵² (GhiA61)
104 ²⁶⁰	0.3 s (FleG64)	*	SF (FleG64) no α, lim 50% (DruV66)	Е	excit, cross bomb (FleG64) chem (?) (ZvaI66)			Pu ²⁴² (Ne ²² , 4n) (FleG64)
			·		,			

Table II

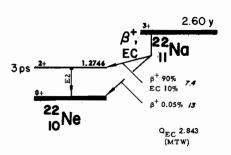
Detailed nuclear level properties


Spin – moments – alpha, beta, and gamma radiation data (energies, intensities, internal conversion coefficients, spectroscopic methods, angular distributions) – decay schemes

³H (12.3 y):

I: 1/2 atomic spect; μ : +2.97885 NMR (LindgI64)

β: 0.0186 mag spect (PortF59) others (LangeL52, CurrS49, HamiD53a, HannG49)



¹⁴C (5730 y):

I: 0 atomic spect, microwave (LindgI64)

β; 0.155 mag spect (FelL49a, WarsS50, ForH54); ion ch (AngJ49)
 0.156 (CookCS48d); 0.154 (LevyP47); 0.159 (PohA55); mag spect others (MolA54)

Y: no conv, mag spect conv (LevyP47); no Y (RubeS41)

22 Na. (2.60 y):

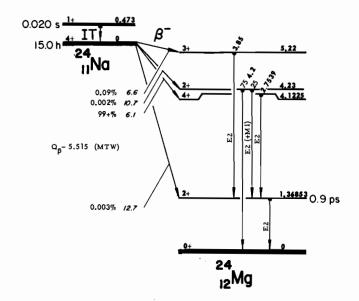
I: 3, μ: +1.746 atomic beam (LindgI64)

β[±]: β₂ 0.545 (DaniH58a); 0.543 (HamiJ58a); 0.542 (MackP50a); 0.540 (WonC54);

mag spect

β₁ 1.83 († 0.06), β₂ 0.546 († 100) mag spect (WriB53)

others (GooW46, MorgK49, LeuH61, BranW64a, CharP65)


γ: γ₁ 1.2746 semicond spect (RobiR65)

γ₁ (e/γ 6.7 × 10⁻⁶) (NakY63, LeamR54)

others (MarIK65, SinP59, AlbuD49, AjzF55, GooW46)

βγ(θ): (GrabZ65, DaniH60a, SubB61b, StevD51, MullH65)

βγpolariz(θ): (StefR59, BloS62, AppH59, BhaS65, SchoH57)

24m
Na (0.020 s):
β 6 scint spect (DroB56)
Y with IT: 0.472 scint spect (DroB56, SchaA61)
others (GlagV61, AlexKF60, GlagV59, AlexKF63)

24
Na (15.0 h):

I: 4, μ: +1.69 atomic beam (LindgI64)

β̄: β₂ 1.389 (DepP61, DepP61a, DaniH58a); 1.394 (PortF57, BeeH65);

1.390 (SiegK46b, SiegK47); mag spect

β₁ 4.17 (0.003%), no 5.5 β̄-, mag spect (TurJ51)

others (LawJL39, DHaaE55a, GranP50a)

Y: Y₁ 1.36853, Y₂ 2.7539 mag spect (MurG65)

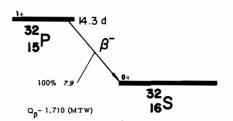
Y₃ 3.85 (0.09%), Y₄ 4.23 (0.0015%) mag spect (ArtaK60)

Y₁ (†γ100, Y₂ (†γ102) mag spect (DzhB561)

Y₂ (e/Y 3 x 10⁻⁶) (SiegK50b)

Y₁ (e[±]/Y 6 x 10⁻⁵), Y₂ (e[±]/Y 7.1 x 10⁻⁴) pair spect conv (BioS52)

Y₁ (e[±]/Y 3 x 10⁻⁵), Y₂ (e[±]/Y 7 x 10⁻⁴) pair spect conv (SiegK52)


Y₁ (e[±]/Y 4 x 10⁻⁵), Y₂ (e[±]/Y 7 x 10⁻⁴) pair spect conv (SiegK52)

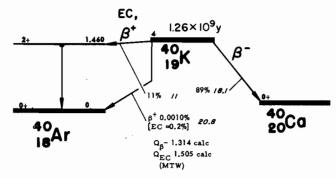
Others (HedA52, SiegK46b, MonaJ62a, GouP63, GustL58, KinB53. KnoJ59, WolfsJ50, RobiJ49, ElliL43, BegL51, TurJ51)

YY(θ): (BradE50, CharG50) Yypolariz(θ): (EstI56)

βY(θ): (GarwR49, AlleR50, BeysJ50a)

βYpolariz(θ): (BloS64, StefR59, BoeF58, MayT59, HaaE63, BloS62)

32
P (14.3 d):


I: 1, μ: -0.2523 ESR (LindgI64)
β: 1.708 (NicR61); 1.711 (PortF57); 1.712 (ChinC62, PohA56, AttH54, SiegK46b); 1.705 (DaniH58a, FehD61); mag spect others (JohnO58, ThomRH65, DepP61a, CoroE60, JensE52, ArbE56, DaniH54, LangeL49, WarsS50a, AgnH50, MotH52, SheIR51a, CharP65)
Y: no Y, lim 0.01%, scint spect (GooM53)

35 S (88 d):

1: 3/2, μ: ±1.00, q: +0.05 microwave (LindgI64)

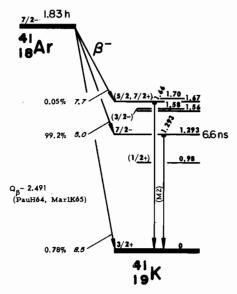
β : 0.1674 (ConnR57); 0.1670 (LangeL50a); mag spect others (HellR51, FeuL54, GrossL50, CocA49, AlbeR48)

β polariz: (LangeH58)

40

K (1.26 × 10⁹ γ):

I: 4 atomic beam; μ: -1.2981 atomic beam; 1.2978 NMR; q: -0.09 opt double res (Lindg164)

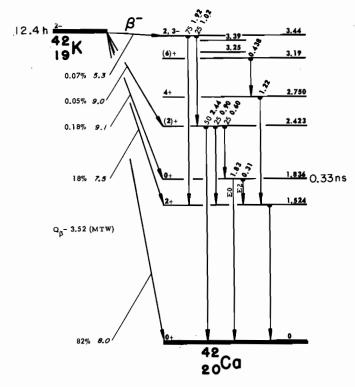

β⁻: 1.33 (Fe1L52); 1.36 (AlbuD50a); mag spect
1.32 (KonoS55); 1.35 (Ke1lWH59); 1.36 (Be1lP50a) scint spect others (MarsJH53, GooML51b, DzhB46)

β⁺: 0.49 (β⁺/ρ⁻ 1.1 × 10⁻⁵) β⁺γ[±] coinc (EngeD62)

Y with EC: Υ₁ 1.460 scint spect (RobiB64)

Υ₁ 1.46 (Y/ρ⁻ 0.123) scint spect, ion ch (MNaiA56) others (Be1lP50b, GooML51, HofsR50, PriR50)

EC(K)/ρ⁻ 0.14 ion ch (SawG50)


```
41
Ar (1.83 h):
β̄: β₂ 1.198 mag spect (PauH64)
β₁ 2.49 (0.78%), β₂ 1.20 (99+%) mag spect (KartG61)
others (SchwaA56, BrowH50)

Y: Y₁ 1.293 scint spect (MarlK65)

Y₁ 1.290 (e/Y 7 × 10<sup>-5</sup>) mag spect conv (KartG61)

Y₁ (†y¹00), Y₂ 1.66 (†y²0.05) scint spect, YY coinc (PraW65)

Y₁ (†yy/†y<6 × 10<sup>-5</sup>) YY coinc (AlvT62)
others (SchwaA56, KluJ55)
βY(θ): (BoeF60a)
βYpolariz(θ): (BloS62, ChabM62, MayT60, BloS60)
```



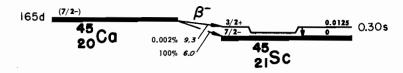
```
42 K (12.4 h):

I: 2, μ: -1.141 atomic beam (LindgI64)

β̄: β<sub>1</sub> 3.52 mag spect (DaniH64a)

β<sub>1</sub> 3.55, β<sub>2</sub> 1.99, 0.5 ? (≈1%) (PohA56)

β<sub>1</sub> 3.56 (82%), β<sub>2</sub> 1.97 (18%) mag spect, βΥ coinc (MoerL54a) others (SiegK47c, CharP65)


Y: Υ<sub>5</sub> 1.524 scint spect (MarlK64)

Υ<sub>5</sub> (Y 18%) βΥ coinc (PersB62)

Υ<sub>1</sub> 0.31 (†<sub>γ</sub>1.1), Υ<sub>2</sub> 0.60 (†<sub>γ</sub>0.1), Υ<sub>3</sub> 0.90 (†<sub>γ</sub>0.1), Υ<sub>4</sub> 1.02 (†<sub>γ</sub>0.1), Υ<sub>5</sub> 1.52 (†<sub>γ</sub>100), Υ<sub>7</sub> 1.92 (†<sub>γ</sub>0.3), Υ<sub>8</sub> 2.44 (†<sub>γ</sub>0.2) scint spect, ΥΥ coinc (MculJ61)

Υ<sub>1</sub> 0.301 (†<sub>c</sub>-10), Υ<sub>6</sub> 1.83 (†<sub>c</sub>-10, e<sup>±</sup>/e<sup>-</sup> 9) mag spect conv (BencN61) others (PohA56, SiegK47c, MackJ59, KahB53, EmeE55a, CapU54, GatC60)

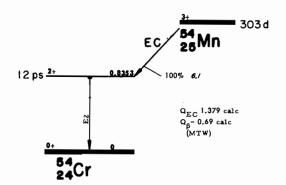
ΥΥ(θ): (AspI59, AspI59a, MoriH59a)
βΥ(θ): (StefR61, StevD51a, BeysJ50a, HamiD53)
```


Q_β- 0.252 calc (MTW)

```
45 Ca (165 d):
β: 0.254 mag spect (MackP50a)
0.255 scint spect (KetB50b)
0.261 mag spect (MargL53a)
0.258 mag spect (FreeM65)
γ: 0.0125 (K 1.4 x 10<sup>-5</sup>%) mag spect conv (FreeM65)
```

```
O.2 ns 5/2- 9% 5.9

7/2-
91% 5.4


27.8 d

27.8 d

27.8 d

27.8 d
```

```
51<sub>Cr</sub> (27.8 d):
       I: 7/2 atomic beam (LindgI64)
       Y: Y 0.3198 semicond spect (RobiR65)
           Y, 0.325 (Y 9%), 0.320 (Y 0.001%), 0.65 (Y 0.0005%) scint spect, YY coinc
           (Ofes57b)
Y<sub>1</sub> 0.325 (e<sub>K</sub>/Y 0.0015) mag spect, mag spect conv (OFriZ56)
           Y_1 (Y 21%, e_K/Y 0.0015) scint spect, mag spect conv (MaeD52)
           Y (Y 9.8%, e<sub>K</sub>/Y 0.0016) scint spect, mag spect conv (BunkM55)
           Y1 (e/Y 0.0031) mag spect, mag spect conv (EstI55)
           Y, (Y 8%) scint spect (VKooJ56); scint spect, XY coinc (LyoW52)
           Y<sub>1</sub> (Y 9.8%), 0.624 (Y 0.026%) scint spect (BisA55c)
           0.15 (Y 0.0008%), 0.32 (Y 0.0010%), Y<sub>1</sub> 0.323, 0.47 (Y 0.0003%), 0.63 ?
           (very weak) scint spect, YY coinc, YY sum coinc (MathG63) others (KerB49, BradH45b, NusR53c, KuriF48, CurrS52, MillL46.
            DhiK65)
      EC(L)/EC(K) 0.103 (FasU62, HeuW64) others (KonsA61)
      EC decay to 0.320 level of 51 V: EC(L)/EC(K) 0.104 (HeuW64)
      nucl align: (KapM61)
      0.77 level of ^{51}Cr: t_{1/2} l.1 x 10^{-8} s delay coinc (BaueR63)
```



```
54
Mn (303 d):

I: 3, µ: ±3.3 nucl align (Lindgl64)

Y: Y<sub>1</sub> 0.8355 (ParsD65); 0.8350 (RobiR65); semicond spect

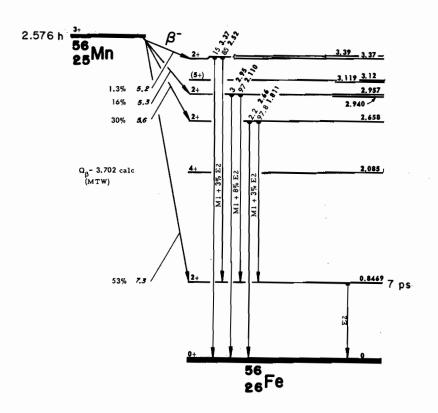
Y<sub>1</sub> (e/Y 0.00025) mag spect, mag spect conv (HamiJ66)

Y<sub>1</sub> 0.838 (K/L+M+... 8) mag spect conv (KatoT58)

no other Y, lim 0.1% (KatoT58)

others (WilsRR63, RaoG63b, MaeD54a, DeuM44)

nucl align: (BaueR60b, GracM54)


EC(L)/EC(K): 0.106 ion ch (ManduC63)

0.10 ion ch (MolR63)

EC(L+M+...)/EC(K): 1.1 ion ch (KraP62)
```

```
55 Fe (2.6 y):
internal bremsstrahlung endpoint: 0.23 (Emm W54a)
0.21 (MicA53, BellP52, MaeD51a,
MaeD51)
others (BolP53)

EC(L)/EC(K): 0.106 ion ch (ManduC62, MolR63)
0.108 ion ch (ScoJ59)
```



```
16 Mn (2.576 h):

It: 3, μ: +3.2403 atomic beam (LindgI64)

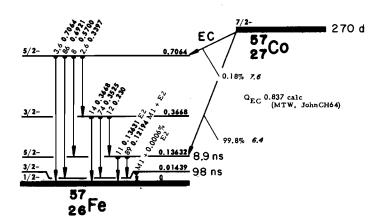
β": β<sub>1</sub> 2.84 (47%), β<sub>2</sub> 1.03 (34%), β<sub>3</sub> 0.72 (18%), β<sub>4</sub> 0.30 (1%) mag spect (HowD62a)

β<sub>1</sub> 2.86 (60%), β<sub>2</sub> 1.05 (25%), β<sub>3</sub> 0.75 (15%) mag spect (ElliL43a)

β<sub>1</sub> 2.81 (50%), β<sub>2</sub> 1.04 (30%), β<sub>3</sub> 0.65 (20%) mag spect (SiegK46a) others (TownA41, VasiSS61, CharP65)

Y: Y<sub>1</sub> 0.8468, Y<sub>2</sub> 1.811, Y<sub>3</sub> 2.110 cryst spect (ReidyJ65)

Y<sub>1</sub> 0.845 (†<sub>1</sub>100), Y<sub>2</sub> 1.81 (†<sub>1</sub>30), Y<sub>3</sub> 2.12 (†<sub>1</sub>15.3), Y<sub>4</sub> 2.52 (†<sub>1</sub>1.2), Y<sub>5</sub> 2.65 (†<sub>1</sub>0.7), Y<sub>6</sub> 2.95 (†<sub>1</sub>0.4), Y<sub>7</sub> 3.39 (†<sub>1</sub>0.21) scint spect (CookCS58)


Y<sub>2</sub> (e<sup>±</sup>/Y 0.0006), Y<sub>3</sub> (e<sup>±</sup>/Y 0.0005) mag spect conv (SlaH52) others (DagP59, GroshL57a, KieP59, BieJ64a, LeviN58, ElliL43a, SiegK46a, MunM55, KikS42, GermE53, MetF53c)

YY(θ): (DagP59, LeviN58, MetF53c, MaliS59)

βY(θ), βYpolariz(θ): (LobV62) nucl align: (DagP59, BaueR60a)

0.026 level of 56 Mn: t<sub>1/2</sub> 1.14 × 10<sup>-8</sup> s delay coinc (DToiS61) 1.04 × 10<sup>-8</sup> s delay coinc (BoniM64) others (DAngN60)

0.109 level of 56 Mn: t<sub>1/2</sub> 5.1 × 10<sup>-9</sup> s delay coinc (DToiS61, BoniM64) others (DAngN60)
```



```
57 Co (270 d):

I: 7/2. μ: ±4.85 ESR (Lindgi64)

Y: Υ<sub>1</sub> 0.01439 mag spect conv (MehW63)

Y<sub>1</sub> 0.01437 (↑<sub>K</sub>43, K/L 8.9), Y<sub>2</sub> 0.12194 (↑<sub>K</sub>1.00, K/L+M+... 6.7), Y<sub>3</sub> 0.13631 (↑<sub>K</sub>0.85, K/L+M+... 8.2) mag spect conv (BeilJ57a, BeilJ55, BeilJ57)

Y<sub>1</sub> (v 8.4%), Y<sub>2</sub> (v 85%), Y<sub>3</sub> (v 11%), Y<sub>4</sub> 0.231 (v 0.0005%), Y<sub>5</sub> 0.3397 (v 0.0048%), Y<sub>6</sub> 0.3524 (v 0.0037%), Y<sub>7</sub> 0.3667 (v 0.0007%), Y<sub>8</sub> 0.5703 (v 0.014%),

Y<sub>9</sub> 0.6921 (v 0.16%), Y<sub>10</sub> 0.7068 (v 0.0067%) semicond spect (SprcG65)

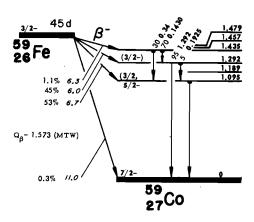
Y<sub>1</sub> (e/v 9.0), Y<sub>2</sub> y<sub>3</sub> (↑<sub>1</sub>√12/√14/√13) 8.0), Y<sub>4</sub> 0.230 (v 0.0005%), Y<sub>5</sub> 0.3397 (v 0.0042%), Y<sub>6</sub> 0.3525 (v 0.0032%), Y<sub>7</sub> 0.3668 (v 0.0006%), Y<sub>8</sub> 0.5700 (v 0.013%), Y<sub>9</sub>

0.6921 (v 0.14%), Y<sub>10</sub> 0.7064 (v 0.0057%) semicond spect, Yv coinc (KisO65a)

Y<sub>2</sub> (↑<sub>1</sub>√87), Y<sub>3</sub> (↑<sub>1</sub>√10.5), Y<sub>4</sub> 0.230 (↑<sub>2</sub>√0.0004), Y<sub>5</sub> 0.340 (↑<sub>1</sub>√0.0025), Y<sub>6</sub> 0.353 (↑<sub>1</sub>√0.0017), Y<sub>7</sub> 0.367 (↑<sub>1</sub>√0.0006), Y<sub>8</sub> 0.570 (↑<sub>1</sub>√0.014), Y<sub>9</sub> 0.693 (↑<sub>1</sub>√0.16), Y<sub>10</sub> 0.707 (↑<sub>1</sub>√0.0048) semicond spect (MathJ65)

Y<sub>1</sub> (e/v 9.0) Mössbauer (NusR65); (e/v 10) ion ch, scint spect (ThomH63); (e/v 15) ion ch, scint spect (LemH55); (e<sub>K</sub>/Y 8.4, K/L+M+... 9) ion ch, scint spect (MuiA63)

Y<sub>1</sub> 0.01441 (K/L<sub>1</sub>/L<sub>1</sub>H<sub>1</sub>HI 110/10/0.9) mag spect conv (EwaG60a)


Y<sub>2</sub> (↑<sub>1</sub>√100, e/v 0.01), Y<sub>3</sub> (↑<sub>1</sub>√2, e/v 0.1) mag spect conv, scint spect (AlbuD54b) others (ChupE58, CorkJ55, CrasB55, MadaL55, FergJ59, FieN62, GracM56, ElliL43a, PleE42, DeuM50)

YY(θ): (LindqT57b)

EC decay to 0.136 level of <sup>57</sup> Fe: EC(L)/EC(K) 0.10 (MoiR63) others (KraF62, MoussA56)

1.49 level of <sup>57</sup>Co: t<sub>1/2</sub> 1.0 x 10<sup>-9</sup> s delay coinc (NaiT61)

<3 x 10<sup>-10</sup> s delay coinc (VFabC62)
```



```
59 Fc (45 d):

I: 3/2 atomic beam (LindgI64)

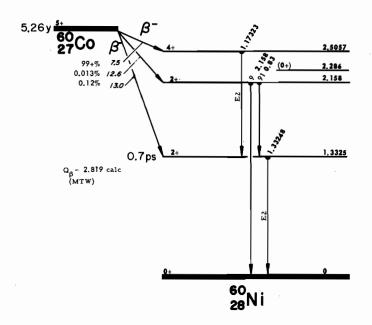
β<sup>-</sup>: β<sub>1</sub> 1.573 (0.30%), β<sub>2</sub> 0.475 (51%), β<sub>3</sub> 0.273 (48%) mag spect (WorD63)

β<sub>1</sub> 1.56 (0.3%), β<sub>2</sub> 0.462 (54%), β<sub>3</sub> 0.271 (46%) mag spect (MetF52b)

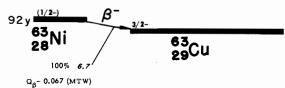
others (BereD60, BrowD52, DeuM42a)

Y: Y<sub>1</sub> 0.1430, Y<sub>2</sub> 0.1925, Y<sub>4</sub> 1.095, Y<sub>5</sub> 1.292 semicond spect (PruS65a)

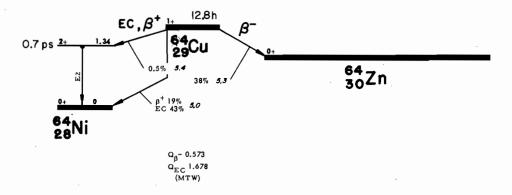
Y<sub>1</sub> 1.145 (Y 0.8%), Y<sub>2</sub> 0.192 (Y 2.5%), Y<sub>3</sub> 0.34 (Y 0.3%), Y<sub>4</sub> 1.10 (Y 56%),


Y<sub>5</sub> 1.29 (Y 44%) scint spect, YY coinc (HeaR60)

Y<sub>1</sub> (Y 0.8%), Y<sub>2</sub> (Y 2.8%), Y<sub>3</sub> (Y 0.7%), Y<sub>4</sub> (Y 56%, e/Y 0.00014), Y<sub>5</sub> (Y 43%, e/Y 0.00011) scint spect, mag spect conv (CollW64a)


others (FergJ59a, WorD63, BereD60, MetF52b, HedA50, DzhB56g, SubB60a, KantM62)

YY(θ): (HeaR60, SchifD53, BereD63a) βY(θ): (FusE60)


βΥpolariz(θ): (CollW64a, MannL65, ForH60, MannL62a, KneU65)
```



```
(5,26 y):
  I: 5, μ: ±3.75 ESR (LindgI64)
\beta^{-}: \beta_{2} 0.319 (KamaK58); 0.309 (BolG54); 0.318 (WagM50); 0.306 (FanC52),
      0.314 (KeiG54); mag spect β<sub>1</sub> 1.48 (0.12%) (CamD61); 1.48 (0.010%) (WolfsJ56); 1.48 (0.15%)
       (KeiG54); mag spect
others (DeuM45, BonhF59, YosY53, MillL47)
  Y: Y<sub>1</sub> 1.17323, Y<sub>2</sub> 1.33248 mag spect, mag spect conv (MurG65)
       Y_1 (e<sub>K</sub>/Y 0.000165) mag spect, mag spect conv (FreyW62)
       Y_1 (e<sub>K</sub>/Y 0.000173), Y_2 (e<sub>K</sub>/Y 0.000129) mag spect conv (WagM50,
       WagM50a)
Y<sub>1</sub> (e<sub>K</sub>/Y 0.000150, K/L+M+... 9.1), Y<sub>2</sub> (e<sub>K</sub>/Y 0.000116, K/L+M+...
      9.1) mag spect conv (KamaK58) \gamma_1 (e_K/\Upsilon 0.000173), \gamma_2 (e_K/\Upsilon 0.000124) mag spect conv (FanC52) \gamma_1 + \gamma_2 (e^{\pm}/\Upsilon 0.004) \gamma^{\pm}\gamma^{\pm} coinc (LanghH61a)
       Y<sub>3</sub> 2.158 (Y 0.0012%) mag spect (Wolfs J56)
      32.5 (≈0.00004%) D-Y-n (MoriH59) others (AvoM58, LindsG53, HornW49, KlemE53, AepH52a, ChatS53, LawJS53, LemH54, WieT54, ColoS55, DzhB51, SiegK50a)
YY(θ): (GargJ60, BradE50, KloR52, ChatS53, KlemE53, LawJS53, WieT54)
YYpolariz(θ): (MetF50, WilliAH50, KloR52)
\beta Y(\theta): (DaniH60a, LobV62b, GarwR49, AlleR50, BeysJ50a, NoveT50, SinW51)
\begin{array}{lll} \beta \mbox{Ypolariz}(\theta); & \mbox{(JagP60, BloS62, AppH59, LobV59, StefR59, PagL58, BhaS65, DebP57, LunA57, SchoH57)} \end{array}
nucl align: (SamB61, LeviM60, DaniJ61, GracM59, KogA58, BisG52,
```



```
63
Ni (92 y):
β: 0.067 ion ch (PreiI57, BrosA51), scint spect (HorrD62)
0.062 electrostatic analyzer (KobY53a)
0.073 abs, ion ch (MEwaJ59)
0.063 ion ch (WilsH49)
Y: no Y (WilsH49, BrosA51)
```



```
64Cu (12.8 h):

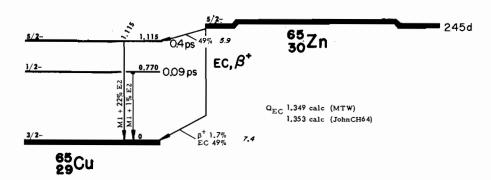
I: 1, μ: ±0.216 atomic beam (LindgI64)

β-0.571 (CookCS48, OweG49); 0.578 (TylA39); 0.574 (TownA41); mag spect others (BradH46a, BouR49, LangeL49b, SchmW59)

β+0.657 (CookCS48, OweG49); 0.659 (TylA39); 0.649 (TownA41); mag spect others (BradH46a, BouR49, SchmW59, PlaE51)

Y: 1.34 mag spect (KuriF48)

1.32 (γ/β+0.028) scint spect (SchmW59)


1.35 (γ/β+0.028) mag spect (DeuM47)

1.35 (γ/β+0.041) mag spect (AjzF56, DzhB53)

1.34 (e<sub>K</sub>/Y 0.00013) mag spect conv (BrowD52)

others (VlaH52, KubH50, MeyW48, MerS51, HubeO49, BouR50)

β-polariz: (VisM57)
```

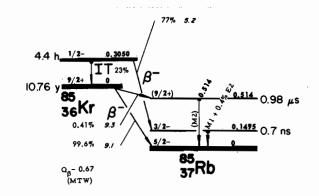


```
65 Zrh (245 d):

I: 5/2, μ: +0.7692, q: -0.024 opt double res (ByrF64)

β<sup>†</sup>: 0.325 (MannK49, BashA53b, PerkJ53); 0.327 (SakM53); 0.320 (YuaT53); 0.324 (AviF56); mag spect

Y: Υ<sub>1</sub> 1.1156 semicond spect (RobiR65)


Υ<sub>1</sub> (ε<sub>K</sub>/Υ 0.00017) mag spect, mag spect conv (HamiJ66)

Υ<sub>1</sub> (ε/Υ 0.00018) mag spect, mag spect conv (AjzF56, SakM53, BashA53b, BouR53, ShimS62)

Υ<sub>1</sub> (49%) (RiccR60b); (51%) (GleC59); (44%) (FurS51); (48%) (SehR54) scint spect, ΥΥ<sup>±</sup>, ΥΧ coinc others (MarlK65, SinF59, MannK49, HedA50, WagM50a, GooML51, JohaK56, AjzF56, BashA53a, SehR54, PerkJ53, JensE49, StuE54, MaeD54, DzhB56d, BouR52, PerrN53, GrifG51)

EC to 1.115 level of <sup>65</sup>Cu<sup>±</sup> EC(L)/EC(K) 0.12 (SanAG62) EC(L+M+...)/EC(K) 0.16 (KraP62)

0.054 level of <sup>2</sup> Zn: t<sub>1/2</sub> 1.65 x 10<sup>-6</sup> s delay coinc (AugL60)
```


85 Kr (10.76 y):

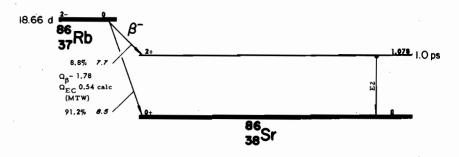
I: 9/2, μ : -1.004, q: +0.45 atomic spect (LindgI64)

β : β 1 0.67 mag spect (ThuS55, BergI52)

 β_1 0.69 (99+%), β_2 0.15 (0.6%) mag spect, β Y coinc abs (Ze1H50)

Y: Y, 0.517 scint spect (ThuS55)

Y1 (Y 0.41%) scint spect (EasT64)


Y 0.514 (Y 0.38%) scint spect (LyoW61)

others (GeiKW61, NakI60, ZelH50)

85m Kr (4.4 h):

β: 0.82 mag spect (ThuS55)
0.83 mag spect (BergI52, BergI51)

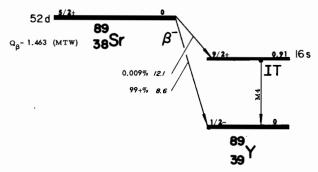
Y: 0.1495 (with β, † √57, e_K/Y 0.040), 0.3050 (with IT, † √10, e_K/Y 0.41, K/L+M+... 6) mag spect conv. scint spect (BergI51, BergI52, BergI54, ThuS55, BergI50a)

86 Rb (18.66 d):

I: 2, μ: -1.691 atomic beam (LindgI64)

β₁ 1.78 mag spect (average of MacqP54, LabJ56, ZafD48a, AjzF56, DMitA54, MoreaJ52, MackP51, PohA54, CaiR54, BerlE56, DaniH64a)
 β₂ 0.71 mag spect, βγ coinc (average of MacqP54, CaiR54, AjzF54, ZafD48a, MackP51, MucH50, MackP51, Mac

PohA54, DMitA54, AjzF56, ZafD48a, MackP51, MueH50, MandeC50, LabJ56, BerlE56, RobiR58a) others (ThomRH65)


Y: Y₁ 1.077 mag spect (HarpJ63)

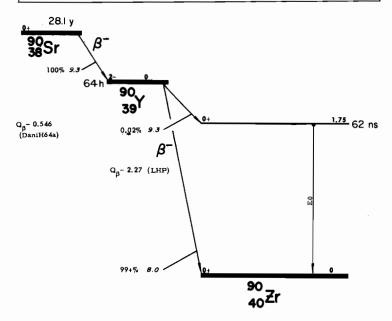
Υ₁ (Y 8.8%) scint spect, βY coinc (BranHW62)

others (PohA54, MueH50, ZafD48a, LyoW54a, EmeE55a, DMitA54, AjzF56, MarcqP54, CamP60, MarlK65, GupU65)

βΥ(θ): (HamiJ61, DeuJ61, MartiB65, SimmP65, AlbeJE63, FiscH60, StevD51, MacqP54)

βΥpolariz(θ): (BoeF63a, DaniH61, SimmP65, RogeJ62, DaniH61, BoeF58a, HamiD53, KneU65a)

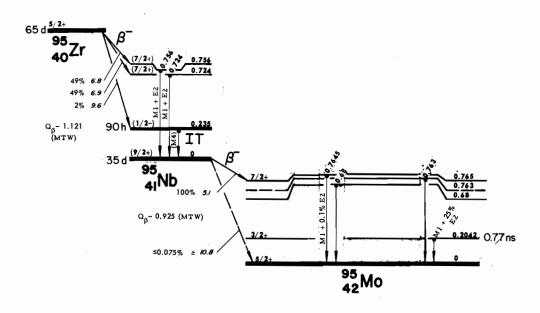
89 Sr (52 d):
β: 1.463 (LangeL49); 1.462 (BisA55d); mag spect others (SlaL49a, RalW47)
Y: no Y (NoveT51, StewD37, StewD39)
0.913 (with ^{89m} Y) (HerrmG56, LyoW55b, SatA62)


89m Y (16 s):

Y: Y1 0.908 scint spect (VPatD64); 0.913 scint spect (SatA62); mag spect conv (ShoF51); 0.915 scint spect (MonaS61, HamiJ60)

Y1 (e/Y 0.01) mag spect conv, scint spect (ShuK51, GoldhM51)

Y1 (K/L+M+... 7) mag spect conv (BendW52)


others (HydE51)

90 Sr (28.1 y):
 β̄: 0.546 mag spect (DaniH64a)
 others (BerlE56, NaiT56, LagL50, MeyW48a, BradC49)
 Y: no Yabs (GleL51c)

90 Y (64 h):
 I: 2, μ: -0.163 atomic beam (LindgI64)
 β̄: 2.268 (AndrS64, JohnO58), 2.271 (NicR61), 2.284 (DaniH64a),
 2.273 (LangeL64a) mag spect
 others (YuaT57b, BerlE56, LangeL49, MajJ52, JohnO55, BradC49,
 LasL50, NaiT56)

Y: γ₁ 1.734 (c - 0.016%, e - / γ > 30, e + / e - 3) mag spect conv, scint
 spect (YuaT56a, YuaT57a)
 γ₁ 1.75 (e - 0.5%, e / γ very large) mag spect conv (JohnO55)
 γ₁ (↑_{γγ}/↑_e - <0.0006) mag spect conv (RydH63b)
 others (GoroS61a, GoroS61f, LanghH61, AlbuD58, RydH61,
 DeuM37, GreeJ56)

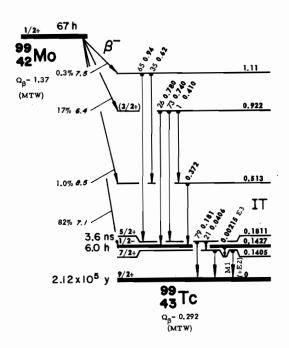

```
95 Zr (65 d):

β<sup>-</sup>: β<sub>2</sub> 0.89 (2%), β<sub>3</sub> 0.396 (55%), β<sub>4</sub> 0.360 (43%) mag spect (DrabG55)

β<sub>2</sub> 0.88 (3%), β<sub>3</sub> 0.396 (43%), β<sub>3</sub> 0.364 (54%) mag spect (MitP54)

β<sub>1</sub> 1.13 (0.4%), β<sub>2</sub> 0.90 (0.9%), β<sub>3</sub> 0.40 (34%), β<sub>4</sub> 0.36 (53%), 0.25

(11%) mag spect (ZarP54)
others (CorkJ33b, SlaH53, SlaH52a, NedV51, ShpV51b)


γ: γ<sub>1</sub> 0.722 (e<sub>K</sub>/γ 0.0014), γ<sub>2</sub> 0.754 (e<sub>K</sub>/γ 0.0011) mag spect conv
(MitP54)

γ<sub>1</sub> 0.723, γ<sub>2</sub> 0.756 mag spect conv (ZarP54, AjzF56)

γ<sub>1</sub> 0.726 (e<sub>K</sub>/γ 0.0013, K/L 9), γ<sub>2</sub> 0.760 (e<sub>K</sub>/γ 0.0018, K/L 6) mag spect conv (DrabG55)
others (CorkJ53b, SlaH53, RohR55, SlaH52a, VoiN60a)
βγ(θ): (MitP54)
βγpolariz(θ): (AppH59, MannL62, CollW65, AppH57)
```

```
95 Nb (35 d):
β̄: β₁ 0.924 (≤0.075%), β₂ 0.1597 (100%) mag spect (LangeL63)
others (DrabG55, Fanc52, ZarP54, ShpV51b, TsvN60, SlaH53, SlaH52a, CorkJ53b, HudJ49, AjzF56, NedV51)
Y: Y₁ 0.7645 (e<sub>K</sub>/Y 0.0011, K/L+M+... 7.5) mag spect conv (LangeL63)
Y₁ 0.770 (e<sub>K</sub>/Y 0.0019, K/L+M+... 7.4) mag spect conv (DrabG55)
Y₁ (e/Y 0.0021) mag spect conv (StuE54)
Y₁ (e/Y 0.0016) mag spect conv (Fanc52)
others (MitP54, CorkJ53b, ZarP54, JohaK56, DrabG55, MaeR53, SlaH53, SlaH52a, HudJ49, AjzF56, NedV51, RalW47)
βYpolariz(θ): (AppH62, MannL62, CollW65)

95m Nb (90 h):
Y: 0.235 (K/L+M+... ≈4.5) mag spect conv (CorkJ53b)
0.231 (e/Y very large) mag spect conv (SlaH52a, SlaH53)
0.232 (K/L+M+... ≈3.5) mag spect conv (OrpF54a)
0.236 (K/L+M+... 3.7) mag spect conv (OrpF54a)
0.236 (K/L+M+... 4.5) mag spect conv (DrabG55)
others (HudJ49, ShpV52, AjzF56, DolV53)
```



```
99
Mo (67 h):

β-: β<sub>1</sub> 1.234, β<sub>2</sub> 0.88, β<sub>3</sub> 0.448, β<sub>4</sub> 0.25 mag spect, βY coinc (CreT65)

β<sub>1</sub> 1.18 (83%), β<sub>2</sub> 0.80 (3%), β<sub>3</sub> 0.41 (14%) mag spect, βY coinc
(LeviC54a)

β<sub>1</sub> 1.23 (≈80%), β<sub>3</sub> 0.45 (≈20%) mag spect (BunkM50a)

β<sub>1</sub> 1.23 (87%), β<sub>3</sub> 0.54 (13%) mag spect (MedH51)
others (VarJ54, MartyN51)

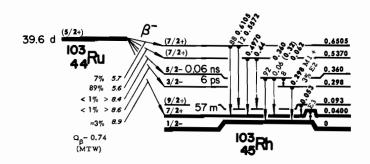
Y: Y<sub>1</sub> 0.0406 (↑<sub>γ</sub> 1, 0.7<e/y<5, K/L 9.3), Y<sub>2</sub> 0.181 (↑<sub>γ</sub>7, e<sub>K</sub>/Y 0.13,

K/L 4.9) mag spect, mag spect conv (RavJ61)
Y<sub>1</sub> 0.040, Y<sub>2</sub> 0.181 (↑6.8%), Y<sub>3</sub> 0.372 (γ 1.3%), Y<sub>6</sub> 0.740 (γ 12%),
Y<sub>7</sub> 0.780 (γ 4.4%), Y<sub>8</sub> 0.93 (γ 0.4%) semicond spect, scint spect
(CrowP65)
Y<sub>1</sub> 0.041 (↑<sub>γ</sub>2), Y<sub>2</sub> 0.181 (↑<sub>γ</sub>6), Y<sub>3</sub> 0.370 (↑<sub>γ</sub>1.8), Y<sub>4</sub> 0.410 (↑<sub>γ</sub>0.15),
Y<sub>5</sub> 0.62 (↑<sub>γ</sub>0.08), Y<sub>6</sub> 0.74 (↑<sub>γ</sub>15), Y<sub>7</sub> 0.78 (↑<sub>γ</sub>4), Y<sub>8</sub> 0.95 (↑<sub>γ</sub>0.14)
scint spect, YY coinc (CreT65)
others (BunkM50a, MartyN51, LeviC54a, MackR57, VarJ54,
CapU54a, MedH51, RavJ60, BodE59a, CorkJ49a, EstI58)

YY(6): (BodE59a, AndrPD65, RabS58, EstI58, CapU54a)
Isomeric level of <sup>99</sup>Mo: t<sub>1/2</sub> 1.3 x 10<sup>-5</sup> s delay coinc (MCarA65)
1.6 x 10<sup>-5</sup> s delay coinc (DufR58)

Y: 0.044, 0.100 scint spect (MCarA65)
others (DufR58)
```

```
99m
Tc (6.04 h):

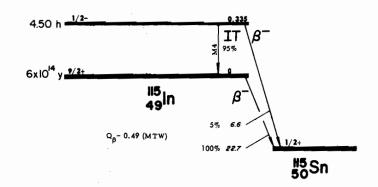

Y: Y<sub>1</sub> 0.00215 (M<sub>I</sub>/M<sub>II+III</sub>/M<sub>IV+V</sub> 3/3/1) mag spect conv (FreeM57)

Y<sub>2</sub> 0.1405 cryst spect (ChupE58)

Y<sub>2</sub> 0.1403 (†<sub>K</sub>100, K/L<sub>I</sub> 7.7, L<sub>I</sub>/L<sub>III</sub> >10), Y<sub>3</sub> 0.1423 (†<sub>K</sub>10, K/L<sub>III</sub> 2.5) mag
spect conv (MihJ51, MihJ52a)

Y<sub>1</sub> 0.0018 (e/Y very large), Y<sub>2</sub> 0.141 (e<sub>K</sub>/Y 0.10, K/L 7.9) mag spect conv
(MedH49, MedH51)

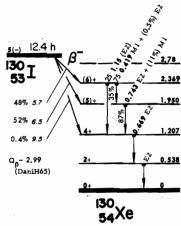
Y<sub>2</sub> 0.1405 (†<sub>K</sub>100, K/L 8.1), Y<sub>3</sub> 0.1426 (†<sub>K</sub>6.2, e/Y > 30) mag spect conv,
mag spect (RavJ61)
others (BunkM50b, MartyN51, CrowP65, CreT65, LabJ56c, LabJ56a,
BailR53)
```




```
103<sub>Ru</sub>
                 (39.6 d):
          \beta^{-}: \beta_1 0.69 (1%), \beta_2 0.217 (99%) mag spect (KondE50a, KondE51c)
                  β<sub>2</sub> 0.227, β<sub>3</sub> 0.119 scint spect, βY coinc (RobiR58)
                   \beta_{1}^{-} 0.70 (1%), 0.37 ? (≈1%), \beta_{2} 0.202 (70%), \beta_{3} 0.128 (28%) mag
                  spect (ForH55)
β<sub>1</sub> 0.68 (6%), β<sub>2</sub> 0.222 mag spect (MeiJ50a)
β<sub>1</sub> 0.72, β<sub>2</sub> 0.21, β<sub>3</sub> 0.11 βΥ coinc (MukA65)
                   others (DrabG55, ShpV56, SaraB55, MandeC50, HoleN48a, DRaaB54)
              Y: Y_7 0.4970 (\uparrow_{\gamma}88), Y_8 0.5572 (\uparrow_{\gamma}0.7), Y_9 0.6105 (\uparrow_{\gamma}6) mag spect
                   (KarlS64)
Y<sub>1</sub> 0.053 (K/L 1.0), Y<sub>3</sub> 0.295, Y<sub>7</sub> 0.498 (K/L 8), Y<sub>9</sub> 0.611 mag
                   spect conv (CorkJ52b) Y<sub>1</sub> 0.055, Y<sub>3</sub> 0.297, Y<sub>4</sub> 0.323, Y<sub>5</sub> 0.366, Y<sub>7</sub> 0.498, Y<sub>9</sub> 0.610 mag
                   spect, scint spect (ForH55)

1 0.058 (†<sub>1</sub>0.4), Y<sub>3</sub> 0.295 (†<sub>1</sub>0.4), Y<sub>5</sub> 0.357 (†<sub>1</sub>0.3), Y<sub>7</sub> 0.498
                     (†_{\gamma}88, K/L+M+... 8), Y_{9} 0.61 (†_{\gamma}6.9, e_{K}^{}/Y 0.0006) scint spect,
                   mag spect conv, \beta Y coinc (DRaaB54) \gamma_1 0.053 (\uparrow_{\gamma}0.7, e_{K'}/ 2.7), \gamma_2 0.065, \gamma_3 0.297 (\uparrow_{\gamma}0.6), no \gamma_4 (\uparrow_{\gamma}<0.04), \gamma_5 0.36, \gamma_6 0.44 (\uparrow_{\gamma}0.9), \gamma_7 0.50 (\uparrow_{\gamma}88), \gamma_8 0.55
                     (\uparrow_{\gamma}2), \gamma_{\varphi} 0.61 (\uparrow_{\gamma}5) scint spect, YY, YY sum coinc (MukA65)
                     no Y_5 (t_{\gamma}/t_{\gamma}(Y_7) <0.0005) YY sum coinc (NaqS62)
                   Y_7 0.498 (e<sub>K</sub>/Y 0.0054, K/L 6), Y_9 0.610 mag spect conv (DrabG55)
                   others (SaraB55, KondE50a, KondE51c, RobiR58, KondE52, MeiJ50a, ShpV56, KnuA52)
            YY(\theta): (SinB60, FlaF58)
           Y: 0.213 scint spect (BranK64)
```

```
103m
Rh (57 m):


Y: 0.0400 (K/L+M+... 0.2) mag spect conv, βY coinc (KondE50a, KondE51c, KondE52)
0.0402 (e<sub>K</sub>/Y 40, K/L 0.09) mag spect conv (AviP55a)
0.0396 (K/L 0.1) mag spect conv (CorkJ52b)
0.040 (K/L 0.18) mag spect conv (DrabG55)
others (MeiJ50a, AviP53b, WieM45b, RogaI64)
```



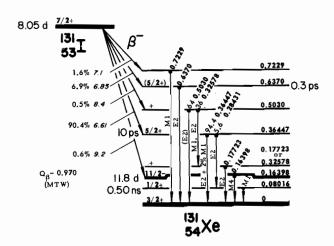
```
__ (6 × 10<sup>14</sup> y):
             I: 9/2 atomic spect, atomic beam; \mu: +5.5351 NMR; q: +1.16, \Omega: +0.56 atomic beam (LindgIó4)
           β: 0.48 scint spect (WatD62a)
0.63 abs (MarteE50)
                  0.6 scint spect (BearGola)
            Y: no Y, \lim_{t \to 0} 1\% (WatD62a) 0.83 level of \lim_{t \to 0} 115 In: t_{1/2} 5.5 \times 10^{-9} s delay coinc (TanP64a)
           others (Goros60e)

0.935 level of ^{115} In: t_{1/2} 4 × 10<sup>-12</sup> s Coulomb excit (VasiV62)

1.13 level of ^{115} In: t_{1/2} 4 × 10<sup>-13</sup> s if I = 13/2, Coulomb excit
                                               (VasiV62, AndrD6la)
115m In
                  (4.60 h):
             I: 1/2, \mu: -0.24375 atomic beam (LindgI64)
            β-: 0.83 mag spect (BellP49)
0.84 mag spect (LangeL52a)
            Y with β : no 0.499 Y, 1im 0.4% of β (SehM62)
            Y with IT: 0.335 (e_K/Y 0.8, K/L+M+... 3.8) mag spect conv (LangeL52a,
                  GravG52)
0.335 (e<sub>K</sub>/Y 0.8, K/L+M+... 3.9) mag spect conv, scint spect (VarJ55)
                  0.338 (e_{K}/Y 1, K/L 5.3) mag spect conv (LawJL40)
                  others (AntoI56, AntoI55, HameM56a, EstI55, LabJ56c, LabJ56b, LabJ56a)
```



```
130<sub>1</sub> (12.4 h):


I: 5 atomic beam (LindgI64)

β<sup>-</sup>: 1.7 (0.4%), 1.04 (48%), 0.62 (52%) mag spect (DaniH65)
others (CaiR54, RobeA43)

Y: Y<sub>1</sub> 0.419 (†χ36, e/Y 0.017), Y<sub>2</sub> 0.538 (†χ100, e/Y 0.008), Y<sub>3</sub> 0.669
(†χ100, e/Y 0.0041), Y<sub>4</sub> 0.743 (†χ87, e/Y 0.003), Y<sub>5</sub> 1.15 (†χ12, e/Y 0.0009) mag spect conv, scint spect (DaniH65)

Y<sub>1</sub> 0.42 (†χ35, e<sub>K</sub>/Y 0.013), Y<sub>2</sub> 0.54 (†χ100, e<sub>K</sub>/Y 0.006), Y<sub>3</sub> 0.67
(†χ99, e<sub>K</sub>/Y 0.0032), Y<sub>4</sub> 0.74 (†χ88, e<sub>K</sub>/Y 0.0024), Y<sub>5</sub> 1.15 (†χ13, e<sub>K</sub>/Y 0.0007) scint spect, mag spect conv (SmiW59, CaiR54)
βY(θ), βΥροΙατίz(θ): (DaniH65)

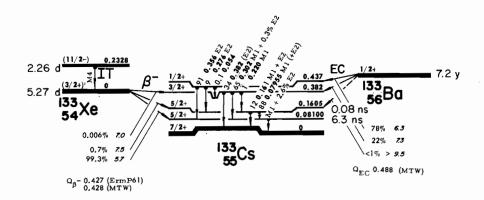
YY(θ): (SmiW59)
```



```
131 n (8.05 d):
            I: 7.2, \mu: +2.738, q: -0.40 atomic beam (LindgI64)
         \beta^{-}: \beta_{1} 0.81 (0.7%), \beta_{2} 0.608 (87.2%), \beta_{3} 0.33 (9.3%) \beta_{4} 0.25 (2.8%) mag spect, \beta \gamma coinc (BellRE52a)
                   \beta_1 0.81, \beta_2 0.606, \beta_3 0.335, \beta_4 0.250 mag spect, \beta Y coinc (KetB51)
                   \beta_1 (0.81) (0.6%), \beta_2 0.606 (86%), \beta_3 0.34 (13%) mag spect (VersN51)
                   \beta_1 0.81 (1%), \beta_2 0.606 (85%), \beta_3 0.34 (13%) mag spect (RosD52)
                   others (CorkJ51, ThuS51, BellP51, FeiI50, KerB49, MetF48, DowJ42, CavP52, CavP52a, NijG51, OweG48, BulE52, CaswR52)
            Y: Y<sub>1</sub> 0.08016, Y<sub>3</sub> 0.28431, Y<sub>5</sub> 0.36447 cryst spect (HoyH53, LindD49)
                  Y<sub>1</sub> 0.08016 (†_{\rm K}200), Y<sub>2</sub> 0.17723 (†_{\rm K}3.1, K/L/L<sub>III</sub>/L<sub>III</sub> 100/13/7/5), Y<sub>3</sub> 0.28432 (†_{\rm K}16, K/L<sub>I</sub>/L<sub>III</sub>/L<sub>III</sub> 100/11/3.8/3.3), Y<sub>4</sub> 0.32578 (†_{\rm K}0.59, K/L 6), Y<sub>5</sub> (0.36447) (†_{\rm K}100, K/L<sub>I</sub>/L<sub>III</sub>/L<sub>III</sub> 100/11/2.5/2.2), Y<sub>6</sub> 0.5030 (†_{\rm K}0.17, K/L > 5), Y<sub>7</sub> 0.6370 (†_{\rm K}1.9), Y<sub>8</sub> 0.7229 (Y<sub>K</sub>0.43) mag spect conv (Wolfs J62) Y<sub>1</sub> 0.080 (†_{\rm Y}3.1, e<sub>L</sub>/Y 0.17), Y<sub>2</sub> 0.177 (†_{\rm Y}0.3, e<sub>K</sub>/Y 0.2), Y<sub>3</sub> 0.284 (†_{\rm Y}6.6, e<sub>K</sub>/Y 0.052, K/L+M+... 4), Y<sub>4</sub> 0.326 (†_{\rm Y}0.3), Y<sub>5</sub> 0.364 (†_{\rm Y}100, e<sub>K</sub>/Y 0.020, K/L 6.0), Y<sub>6</sub> 0.503 (†_{\rm Y}0.54), Y<sub>7</sub> 0.637 (†_{\rm Y}8.3, e<sub>K</sub>/Y 0.0039, K/L+M+... ≈9), Y<sub>8</sub> 0.723 (†_{\rm Y}1.7, e<sub>K</sub>/Y 0.004) mag spect conv, scint spect (DaniH64b) Y<sub>1</sub> 0.080 (†_{\rm Y}2.6, e<sub>K</sub>/Y 1.7, K/L+M+... 6), Y<sub>3</sub> 0.284 (†_{\rm Y}6.6, e<sub>K</sub>/Y 0.05, K/L+M+... 4), Y<sub>5</sub> 0.364 (†_{\rm Y}100, e<sub>K</sub>/Y 0.018, K/L+M+... 6), Y<sub>7</sub> 0.637 (†_{\rm Y}12, e<sub>K</sub>/Y 0.004, K/L+M+... 7), Y<sub>1</sub> 0.722 (†_{\rm Y}3.5, e<sub>X</sub>/Y 0.003) mag spect conv.
                      K/L+M+... 7), Y<sub>8</sub> 0.722 (†<sub>\gamma</sub>3.5, e<sub>K</sub>/\gamma 0.003) mag spect, mag spect conv, e<sup>-</sup>e<sup>-</sup> coinc, scint spect (BellRE52, BellRE52a)
                   others (HasJ52a, HargC63, RosD52, WolfsJ52, DzhB59, JunH63, VersN51, SmiW56, BereD60a, KerB49, CorkJ50, BergI54a, MetF48, MathG61, BereD62, ThuS51, BellP51, AlmS52, NijG54, SchifD53, CavP52, CavP52a, KetB51, CorkJ51, BrosA49, WriW51, EmeE51)
         YY(\theta): (HamiW63, SchifD53)
         \beta Y(\theta): (BeysJ50a)
         \betaYpolariz(\theta): (DaniH64b)
                                                                                                                                              nucl align: (JohnCE60)
         0.150 level of ^{131} I: t_{1/2} 9 x 10^{-10} s delay coinc (DWaaH56, GerhT56b, DevaS65)
          1/2 % to 1/2 s delay coinc (Gorafo, Gerrijo 8 x 10^{-10} s delay coinc (SorAfo, BedeAfoa) 1.829 level of 131 I: t_{1/2} 5.9 x 10^{-9} s delay coinc (DevaS65)
```

```
131m Xe(11.8 d):

Y: Y<sub>1</sub> 0.16398 (K/L<sub>T</sub>/L<sub>II</sub>/L<sub>III</sub> 100/27/4.5/23) mag spect conv (WolfsJ62)


Y<sub>1</sub> 0.16394 (K/L<sub>T</sub>/L<sub>II</sub>/L<sub>III</sub> 100/24/5.5/20 mag spect conv (GeIJ62)

Y<sub>1</sub> 0.1639 (e<sub>K</sub>/Y 29, K/L 2.3) mag spect conv, scint spect

(BergI54, BergI52, BergI50c, BergI51a)

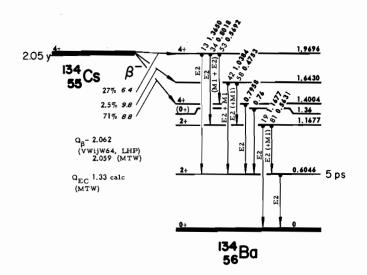
Y<sub>1</sub>(1<sub>YY</sub>/T<sub>Y</sub> 0.001) (AlvT60b)

others (SmiW56, VersN51, GreeA57)
```



```
Ba (7.2 y):

Y: Y<sub>1</sub> 0.054 (†<sub>γ</sub>2), Y<sub>2</sub> + Y<sub>3</sub> 0.080 (†<sub>γ</sub>52), Y<sub>4</sub> 0.161, Y<sub>6</sub> 0.276 (†<sub>γ</sub>10, e<sub>K</sub>/Y 0.047, K/L+M+... 5), Y<sub>7</sub> 0.302 (†<sub>γ</sub>21, e<sub>K</sub>/Y 0.036, K/L+M+... 6), Y<sub>8</sub> 0.356 (†<sub>γ</sub>100, e<sub>K</sub>/Y 0.021, K/L+M+... 7), Y<sub>9</sub> 0.383 (†<sub>γ</sub>11, e<sub>K</sub>/Y 0.02, K/L+M+... 5) mag spect, mag spect conv, scint spect, YY coinc (MannK63)


Y<sub>1</sub> 0.054 (†<sub>γ</sub>3), Y<sub>2</sub> 0.080 (†<sub>γ</sub>9), Y<sub>3</sub> 0.082 (†<sub>γ</sub>55), Y<sub>4</sub> 0.162 (†<sub>γ</sub>2), Y<sub>5</sub> 0.220 (†<sub>γ</sub>0.3), Y<sub>6</sub> 0.276 (†<sub>γ</sub>8), Y<sub>7</sub> 0.301 (†<sub>γ</sub>27), Y<sub>8</sub> 0.356 (†<sub>γ</sub>100), Y<sub>9</sub> 0.386 (†<sub>γ</sub>10) scint spect, YY coinc (StewM60)

Y<sub>1</sub> 0.054 (Y 0.11%), Y<sub>3</sub> 0.081 (e<sub>K</sub>/Y 1.35, K/L+M+... 4.8), Y<sub>5</sub> 0.220 (K/L+M+... 7.4) mag spect conv, scint spect, YY, e<sup>-</sup>Y coinc (NiesE64)

Y<sub>1</sub> 0.056 (†<sub>γ</sub>7), Y<sub>2</sub> (†<sub>γ</sub>3) 0.079 (†<sub>γ</sub>45, e<sub>K</sub>/Y 1.5, K/L+M+... 7), Y<sub>4</sub> 0.160 (†<sub>γ</sub>0.4, e<sub>K</sub>/Y 0.4, K/L+M+... 4), Y<sub>6</sub> 0.277 (†<sub>γ</sub>3, e<sub>K</sub>/Y 0.11), Y<sub>7</sub> 0.302 (†<sub>γ</sub>22, e<sub>K</sub>/Y 0.024), Y<sub>8</sub> 0.356 (†<sub>γ</sub>100, e<sub>K</sub>/Y 0.017), Y<sub>9</sub> 0.383 scint spect, YY coinc, mag spect conv (GupR58) others (KoiS58, CrasB57, LangeM56, LangeM55, RamasM60c, BureA57

YY(θ): (YinL64, MunF63, BodE59, AryA61, SubB61, AgarY65, CliF60)

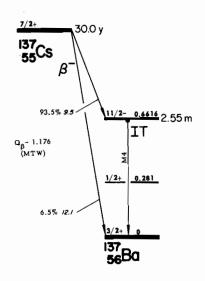
EC decay to 0.437 level of <sup>137</sup>Cs: EC(L+M+...)/EC(K) 1.1 (RamasM60e) others (GupR58, KoiS58, LangeM56)
```


Cs (2.05 y):

I: 4, μ: +2.990 atomic beam (LindgI64)

β: β 0.662 (71%), β 0.410 (1%), β 0.089 (28%), no 0.21, 0.28, 0.34, 0.68 β, no 0.89 β (lim 0.045%), no 1.45 β (lim 0.005%) mag spect (VWijW64) others (DaniH63b, TrehP63, KeiG55, CorkJ53a, DaniH63b, ForH55a, BertG55, BertG56c, BashA54, ElliL47, GromK52, WagM50a, WolfsJ56)

Y: Y₁ 0.4753 (Y 1.5%, e_K/Y 0.009), Y₂ 0.5631 (Y 8%, e_K/Y 0.006), Y₃ 0.5692 (Y 14%, e_K/Y 0.008), Y₄ 0.6046 (Y 98%, e_K/Y 0.0048), Y₅ 0.7958 (Y 88%, e_K/Y 0.0025), Y₆ 0.8018 (Y 9%, e_K/Y 0.0026), Y₇ 1.0384 (Y 1.1%, e_K/Y 0.0016), Y₈ 1.1677 (Y 1.9%, e_K/Y 0.0010), Y₉ 1.3650 (Y 3.4%, e_K/Y 0.0007) semicond spect, mag spect


conv (BrowRA65)
others (EwaG64, VWijW64, KeiG55, DzhB59e, VerhJ54, SchrS63, HankA63, TrehP63, SegO63, GirR59a, CorkJ53a, ForH55a, BertG55, JosM54, BashA54, AlekY58, OFriZ56, WagM50a, MaeR53, FirsE57, ShpV51, ElliL47, JohaK56, BertG56c, LuD54, HucJ65)

 $\beta Y(\theta)$: (GrabZ65, StevD51, BeysJ50)

βYpolariz(θ): (DaniH63b, MannL62a, TirK65)

YY(θ): (MunF63, SegO63, ColeL63, StewM55, KlemE55)

YYpolariz(θ): (KloR52, MetF50, RobiB52)

137
Cs (30.0 y):

I: 7/2, μ +2.8382 atomic beam; q: +0.050 opt double res (Lindgi64)

β⁻: β₁ 1.176 (6.5%), β₂ 0.514 (93.5%) mag spect (DaniH62b)

β₁ 1.176 (7.6%), β₂ 0.514 (92.4%) mag spect (YosY58)

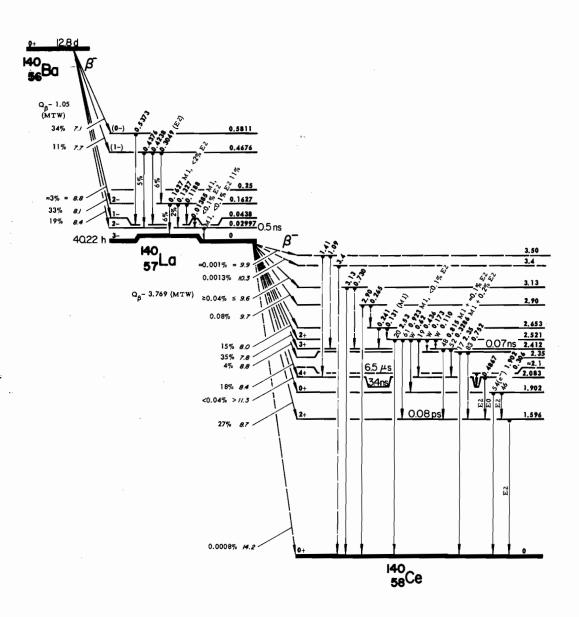
others (KatoT57, AgnH50, OlsJ54, LangeL51, AzuT54, WapA54a, BroyC53, PeaC49, OsoJ49, RiccR57, DrabG55, MacqP54, BosH63a, CharP65)

137m
Ba (2.55 m):

Y: Y₁ 0.6616 (K/L_T/L_{III}/L_{III} 1000/151/22/19) mag spect conv (GeiJ62)

Y₁ (e_K/Y 0.093, K/L+M+... 4.5) mag spect conv (DaniH62b)

Y₁ (e_K/Y 0.095) mag spect, mag spect conv (HulS61)


Y₁ (K/L/M 56/10/2.2) mag spect conv (ChuY64a)

Y₁ (K/L/M 566/100/26.0) mag spect conv (YosY58)

Y₁ (Y 86%, e/Y 0.1100) semicond spect (MerJ65)

Y₁ (†_{YV}/†_Y 6 x 10⁻⁶) (BeuW60)

others (MulD52, LindsG53a, GravG52, LangeL50b, DVriC60b, HulS59, SubB61c, KureT63, WapA54a, WagM51, MGowF57a, KatoT57, MaeR53, AzuT54, BendW52, KruP52, MitA49, OsoJ49, TownJ48, RiccR57, VerhJ54, AntoI56a, AntoI56, DolV53, BhaS54, DrabG55, BosH63a, RaoMR65)


```
Ba (12.8 d):

β<sup>-</sup>: β<sub>1</sub> + β<sub>2</sub> 1.02, β<sub>3</sub> 0.83, β<sub>4</sub> 0.59, β<sub>5</sub> 0.46 mag spect, βγ coinc (BosP59a)

β<sub>1</sub> + β<sub>2</sub> 1.02 (60%), β<sub>4</sub> 0.48 (40%) mag spect (BeacL49b)

β<sub>1</sub> 1.03, β<sub>2</sub> 1.02 (β<sub>1</sub>/β<sub>2</sub> 0.6) βγ coinc (BurdJ65)

others (WilkR51)

Y: γ<sub>1</sub> 0.01385, γ<sub>2</sub> 0.02997, γ<sub>3</sub> 0.1188, γ<sub>4</sub> 0.1327, γ<sub>5</sub> 0.1627, γ<sub>6</sub> 0.3049, γ<sub>7</sub> 0.4238, γ<sub>8</sub> 0.4376, γ<sub>9</sub> 0.5373 mag spect conv, e<sup>-</sup>γ, γγ coinc (GeiJ61a)

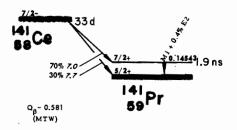
γ<sub>2</sub> 0.0296(Γ<sub>1</sub> 23, Γ<sub>1</sub>/Γ<sub>11</sub> 20/2/1), γ<sub>3</sub> 0.119 (Γ<sub>K</sub>1), γ<sub>4</sub> 0.132 (Γ<sub>K</sub>4), γ<sub>5</sub> 0.162 (Γ<sub>K</sub>10, K/L 2), γ<sub>6</sub> 0.304 (Γ<sub>K</sub>4), γ<sub>7</sub> 0.421 (Γ<sub>K</sub>1), γ<sub>8</sub> 0.436 (Γ<sub>K</sub>1), γ<sub>9</sub> 0.537 (Γ<sub>K</sub>4,

K/L 4) mag spect conv (CorkJ51d)

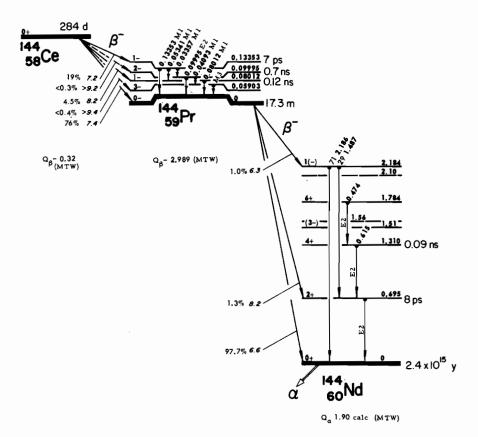
γ<sub>2</sub> 0.030 (γ 13%), γ<sub>4</sub> 0.132 (γ 1.7%), γ<sub>5</sub> 0.162 (γ 8%), γ<sub>6</sub> 0.304 (γ 7%), γ<sub>8</sub> 0.436 (γ 5%), γ<sub>9</sub> 0.536 (γ 29%) scint spect (AgarY64)

γ<sub>2</sub> 0.030 (γ 13%), γ<sub>4</sub> 0.132 (γ 1.7%), γ<sub>5</sub> 0.162 (γ 8%), γ<sub>6</sub> 0.304 (γ 3%), γ<sub>8</sub> 0.436 (γ 5%), γ<sub>9</sub> 0.537 (Γ<sub>χ</sub>25) scint spect, γγ coinc, mag spect conv (BosP59a)

γ<sub>2</sub> 0.030 (γ 16%, e/γ 5), γ<sub>4</sub> 0.132 (γ 3%), γ<sub>5</sub> 0.162 (γ 5%), γ<sub>6</sub> 0.304 (γ 3%), γ<sub>8</sub> 0.436 (γ 5%), γ<sub>9</sub> 0.537 (γ 25%) scint spect (DuzB61, SilA58)


γ<sub>9</sub> (e<sub>K</sub>/γ 0.006, K/L+M+... 5.2) mag spect conv (RohR55)

others (KellWH56, MacR53, BeacL49b, BurdJ65)

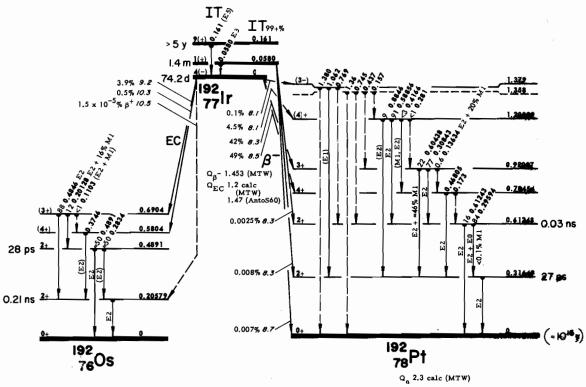

βγ(θ): (AgarY64, BlacW63, KellWH56, BurdJ65)
```

```
(40.22 h):
    I: 3 atomic beam (LindgI64)
\beta: \beta_1 2.175 (6%), \beta_2 1.68 mag spect (LangeL60)
           \beta_1 2.15 (7%), \beta_2 1.67 (10%), \beta_3 1.34 (45%), \beta_4 1.10 (26%), \beta_5 0.83 (12%) mag spect (PeaC54) \beta_1 2.20 (8%), \beta_2 1.42 (14%), \beta_3 1.36 (30%), \beta_4 1.15 (20%), \beta_5 0.86 (12%), \beta_6 0.42 (16%) mag spect (BashA54a, AjzF56)
           3.8 (0.0008%), $\beta_1$ 2.20 (10%) mag spect (DzhB60a)
           others (WilkR51a)
  October's (Which of a price of the control of the c
          spect (BashA58, PriV58, CorkJ51e, PriV58a, DzhB60a, DzhB60f, AntoS60a) 19 0.3286, 11 0.4867, 14 0.815, 18 1.526 mag spect (HedA52)
           Y_9 0.328 († 38, e_{\rm K}/Y 0.035, K/L+M+... 7), Y_{10} 0.438 († 46), Y_{11} 0.490 († 48, e_{\rm K}/Y 0.008, K/L+M+... 7), Y_{14} 0.815 († 44, e_{\rm K}/Y 0.004), Y_{18} 1.60 († 96, e_{\rm K}/Y 0.0008), Y_{21} 2.50 († 1), Y_{22} + Y_{23} 3.00 († 0.04) mag spect conv, scint spect, YY coinc (BolH55)
           Y<sub>18</sub> 1.598 (Y 96%), Y<sub>19</sub> (1.9) (Y < 0.15%), Y<sub>20</sub> 2.37 (Y 0.8%), Y<sub>21</sub> 2.53 (Y 3.0%), Y<sub>22</sub> 2.89 (Y 0.08%), Y<sub>23</sub> 3.10 (Y 0.03%), Y<sub>24</sub> (3.25) (Y < 0.005%) 3 cryst pair
          spect (HansP62a)

Y<sub>8</sub> 0.31 (coinc Y<sub>18</sub>), Y<sub>11</sub> 0.49, Y<sub>14</sub> 0.814, Y<sub>16</sub> 1.09 (coinc Y<sub>14</sub>), Y<sub>17</sub> 1.41 (coinc Y<sub>11</sub>) YY sum coinc (NaqS62)
           0.62 (coinc Y10) e Y coinc (SalP65)
          others (TakekH61, CorkJ51e, BanR51, ColeC55, RohR55, MackR57, PeaC54, BashA54a, DzhB56f, SimoL63b, ArkL55, ArkV59, ArkV57, KhoE58, MacR53, BeacL49b, RalW47, MillL46, RobiB51a, BisG50, WatA47)
  βY(θ): (AlbeJE63, BhaS63, NewR64, PetuA62, RudV60, RagR65, SubM65)
  βΥpolariz(θ): (PetuA62, EstI62)
  ΥΥ(θ): (BlacW63, DorL63, BisG55a, KellWH56, BolH55, RobiB51a, ColeC55, KorH63a, ColeC58, SimoL63b, SchmM64) 0.030 level of ^{140} La: t_{1/2} 5 × 10^{-10} s delay coinc (BurdJ65)
```



```
141
          (33 d):
       I: 7/2 ESR, nucl align; \mu: \pm 0.97 ESR (LindgI64)
      \beta^-: \beta_1 0.582 (30%), \beta_2 0.444 (70%) mag spect (KondE512, KondE51b, KondE51c)
           β<sub>1</sub> 0.581 (33%), β<sub>2</sub> 0.442 (67%) mag spect (FreeM50a)
           \beta_1 0.574 (25%), \beta_2 0.432 (75%) scint spect, \beta Y coinc (JonJT55)
           β<sub>1</sub> 0.591 (33%), β<sub>2</sub> 0.447 (67%) mag spect (ZorG57)
           others (JosM58, ShepL48a, TPogM49)
       Y: Y_1 0.14543 (K/L_1/L_{111}/L_{1111} 810/100/8.1/1.7) mag spect conv (GeiJ65a)
           Y<sub>1</sub> (e<sub>K</sub>/Y 0.38) scint spect (NemL61)
           <sup>γ</sup><sub>1</sub> (e<sub>K</sub>/γ 0.40) scint spect (CookJ61)
           Y1 (K/L 6.4) mag spect conv (JonJT55)
           \gamma_1 (e<sub>K</sub>/\gamma 0.37, K/L 6.2) scint spect, mag spect conv (ZorG57)
           others (RaoG63b, JosM58, KondE52, KondE51b, KondE51c, FreeM50a, Johas52, HillR51a, KellH51, TPogM49, ShepL48a, WalthA65, MartiDW56)
       \beta Y(\theta), \beta Y polariz(\theta): (DeuJ6la, RudV60, RaoW65)
       nucl align: (GracM62, HaaJ63, HaaJ64, SchoJ62, AmbE57, CacC55, HopD61)
```




```
144
Cc (284 d):
β<sup>-</sup>: β<sub>1</sub> 0.309 (76%), β<sub>3</sub> 0.175 (24%) mag spect, βY coinc (Pull56)
β<sub>1</sub> 0.304 (70%) mag spect (PortF52, EmmW54)
β<sub>1</sub> 0.32 (65%), β<sub>2</sub> 0.24 (5%), β<sub>3</sub> 0.18 (30%) mag spect (HicR58)
β<sub>1</sub> 0.33 (75%), β<sub>2</sub> 0.26 (≈5%), β<sub>3</sub> 0.18 (20%) mag spect (CorkJ54b)
others (FreeN59a, ParfV57, SenA59, VasiT62, ForN62, NedV51b, RobiR58, DaniH65a)
Y: Y<sub>1</sub> 0.03357 (L<sub>1</sub> 0.77%, L<sub>1</sub>/L<sub>III</sub> 100/≈6/<5), Y<sub>2</sub> 0.04093 (L<sub>1</sub> 0.68%, L<sub>1</sub>/L<sub>II</sub>/L<sub>III</sub> 100/9/<4), Y<sub>3</sub> 0.05341 (L<sub>1</sub>0.10%, L<sub>1</sub>/L<sub>II</sub>/L<sub>III</sub> 100/8/<6), Y<sub>4</sub> 0.05903 (L<sub>1</sub> 0.22%, L<sub>1</sub>/L<sub>II</sub>/L<sub>III</sub> 65/11/100), Y<sub>5</sub> 0.08012 (K 3.3%, K/L<sub>1</sub>/L<sub>II</sub>/L<sub>III</sub> 100/12.4/0.8/<0.4), Y<sub>6</sub> 0.09995 (K 0.050%, K/L<sub>1</sub>/L<sub>II</sub>/L<sub>III</sub> 100/12/22/23), Y<sub>7</sub> 0.13353 (K 5.3%, K/L<sub>1</sub>/L<sub>I</sub>/L<sub>II</sub>/I<sub>III</sub> 100/12/28/.959/0.23) mag spect conv, e<sup>-</sup>Y, YY coinc (GeiJ60, GeiJ61)
Y<sub>5</sub> (Γ<sub>1</sub>γ32), V<sub>7</sub> (Γ<sub>1</sub>γ100) scint spect (ZukW63)
Y<sub>5</sub> (Γ<sub>1</sub>γ32, e<sub>K</sub>/Y 1.4), Y<sub>7</sub> (Γ<sub>1</sub>γ100, e<sub>K</sub>/Y 0.8) scint spect, mag spect conv (HicR58)
note: additional transitions reported by GneA59, ForN59, FreeN59a, SenA59, ForN62, ParfV57, and IwaT63 are of doubtful existence others (CorkJ54b, Pull56, PortF52, EmmW54, PortF59, SilA61a, VasiT62, GneA59, FreeN59a, ForN59, ParfV57, ForN62, IwaT63, KellH51, KreW54, KellWc52)
βY(θ): (CreE63, CollW63, YV(θ): (CreE63, CollW63, IwaT63, BhaR63b)
```

```
144

(17.3 m):
β-: β<sub>1</sub> 2.996 (97.8%, β<sub>2</sub> 2.30 (1.2%), β<sub>3</sub> 0.807 (1.0%) mag spect, βY coinc (PortF59) β<sub>1</sub> 2.98 (97.7%), β<sub>2</sub> 2.30 (1.3%), β<sub>3</sub> 0.80 (1.0%) mag spect, βY coinc (GrahR58) others (EmmW54, PortF52, LauM56, HicR58, CorkJ54b, AlbuD52b, FreeN59)

Y: Y<sub>1</sub> 0.697 (†<sub>Y</sub>100), Y<sub>2</sub> 1.487 (†<sub>Y</sub>19), Y<sub>3</sub> 2.186 (†<sub>Y</sub>49) scint spect (MonaJ61a) Y<sub>1</sub> 0.697 (Y 1.5%), Y<sub>2</sub> 1.49 (Y 0.29%), Y<sub>3</sub> 2.19 (Y 0.7%) scint spect (PortF59) Y<sub>1</sub> 0.69 (Y 1.6%), Y<sub>2</sub> 1.49 (Y 0.26%), Y<sub>3</sub> 2.18 (Y 0.8%) scint spect (GrahR58) others (FreeN59, HicR58, BurmV59a, SugiyK61, PortF52, AlbuD52b, CorkJ54b, EmmW54, KreW54, FirsE57)
βY(θ): (GrahR58, HessR63, RagR63, CollW63, CreE63, LobV61c) βYpolariz(θ): (HessR63, CollW63)
YY(θ): (ZukW63, GrahR58, SugiyK61)
0.080 level of 144 Pr: t<sub>1/2</sub> 1.2 x 10<sup>-10</sup> s delay coinc (BurdJ62, BurdJ62a)
0.100 level of 144 Pr: t<sub>1/2</sub> 7 x 10<sup>-10</sup> s delay coinc (BurdJ62, BurdJ62, BurdJ62a)
0.134 level of 1.44 Pr: t<sub>1/2</sub> =7 x 10<sup>-12</sup> s delay coinc (BurdJ62, BurdJ62a)
```



```
192 -
      Ir (74.2 d):
             I: 4 atomic beam (LindgI64); μ: ±1.9 nucl align (CamJ64b)
         \beta^-: \beta_1 0.672 (46%), \beta_2 0.536 (41%), \beta_3 0.24 (8%) mag spect, \beta Y coinc
                    (JohnM65)
β<sub>1</sub> 0.67 mag spect (LevyP47a, BagL55, JohnM54a, BashA52)
         \beta_1 0.66 mag spect (ShpV51c) \beta^+: 0.24 (1.5 x 10<sup>-5</sup>%) mag spect (AntoS60)
            Y with \beta^{-}: Y<sub>1</sub> 0.13634 (\uparrow_{\gamma}2.7, e_{K}/Y 0.6, K/L_{T}/L_{TI}/L_{TII} 4.9/1/3.2/2.3), Y<sub>2</sub> 0.29594 (\uparrow_{\gamma}360, e_{K}/Y 0.064, K/L_{T}/L_{TI}/L_{TII} 8.6/1/1.59/0.9), Y<sub>3</sub> 9.30643 (\uparrow_{\gamma}370, e_{K}/Y 0.060, K/L_{T}/L_{TI}/L_{TII} 7.5/1/1.47/0.66), Y<sub>4</sub> 0.31649 (\uparrow_{\gamma}1000, e_{K}/Y 0.054, K/L_{T}/L_{TI}/L_{TII} 7.9/1/1.39/0.76), Y<sub>5</sub> 0.4166 (\uparrow_{\gamma}53, e_{K}/Y ≥0.09), Y<sub>6</sub> 9.46648 (\uparrow_{\gamma}600, e_{K}/Y 0.012, K/L_{T}/L_{TI}/L_{TII} 7.4/1/0.75/0.32), Y<sub>7</sub> 0.58856 (\uparrow_{\gamma}49, e_{K}/Y 0.014, K/L_{T}/L_{TI} 3.5), Y<sub>8</sub> 0.60438 (\uparrow_{\gamma}105, e_{K}/Y 0.019, K/L_{T}/L_{TI}/L_{TII} 6.1/1/0.24/0.04), Y 0.014, K/L_{T}/L_{TI}/L_{TII} 6.1/1/0.24/0.04), Y 0.015/1/2.14 7.0 (0.014), Y/1/2.14 (1.015), Y/1/2.14 (1.015)
                         Y<sub>9</sub> 0.61243 (†<sub>4</sub>70, e<sub>K</sub>/Y 0.011, K/L<sub>I+II</sub> 4.8), Y<sub>10</sub> 0.8846 (†<sub>4</sub>5, e<sub>K</sub>/Y 0.004, K/L+M 4), Y<sub>11</sub> 1.062 (†<sub>4</sub>0.5, e<sub>K</sub>/Y ≈0.0006) mag spect, cryst spect, mag spect conv
                         (compiled from LindsB63, MarinL60, MurG61, HulS61, KerJ62, BagL55, HerrlC64, MurG65 by LHP)
          possible weak additional Y's: 0.1560 (CorkJ51b, HarmB64), 0.173 (CorkJ51b, JohnM54a), 0.281 († 13 (JohnM54a)), († < 1 (LindsB63)), (HarmB64), 0.488 (CorkJ51b, ShpV51c, BashA52), 0.438 († 6.5 (JohnM54a)), († <0.6 (KerJ62)), (CorkJ51b, GlazM55, ShpV51c, BashA52), 0.745 (JohnM54a, ?KerJ62), 0.768 (KerJ62),
                         0.785 († 1 (BagL55)), († <0.02 (KerJ62)), (JohnM54a, MlaM60, PriR54), 1.056 (KerJ62, DzhB56, AntoS60), 1.091 (KerJ62, AntoS60), 1.157 (JohnM54a,
                        not observed by DelN56, AntoS60, KerJ62), 1.21 (PriR54, not observed by DelN56, AntoS60), 1.36 (DelN56, AntoS60), 1.380 (KerJ62) there (BagL55, MlaM60, FreyW62, Hamil62, BergP60, KelmV57c, KerJ62, MarinL60a, MullD52, KelmV57a, JohnM54a, RomV58, RydN55, SumO57a, AntoS60, BashA52, ShpV51c, CorkJ51b, HarmB64, WolfsJ50a, GrarF55, GlazM55, DzhB56, DzhB56f, LuD54, KelmV64)
             YY(θ) with β-: (ButtD62a, SimoL62, ButtD60, KawM58, TayH55, KellWH56, ShieV57, MraI57, BagL55, JohnM65)
             β Y(θ): (DeuJ58, GarwR49)
             Y with EC: Y<sub>1</sub> 0.20128 (\uparrow_{\gamma}5.6, e_{K}/Y 0.23, K/L_{I}/L_{III}/L_{III} 6.5/1/1.6]/1.07), Y<sub>2</sub> 0.20579 (\uparrow_{\gamma}38, e_{K}/Y 0.16, K/L_{I}/L_{III} 11/1/2.75/1.83), Y<sub>3</sub> 0.3834 (\uparrow_{\gamma}4, e_{K}/Y 0.06), Y<sub>4</sub> 0.3746 (\uparrow_{\gamma}6, e_{K}/Y 0.05), Y<sub>5</sub> 0.4846 (\uparrow_{\gamma}40, e_{K}/Y 0.018), Y<sub>6</sub> 0.4891 (\uparrow_{\gamma}4, e_{K}/Y \approx 0.018) mag spect, cryst spect, mag spect conv (compiled from
                         MarinL62, LindsB63, BergP60, KerJ62, HerrlC64, KelmV57c by LHP)
             possible weak additional Y: 0.1103 (K/K(0.317 Y) 0.006, K/L_{1}/L_{111} ~ 7/3/2) mag spect conv (HarmB64)
                     0.110 (K/K(0.317 Y) 0.008) mag spect conv (MarinL62) others (BagL55, BergP60, MarinL60, KerJ62, KelmV57c, JohnM54a, MullD52, SumO57, BashA52, ShpV51c, CorkJ51b, WolfsJ50a)
             YY(\theta) with EC: (ShieV57)
192m | Ir (1.4 m):
                                                                                                                                                                                                                               192m 2 Ir
                                                                                                                                                                                                                                                              (>5 y):
```

β-: 1.5 (0.007%), 1.2 (0.008%), 0.9 (0.0025%) βY coinc (SchaG61) Y with IT: Y 0.0580 ($L_{\rm II}/L_{\rm III}$ 1.1) mag spect conv (MizJ54) Y₁ (e/Y 3500) (SchaG61) Y (e/Y 1300) scint spect, scint spect conv (HennH60a) others (CaldR50, WebG53, KeiB63, HoleN48b) γ with β : 0.317, 0.612 βY coinc (SchaG61, SchaG59)

Y: 0.161 (K/L \approx 0.06) scint spect conv (SchaG59)

```
197 Hg (65 h):

I: 1/2 atomic spect, opt pump; μ: +0.52406 opt pump (LindgI64)

Y: Y<sub>1</sub> 0.07734 cryst spect (MarkI63)

Y<sub>1</sub> 0.0773 (†<sub>L1</sub>100, L<sub>1</sub>/L<sub>II</sub>/L<sub>III</sub> 100/44/41), Y<sub>2</sub> 0.1915 (†<sub>K</sub>1.6) mag spect conv (JunB61)

Y<sub>1</sub> 0.0775 (L<sub>1</sub>/L<sub>II</sub>/L<sub>III</sub> 100/44/33), Y<sub>2</sub> 0.1916 mag spect conv (VHeeI59)

Y<sub>2</sub> 0.191 (†<sub>Y</sub>100), Y<sub>3</sub> 0.268 (†<sub>Y</sub>8), no 0.279 Y (†<sub>Y</sub> <2) semicond spect (HavA65)

Y<sub>1</sub> 0.077 (†<sub>Y</sub>34, e<sub>L+M+...</sub>/Y 4), Y<sub>2</sub> 0.191 (†<sub>Y</sub>1.0, e<sub>K</sub>/Y 0.8, K/L+M+... 4),

Y<sub>3</sub> 0.269 (†<sub>Y</sub>0.06) scint spect, semicond spect conv, mag spect conv (HelmeR65)

others (MihJ53, JolyR55, HubeO53, CorkJ52, HubeO51, FrauH50a)

EC to 0.269 level of <sup>197</sup>Au: EC(K)/EC(K+L+...) 0.5 (DWitS65)

0.134 level of <sup>197</sup>Hg: t<sub>1/2</sub> 7.0 x 10<sup>-9</sup> s delay coinc (SutT61)

others (MGowF50, DeuM50)
```

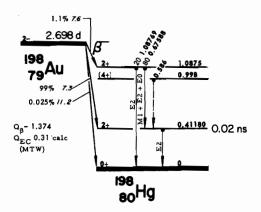
```
197m Hg (24 h):

I: 13/2 atomic spect; μ: -1.032 (Lindgl64)

Y with IT: Y<sub>1</sub> 0.1340 (K/L<sub>T</sub>/L<sub>II</sub>/L<sub>III</sub> 13/2.6/15/10), Y<sub>2</sub> 0.1653 (K/L<sub>T</sub>/L<sub>II</sub>/L<sub>III</sub> 47/54/13/100) mag spect conv (VHeeI59)

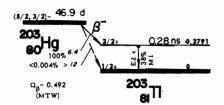
Y<sub>1</sub> (†<sub>K</sub>100, e<sub>K</sub>/Y 0.5, K/L 0.40), Y<sub>2</sub> (†<sub>K</sub>145, e/Y >19, K/L 0.44) mag spect conv, YY coinc (HubeO51, FrauH50a)

Y<sub>1</sub> (L<sub>T</sub>/L<sub>II</sub>/L<sub>III</sub> 0.4/11/10), Y<sub>2</sub> (L<sub>T</sub>/L<sub>II</sub>/L<sub>III</sub> 10/<1/15) mag spect conv (MihJ53)


Y<sub>1</sub> (†<sub>Y</sub>100), Y<sub>2</sub> (†<sub>Y</sub>1.0) semicond spect (HavA65)

others (CorkJ52, BradC54, CobH57, HelmeR65)

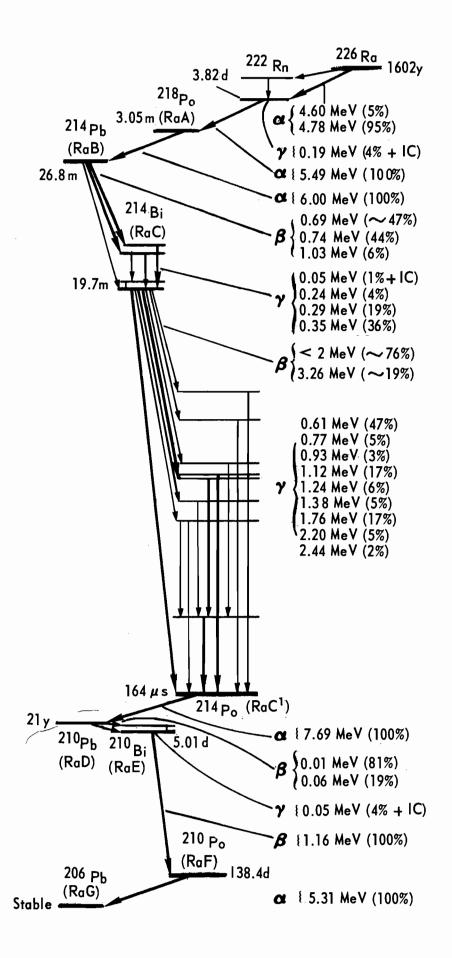
YY(θ): (PettB61b, GerhT62a, GimF56, CobH57)

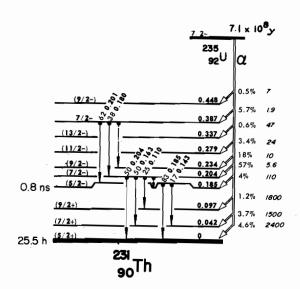

Y with EC: Y<sub>1</sub> 0.1302 (†<sub>X</sub>1.6, L<sub>II</sub>/L<sub>III</sub> 1.3, L<sub>I</sub> weak), Y<sub>3</sub> 0.2793 (†<sub>K</sub>5) mag spect conv (MihJ53, VHeeI59, JolyR55)

Y<sub>2</sub> 0.202 (†<sub>Y</sub>†<sub>Y</sub>(0.134 Y) 0.23), Y<sub>3</sub> 0.279 (†<sub>Y</sub>/†<sub>Y</sub>(0.134 Y) 16) semicond spect (HavA65) others (HubeO51, BradC54, HelmeR65)
```



```
198 Au (2.698 d):
       I: 2, μ: ±0.6 atomic beam (LindgI64)
      β-: β<sub>1</sub> 1.371 (0.025%) mag spect (ElliL54, ElliL55)
             \beta_2 0.961 mag spect (PauH65)
              β<sub>2</sub> 0.959 mag spect (BeeH65)
             β2 0.962 mag spect (ChabM61, DepP61)
              β<sub>3</sub> 0.29 mag spect, βY coinc (BrosA5la)
              others (PortF56, ElliL54, WapA59, DVriC60b, SaxD48, BroyC53, LangeL49, PohA54, LevyP49, StefR49, ShavL49, CavP51, WolfsJ52a, BurgN61, KeeW65, CharP65)
        Y: Y<sub>1</sub> 0.41180 mag spect (MurG63)
              Y2 0.67588, Y3 1.08769 mag spect conv (KayG64)
              \gamma_1^- (e<sub>K</sub>/\gamma 0.0299) mag spect conv (PauH65, KeeW65)
              \gamma_1 (e<sub>K</sub>/\gamma 0.0302) mag spect, mag spect conv (BergK65)
               \gamma_1 (e<sub>K</sub>/\gamma 0.0300) mag spect conv, \beta\gamma coinc (LewinW63)
              Y<sub>1</sub> (K/L<sub>I</sub>/L<sub>II</sub>/L<sub>III</sub> 687/100/101/45) mag spect conv (HerrlC64)
              Y_1 (\uparrow_{\gamma}100), Y_2 (\uparrow_{\gamma}0.8, e_{K}/Y 0.022, K/L 5.7), Y_3 (\uparrow_{\gamma}0.17, e_{K}/Y 0.0045,
              K/L 6.3) mag spect, mag spect conv (ElliL54)


Y<sub>1</sub> (†<sub>Y</sub>100), Y<sub>2</sub> (†<sub>Y</sub>1.1), Y<sub>3</sub> (†<sub>Y</sub>0.26) mag spect (DzhB55a)
               \gamma_1 \ (\uparrow_{\gamma}100), \ \gamma_2 \ (\uparrow_{\gamma}1.0, \ e_{K}/\gamma \ 0.019), \ \gamma_3 \ (\uparrow_{\gamma}0.16, \ e_{K}/\gamma \ 0.0045) \ mag \ spect,
              mag spect conv (VolJ56)
others (KelmV59, HameB6la, BergP60, DVriC60a, MullD52, HedA52,
DMonJ48, LindD51, ConnDR56, PettB61c, HulS61, WolfsJ61a, WapA59,
FreyW62, HamiJ62a, SaxD49, SiegK49b, StefR49, HubeP51, FanC52,
SimoL52a, ReitD58, BirkR55, HillR50, MaeD54, DahB56f, CavP51,
CavP51a, MihJ52a, SwanJ53b, KureF63, PritR50a, ShavL49, BrosA51a,
StarS63, ReidyJ65a, ChenT64, ParsD64, BacksG58, PettB65a)
        \gamma\gamma(\theta): (SakM64a, SchifD53, SchrC53, SchrC53a, MaliS59)
        βΥ(θ): (PettB62, StefR61, ENesM62d, GarwR49, LehJ62, LobV62b, ThuJ64a, DeiW65, LacJe65)
        βΥpolariz(θ): (StefR60, DeuJ61b, DCroM60, SimmP58, AvaR62, BoeF56, BertJ57, VKliJ64)
```




```
203 1 τ (46.9 d):
β: 0.214 mag spect (MartyN55, NijG59)
0.210 mag spect (ThuS54a, WilsH51)
0.208 mag spect (SlaH49a, SlaH49)
no 0.49 β (Lim 0.004%) mag spect (MartyN55)
others (SaxD48a, WolfsJ56, WapA54d, WieM47)

Y: Y<sub>1</sub> 0.2791 mag spect conv (EdvK58)
Y<sub>1</sub> (e/V 0.226) scint spect, β coinc (TayJ62)
Y<sub>1</sub> (e/V 0.162) scint spect, β coinc (CrofW63)
Y<sub>1</sub> (e/V 0.163, K/L/M+... 3.39/1/0.30) mag spect conv (NijG59)
Y<sub>1</sub> (e/V 0.159, K/L/L/L/L) 1/0.16/0.10/0.053) mag spect conv (NorC56)

Y<sub>1</sub> (L/L/L) L 1 0.15/0.11/0.053) mag spect conv (SwanJ53b, SwanJ53a)
others (SlaH49, SlaH49a, HedA50, WolfsJ56, WilsH51, MartyN55, Johas52, BergI53, ThuS54a, SubB61c, HurJ61, RamasM60a, OFri256, WapA54d, SacD48a, BurmR63, KureT63, DWaaH55b, DWaaH56, WalthA65, RaoMR65)
Isomeric level of 203 Hg: t<sub>1/2</sub> 2.1 x 10<sup>-5</sup> s delay coinc (BranK64)
Y: 0.33, 0.58 scint spect (BranK64)
```


Ω_β- 0.381 Ω_α 4.22 calc (MTW)

```
235 U (7.1 × 10 8 y):

I: 7/2 atomic spect, paramag res; µ: ±0.35, q: ±3.8 paramag res (LindgI64)

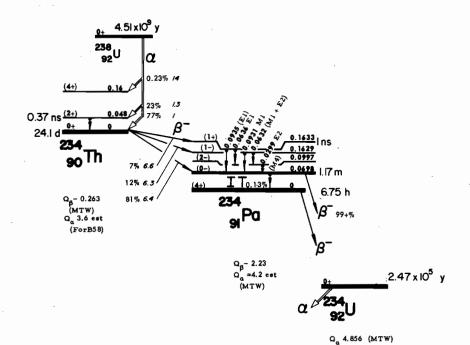
q: a<sub>0</sub> 4.597 (4.6%), a<sub>42</sub> 4.556 (3.7%), a<sub>97</sub> 4.502 (1.2%), a<sub>155</sub> 4.445 ? (0.6%),

a<sub>185</sub> 4.415 (4%), a<sub>204</sub> 4.396 (57%), a<sub>234</sub> 4.366 (18%), a<sub>257</sub> 4.344 ?

(1.5%), a<sub>279</sub> 4.323 (3%), a<sub>337</sub> 4.266 (0.6%), a<sub>387</sub> 4.216 (5.7%),

a<sub>448</sub> 4.157 (≈0.5%) mag spect, semicond spect (HydE64: compiled from PiR62, BaranS60a, SkiD61)

others (VorA60, VorA60a, PiR57, GhiA51b, WurE57, VesR52, ClarF57)


Y: Y<sub>1</sub> 0.110 (Y 2.5%), Y<sub>2</sub> 0.143 (Y 11%), Y<sub>3</sub> 0.163 (Y 5%), Y<sub>4</sub> 0.180 (Y 0.5%),

Y<sub>5</sub> 0.185 (Y 54%), Y<sub>6</sub> 0.201 (Y 0.8%), Y<sub>7</sub> 0.204 (Y 5%) scint spect, YY coinc (PiR62)

Y<sub>1</sub> 0.106, Y<sub>2</sub> 0.143, Y<sub>5</sub> 0.185 (e<sub>K</sub>/Y(Y<sub>1</sub> + Y<sub>2</sub> + Y<sub>5</sub>) 0.10, K/L ≈1.4),

0.192 (e<sub>K</sub>/Y 2.0) scint spect, Ya coinc (VorA60a)

others (JohaS56, FiII58)
```


238 U (4.51 × 10⁹ y):

a: a₀ 4.195 ion ch (VorA60a)
a₀ 4.200 ion ch (HarvB57)
a₀ (77%), a₄₈ (23%), a₁₆₀ (0.23%a ion ch (KocG59a)
others (BocB57, KomA58a, VorA59a, AldF47, ClarF57)
Y: 0.048 (e⁻ 23%) ae⁻ coinc, range emuls (AlboG56, AlboG52, ZajB52)
others (DunlD52)
0.045 level of ²³⁸ U: t_{1/2} 2.3 × 10⁻¹⁰ s, delay coinc (BellRE60)

234 Th (24.1 d):

β: 0.191 (65%), 0.100 (35%, coinc Y₅ + Y₆) βY coinc, abs, mag spect (DHaaE55)

others (StokP53a, BradH46c, HeeM50, JnaS46, DHaaE55)

Y: Y₁ 0.0299 (e/Y > 130, M_{III}/M_{III} 1), Y₂ 0.0632 (L_I/L_{III}/L_{III} 2.5/1/1),

Y₃ 0.0636 (L_I/L_{III}/L_{III} 1/0.8/1, Y₄(Y₂ + Y₃) 85, e/Y 0.32), Y₄ 0.0698

(with 234m Pa), Y₅ 0.0931 (L_I/L_{III}/L_{III} 150/15/1), Y₆ 0.0935

(†_Y(Y₅ + Y₆) 100, e/Y 2.0) mag spect conv, scint spect (FouR62a) others (OngP56a, JohaS54, AdaA62, BjoS63a, FouR59, FouR59a, FouR62, BriaJ62, HeeM50, BradH46c, FouR65)

0.048 level of ²³⁴Th: t_{1/2} 3.7 x 10⁻¹⁰ s delay coinc (BelIRE60)

234 Pa (6.75 h):
β': 1.35 (s2%), 1.02 (7%), 0.73 (11%), 0.51 (66%), 0.23 (14%) mag spect (BjoS62)
1.13 (13%), 0.53 (27%), 0.32 (32%), 0.16 (28%) mag spect (OngP56a, OngP53, OngP55b)

γ: γ₁ 0.044 (L_H ~34%, L_H/L_{HI}/M 3/3/2), γ₂ 0.100 (L_H31%, L_H/L_{HI}/M 31/19/11), γ₃ 0.126 (γ=24%, e_{L/}/γ =0.06), γ₄ 0.153 (γ 9%, e_{L/I}/γ 0.7, L_H/L_{HI}/M 6.5/3.0/3.1), γ₅ 0.186 (γ =3%, K/L 6), γ₆ 0.197 (γ 4%, e_L/γ ≈0.6), γ₇ 0.208 (γ ≥16%), γ₈ 0.224 (γ ≈2%, e_K/γ α4), γ₉ 0.228 (γ 12%, e_K/γ 1.2), γ₁₀ 0.287 (γ =10%, e_K/γ ≈0.05), γ₁₁ 0.323 (γ ≈3%), γ₁₂ 0.355 (γ ≈5%), γ₁₃ 0.349 (γ 5.3%, e_K/γ 0.4, K/L 4), γ₁₄ 0.565 (γ 15%, e_K/γ 0.14, K/L/M 4/1/0.3), γ₁₅ 0.494 (K 0.4%), γ₁₆ 0.727 (K 0.7%), γ₁₇ 0.791 (γ ≤5%), γ₁₈ 0.804 (K 0.47%, K/L 4), γ₁₉ 0.822, γ₂₀ 0.873, γ₂₁ 0.875, γ₂₂ 0.876 (K(γ₂₀ + γ₂₁ + γ₂₂) 0.29%, K/L 5), γ₂₃ 0.920, γ₂₄ 0.922 (K(γ₂₃ + γ₂₄) 0.26%), γ₂₅ 0.941 (K 0.12%, K/L 4), γ₂₆ 0.976 (K 0.03%, γ(γ₁₉ - γ₂₆) 70%), γ₂₇ 1.020 (γ =8%), 1.13 (γ γ 3%), 1.34 (γ γ 2%), 1.41 (γ γ 6%), 1.62 (γ γ 3%), 1.85 (γ γ 1%) mag spect conv, scint spect, γγ, e⁻γ, e^γγ coinc (BjoS62) γ₁ 0.0433 (L_H/L_{HI} 1.1), γ₂ 0.0998 (L_H/L_{HI} 1.4), γ₃ 0.1263, γ₄ 0.1530 (L_H/L_{HI} 1.9), γ₅ 0.1860, γ₆ 0.1967 (γ), γ₈ 0.2239, 0.2247 (γ), γ₉ 0.2273, 0.2943 (γ), γ₁₃ 0.3701 (γ) mag spect conv (BriaC64) γ₁ (L_H/L_{HI} 1.0), γ₂ (L_H/γ 1.1), γ₃ γ γ₄ (e_K/γ 0.015), 1.24, 1.43, 1.68, others, mag spect conv, scint spect (OngP56a, OngP55b) γ₃ (γ₃2), γ₄ (γ₇γ), 0.23 (γ₇4), γ₁₀ 0.46 (γ₁1.8), γ₁₇ (γ₇4), γ₂₀ + γ₂₁ (γ₇9), γ₂₅ (Γ_γ11), γ₂₆ + γ₂₇ (Γ_γ8) (γ₃ coinc γ₂, γ₄, 0.23γ, γ₁₀λ other γ rays reported, delay γγ coinc (Hans P63a) other γ rays reported, delay γγ coinc (Hans P63a) other γ rays reported, delay γγ coinc (Hans P63a) other (DLan P59. JohaS54, BoulG53a)

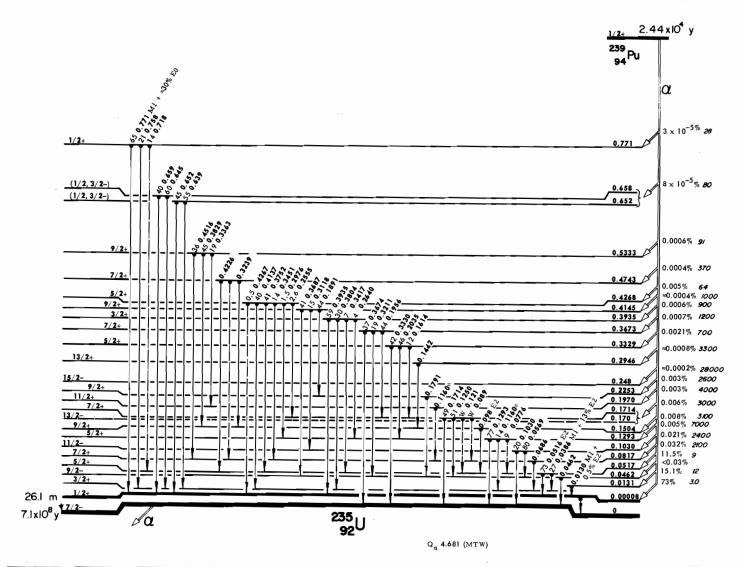
0.1433 level of 1.234 Pa: t_{1/2} 6 × 10⁻¹⁰ a delay coinc (AboH64) 1.8 × 10⁻⁹ s delay coinc (FouR62a)

234m_{Pa} (1.17 m):

β : β₁ 2.29 (98%), β₂ 1.53 (coinc Y₅), β₃ 1.25 (coinc Y₈), mag spect, βY coinc (BjoS63a) others (StokP53a, HeeM50, DHaaE55, BradH45d)

Y (with β : Y₁ 0.0435 (e⁻2%, L_{II}/L_{IIII}/M 0.9/1/1.3), Y₂ 0.236

(K 0.07%, e_K/Y > 8, K/L 5), Y₃ 0.255 (Y 0.05%, e_K/Y <0.1), Y₄ 0.746 (weak), Y₅ 0.765 (Y 0.36%, e_K/Y 0.012), Y₆ 0.790


(weak), Y₇ 0.811 (K 0.4%, K/L/M 5.1/1/0.35), Y₈ 1.001

(Y 0.59%, e_K/Y 0.01) mag spect conv, scint spect, e⁻Y

coinc (BjoS63a)

Y (with IT): (0.070) (L 0.10%), Y's of ²³⁴ Pa mag spect conv, scint spect (BjoS63a) others (OngP56a, DHaaE53, JohaS54, CrosW54, BradH43a, BradH45d, SchnH59)

YY(θ): (WoodG60)


```
239 P<sub>11</sub> (2.44 × 10<sup>4</sup> y);

I: 1/2 atomic beam, atomic spect (Lindgló4); μ: +0.200 atomic beam (FauJó5)

a: a<sub>0</sub> 5.154, a<sub>13</sub> 5.143, a<sub>25</sub> 5.105 mag spect (LeanCó2)

a<sub>0</sub> 5.157 (73.3%), a<sub>13</sub> 5.145 (15.1%), a<sub>46</sub> (? <0.03%), a<sub>52</sub> 5.107 (11.5%), a<sub>82</sub> 5.078 (0.032%), a<sub>93</sub> 5.066 (0.0009%), a<sub>103</sub> 5.056 (0.021%), a<sub>125</sub> 5.031 (0.005%),
a<sub>150</sub> 5.010 (0.006%), a<sub>160</sub> 5.001 (0.0006%), a<sub>170</sub> 4.791 4.798 (0.005%), a<sub>197</sub> 4.763 (0.003%), a<sub>204</sub> 4.797 (0.0005%), a<sub>225</sub> 4.797 (0.003%), a<sub>226</sub> 4.914 (0.0008%),
a<sub>290</sub> 4.873 (0.0007%), a<sub>295</sub> 4.864, a<sub>333</sub> 4.830 (0.0015%), a<sub>367</sub> 4.801 (0.0006%), a<sub>422</sub> 4.743, a<sub>427</sub> 4.739 (a<sub>422</sub> + a<sub>427</sub> 0.0026%), a<sub>474</sub> 4.695 (0.0004%), a<sub>533</sub> 4.636 (0.0002%), a<sub>171</sub> (0.006%), a<sub>225</sub> (0.0038), a<sub>248</sub> (0.0002%), a<sub>295</sub> (0.0008%), a<sub>333</sub> (0.0006%), a<sub>217</sub> (0.005%), a<sub>474</sub> 4.695 (0.0005%), a<sub>374</sub> (0.0005%), a<sub>373</sub> (0.0006%), a<sub>274</sub> (0.0005%), a<sub>373</sub> (0.0006%) av coinc (Ahmidó)
a<sub>552</sub> + a<sub>158</sub> 4.52 (8 × 10<sup>-5</sup>%), a<sub>771</sub> 4.39 (3 × 10<sup>-5</sup>%) aiv, ac<sup>-</sup> coinc (BjoSó3b)
others (Dahdólc, GoldiLó5, NoviG57, AjsF56, AsaF52b, RosS50, HorsF65)

Y: Y<sub>2</sub> 0.0386 (f<sub>1</sub>150), y<sub>3</sub> 0.0462 (f<sub>1</sub>16), y<sub>4</sub> 0.0516 (f<sub>1</sub>410), y<sub>5</sub> 0.0589 (f<sub>1</sub>16), y<sub>6</sub> 0.0848 (f<sub>1</sub>14), y<sub>7</sub> 0.0776 (f<sub>1</sub>11), y<sub>10</sub> 0.1030 (f<sub>1</sub>4), y<sub>11</sub> 0.1160 (f<sub>1</sub>18), y<sub>13</sub> 0.1250 (f<sub>1</sub>1.9), y<sub>14</sub> 0.1293 (f<sub>1</sub>100), y<sub>15</sub> 0.1417 (f<sub>1</sub>0.6), y<sub>16</sub> 0.1442 (f<sub>1</sub>5), y<sub>17</sub> 0.1460 (f<sub>1</sub>2.1), y<sub>18</sub> 0.1714 (f<sub>1</sub>1.8), y<sub>19</sub> 0.1791 (f<sub>1</sub>1.2), y<sub>20</sub> 0.1891 (f<sub>1</sub>1.5), y<sub>17</sub> 0.1956 (f<sub>1</sub>1.9), y<sub>20</sub> 0.2035 (f<sub>1</sub>9), y<sub>20</sub> 0.2355 (f<sub>1</sub>0.6), y<sub>24</sub> 0.2440 (f<sub>1</sub>0.6), y<sub>25</sub> 0.2976 (f<sub>1</sub>0.9), y<sub>26</sub> 0.3118 (f<sub>1</sub>0.5), y<sub>27</sub> 0.2111 (f<sub>1</sub>0.8), y<sub>28</sub> 0.3239 (f<sub>1</sub>0.9), y<sub>29</sub> 0.3300 (f<sub>1</sub>8), y<sub>30</sub> 0.3362 (f<sub>1</sub>10), y<sub>39</sub> 0.4137 (f<sub>1</sub>2.5), y<sub>40</sub> 0.4226 (f<sub>1</sub>2), y<sub>41</sub> 0.4267 ? (f<sub>1</sub>0.9), y<sub>40</sub> 0.4516 (f<sub>1</sub>4.1), y<sub>3</sub> 0.3752 (f<sub>1</sub>25), y<sub>36</sub> 0.3804 (f<sub>1</sub>5), y<sub>37</sub> 0.3829 (f<sub>1</sub>9), y<sub>38</sub> 0.3935 (f<sub>1</sub>10), y<sub>39</sub> 0.4137 (f<sub>1</sub>25), y<sub>40</sub> 0.4226 (f<sub>1</sub>2), y<sub>41</sub> 0.4267 ? (f<sub>1</sub>0.0), y<sub>40</sub> 0.4516 (f<sub>1</sub>4.1), y<sub>10</sub> 0.0768, y<sub>40</sub> 0.659 (f<sub>1</sub>11.10%, y<sub>19</sub> 0.771 (f<sub>1</sub>1.8 × 10<sup>-5</sup>%), y<sub>40</sub> 0.4226
```

				*.
		·		
\mathbf{v}_{i}				

SECTION V GLOSSARY

GLOSSARY

-A-

Absorbed Fraction: A term used in internal dosimetry. It is that fraction of the photon energy (emitted within a specified volume of material) which is absorbed by the volume. The absorbed fraction depends on the source distribution, the photon energy, and the size, shape, and composition of the volume.

Absorption: The process by which radiation imparts some or all of its energy to any material through which it passes. (See Compton Effect, Photoelectric Effect, and Pair Production.)

Self-Absorption: Absorption of radiation (emitted by radioactive atoms) by the material in which the atoms are located; in particular, the absorption of radiation within a sample being assayed.

Absorption Coefficient: Fractional decrease in the intensity of a beam of x or gamma radiation per unit thickness (linear absorption coefficient), per unit mass (mass absorption coefficient), or per atom (atomic absorption coefficient) of absorber, due to deposition of energy in the absorber. The total absorption coefficient is the sum of individual energy absorption processes (Compton effect, photoelectric effect, and pair production).

Atomic Absorption Coefficient: The linear absorption coefficient of a nuclide divided by the number of atoms per unit volume of the nuclide. It is equivalent to the nuclide's total cross section for the given radiation.

Compton Absorption Coefficient: That fractional decrease in the energy of a beam of x or gamma radiation due to the deposition of the energy to electrons produced by Compton effect in an absorber. (See Scattering, Compton.)

Linear Absorption Coefficient: A factor expressing the fraction of a beam of x or gamma radiation absorbed in unit thickness of material. In the expression $I = I_0 e^{-\mu x}$, I_0 is the initial intensity, I the intensity of the beam after passage through a thickness of the material x, and μ is the linear absorption coefficient.

Mass Absorption Coefficient: The linear absorption coefficient per cm. divided by the density of the absorber in grams per cu. cm. It is frequently expressed as μ/ρ , where μ is the linear absorption coefficient and ρ the absorber density.

Absorption Ratio, Differential: Ratio of concentration of a nuclide in a given organ or tissue to the concentration that would be obtained if the same administered quantity of this nuclide were uniformly distributed throughout the body.

Accelerator (Particle Accelerator): A device for imparting large kinetic energy to electrically charged particles such as electrons, protons, deuterons, and helium ions. Common types of particle accelerators are direct voltage accelerators (including Van de Graaff, Cockcroft-Walton, Dynamitron, resonant transformer, and insulating core transformer), cyclotrons (including synchrocyclotrons and isochronous cyclotrons), betatrons, and linear accelerators. (Individual accelerators listed alphabetically through glossary.)

Activation: The process of inducing radioactivity by irradiation.

Activity: The number of nuclear transformations occurring in a given quantity of material per unit time. (See Curie.)

Adsorption: The adhesion of one substance to the surface of another.

Alpha Particle: A charged particle emitted from the nucleus of an atom having a mass and charge equal in magnitude of a helium nucleus; i.e., two protons and two neutrons.

Alveoli: The terminal air sacs of the lungs.

Aluminum Equivalent: The thickness of aluminum affording the same attenuation, under specified conditions, as the material in question.

Ampere: The unit of current that, when flowing through each of two long parallel wires separated by one meter in free space, results in a force between the two wires (due to their magnetic fields) of 2×10^{-7} newtons for each meter of length.

Amplification: As related to radiation detection instruments, the process (gas, electronic, or both) by which ionization effects are magnified to a degree suitable for their measurement.

Amplifier, Linear: A pulse amplifier in which the output pulse height is proportional to an input pulse height for a given pulse shape up to a point at which the amplifier overloads.

Amplifier, Pulse: An amplifier, designed specifically to amplify the intermittent signals of a nuclear detector, incorporating appropriate pulse-shaping characteristics.

Analysis, Activation: A method of chemical analysis, especially for small traces of material, based on the detection of characteristic radiations following a nuclear bombardment.

Analysis, Feather: A technique for the determination of the range in aluminum of the beta particles of a radionuclide by comparison of the absorption curve with the absorption curve of a reference source, usually ²¹⁰ Bi (range-501 mg/cm²).

Analysis, Isotope Dilution: A method of chemical analysis for a component of a mixture, based on the addition to the mixture of a known amount of labeled component of known specific activity, followed by isolation of a quantity of the component and measurement of the specific activity of that sample.

Analyzer, Pulse Height: An electronic circuit which sorts and records the pulses according to height.

Anemia: Deficiency of blood as a whole, or deficiency in the number of the red corpuscles or of the hemoglobin.

Angstrom Unit: One angstrom unit equals 10^8 cm. (Symbol: Å)

Anion: Negatively charged ion.

Annihilation (Electron): An interaction between a positive and a negative electron in which they both disappear; their energy, including rest energy, being converted into electromagnetic radiation (called annihilation radiation).

Anode: Positive electrode; electrode to which negative ions are attracted.

Antimatter (Antiparticles): Matter in which the ordinary nuclear particles (neutrons, protons, electrons, etc.) are conceived of as being replaced by their corresponding antiparticles (antineutrons, antiprotons, positrons, etc.). An antihydrogen atom, for example, would consist of a negatively charged antiproton with an orbital positron. Normal matter and antimatter would mutually annihilate each other upon contact, being converted totally into energy. (See Matter.)

Atom: Smallest particle of an element which is capable of entering into a chemical reaction.

Atomic Mass: The mass of a neutral atom of a nuclide, usually expressed in terms of "atomic mass units." The "atomic mass unit" is one-twelfth the mass of one neutral atom of carbon-12; equivalent to 1.6604×10^{-24} gm. (Symbol: u).

Atomic Number: The number of protons in the nucleus of a neutral atom of a nuclide. The "effective atomic number" is calculated from the composition and atomic numbers of a compound or mixture. An element of this atomic number would interact with photons in the same way as the compound or mixture. (Symbol: Z).

Atomic Weight: The weighted mean of the masses of the neutral atoms of an element expressed in atomic mass units. Attenuation: The process by which a beam of radiation is reduced in intensity when passing through some material. It is the combination of absorption and scattering processes and leads to a decrease in flux density of the beam when projected through matter.

Attenuation Coefficient, Compton: The fractional number of photons removed from a beam of radiation per unit thickness of a material through which it is passing as a result of Compton effect interactions.

Attenuation Coefficient, Linear: The fractional number of photons removed from a beam of radiation per unit thickness of a material through which it is passing due to all absorption and scattering processes.

Attenuation Coefficient, Pair Production: That fractional decrease in the intensity of a beam of ionizing radiation due to pair production in a medium through which it passes.

Attenuation Coefficient, Photoelectric Effect: That fractional decrease in the intensity of a beam of ionizing radiation due to photoelectric effect in a medium through which it is passing.

Attenuation Factor: A measure of the opacity of a layer of material for radiation traversing it; the ratio of the incident intensity to the transmitted intensity. It is equal to I_o/I , where I_o and I are the intensities of the incident and emergent radiation, respectively. In the usual sense of exponential absorption ($I = I_o e^{-\mu x}$), the attenuation factor is $e^{\mu x}$, where x is the thickness of the material and μ is the absorption coefficient.

Auger Effect: The emission of an electron from the extranuclear portion of an excited atom when the atom undergoes a transition to a less excited state.

Autofluoroscope: A device for visualizing the spatial distribution of a radionuclide within an organ or gland in the body. The autofluoroscope uses a multielement stationary detector composed of individual NaI(T1) crystals. An image of the radionuclide distribution is obtained on a retention oscilloscope, or other readout devices.

Autoradiograph: Record of radiation from radioactive material in an object, made by placing the object in close proximity to a photographic emulsion.

Avalanche: The multiplicative process in which a single charged particle accelerated by a strong electric field produces additional charged particles through collision with neutral gas molecules. This cumulative increase of ions is also known as "Townsend ionization" or "Townsend avalanche."

Average Life (Mean Life): The average of the individual lives of all the atoms of a particular radioactive substance. It is 1.443 times the radioactive half-life.

Avogadro's Number (Avogadro Constant): Number of atoms in a gram atomic weight of any element; also the number of molecules in a gram molecular weight of any substance. It is numerically equal to 6.023×10^{23} on the unified mass scale. (Symbol: N_A).

-B-

Backscattering: The deflection of radiation by scattering processes through angles greater than 90 degrees, with respect to the original direction of motion.

Barn: Unit expressing the probability of a specific nuclear reaction, in terms of cross-sectional area. Numerically, it is 10^{-24} cm².

Barriers, Protective: Barriers of radiation-absorbing material, such as lead, concrete, and plaster, used to reduce radiation exposure.

Barriers, Primary Protective: Barriers sufficient to attenuate the useful beam to the required degree.

Barriers, Secondary Protective: Barriers sufficient to attenuate stray radiation to the required degree.

Baryon: One of a class of heavy elementary particles which includes neutrons, protons, and hyperons. (See Lepton, Meson.)

Beam: A unidirectional or approximately unidirectional flow of electromagnetic radiation or of particles.

Useful Beam (Radiology): Radiation which passes through the aperture, cone, or other collimating device of the source housing. Sometimes called "primary beam."

Beam Hole (Glory Hole): Hole through the shield, and usually through the reflector, of a reactor to permit the escape of a beam of radiation, in particular a beam of fast neutrons, for experimental purposes.

Beta Particle: Charged particle emitted from the nucleus of an atom, with a mass and charge equal in magnitude to that of the electron.

Betatron: A magnetic induction accelerator which makes use of a varying magnetic field to accelerate electrons. Electrons are injected into a toroidal vacuum chamber which is between the poles of an iron-core magnet. The rate of change of the magnet flux and magnetic field at the orbit radius are related to maintain a constant radius for the accelerating electrons.

Biologic Effectiveness of Radiation: (See Relative Biological Effectiveness.)

Blood Dyscrasia: Any persistent change from normal of one or more of the blood components.

Bone Marrow: Soft material which fills the cavity in most bones; it manufactures most of the formed elements of the blood.

Bone Seeker: Any compound or ion which migrates in the body preferentially into bone.

Brachytherapy: Therapy at short distances with beta or gamma radiation. Implantation or placement therapy with needles, inserts, or other such applications containing radioactive materials. Useful in the treatment of various diseases.

Bragg Gray Principle: The relationship between energy absorbed in a small gas-filled cavity in a medium to energy absorbed (in the medium) from ionizing radiation. The relationship is expressed as $E = W \times J \times S$; where E = energy/cc absorbed in the medium; W = average energy needed to produce an ion pair in the gas; J = number of ion pairs/cc formed in the gas; and S = ratio of the stopping power for secondary particles in the medium to that in the gas.

Branching: The occurrence of two or more modes by which a radionuclide can undergo radioactive decay. For example, RaC can undergo a or β decay, ⁶⁴Cu can undergo β , β , or electron capture decay. An individual atom of a nuclide exhibiting branching

disintegrates by one mode only. The fraction disintegrating by a particular mode is the "branching fraction" for that mode. The "branching ratio" is the ratio of two specified branching fractions (also called multiple disintegration).

Breeder Reactor: (See Converter Reactor.)

Bremsstrahlung: Secondary photon radiation produced by deceleration of charged particles passing through matter.

British Thermal Unit (BTU): The quantity of heat required to increase the temperature of one pound of water one degree Fahrenheit at atmospheric pressure; approximately 252 gram-calories.

Buildup Factor: The ratio of the intensity of x or gamma radiation (both primary and scattered) at a point in an absorbing medium to the intensity of only the primary radiation. This factor has particular application for "broad beam" attenuation. "Intensity" may refer to energy flux, dose, or energy absorption.

Burial Ground (Graveyard): A place for burying unwanted radioactive objects to prevent escape of their radiations, the earth or water acting as a shield. Such objects must be placed in watertight, noncorrodible containers so the radioactive material cannot leach out and invade underground water supplies.

-C-

Calibration: Determination of variation from standard, or accuracy, of a measuring instrument to ascertain necessary correction factors.

Calorie (Gram-Calorie): Amount of heat necessary to raise the temperature of one gram of water 1° C (from 14.5 to 15.5° C). (Abbreviation: cal.)

Cancer: Any malignant neoplasm. (Popular usage.)

Capillary: A small, thin-walled blood vessel connecting an artery with a vein.

Capture, Electron: A mode of radioactive decay involving the capture of an orbital electron by its nucleus. Capture from a particular electron shell is designated as "K-electron capture," "L-electron capture," etc.

Capture, K-Electron: Electron capture from the K shell by the nucleus of the atom. Also loosely used to designate any orbital electron capture process.

Capture, Radiative: The process by which a nucleus captures an incident particle and loses its excitation energy immediately by the emission of gamma radiation.

Capture, Resonance: An inelastic nuclear collision occurring when the nucleus exhibits a strong tendency to capture incident particles or photons of particular energies.

Carcinogenic: Capable of producing cancer.

Carcinoma: Malignant neoplasm composed of epithelial cells, regardless of their derivation.

Carrier: A quantity of non-radioactive or nonlabeled material of the same chemical composition as its corresponding radioactive or labeled counterpart. When mixed with the corresponding radioactive labeled material, so as to form a chemically inseparable mixture, the carrier permits chemical (and some physical) manipulation of the mixture with less label or radioactivity loss than would be true for the undiluted label or radioactivity.

Carrier, Hold-Back: The inactive isotope or isotopes of a radioactive element, or an element of similar properties, or some reagent which may be used to diminish the amount of the radionuclide coprecipitated or absorbed in a chemical reaction.

Carrier-Free: An adjective applied to one or more radioactive isotopes of an element in minute quantity, essentially undiluted with stable isotope carrier.

Catalyst: A substance which alters the velocity of a chemical reaction (positive catalysts increase velocity) yet may be recovered practically unchanged after the reaction has occurred.

Cataract: A clouding of the crystalline lens of the eye which obstructs the passage of light.

Cathode: Negative electrode; electrode to which positive ions are attracted.

Cation: Positively charged ion.

Cell: (Biological) The fundamental unit of structure and function in organisms.

Cells, Somatic: Body cells, usually with two sets of chromosomes, as opposed to germ cells, which have only one set.

Chamber, Cloud: A device for observing the paths of ionizing particles. It is based on the principle that supersaturated vapor condenses more readily on ions than on neutral molecules.

Chamber, Ionization: An instrument designed to measure a quantity of ionizing radiation in terms of the charge of electricity associated with ions produced within a defined volume.

Air-Wall Ionization Chamber: Ionization chamber in which the materials of the wall and electrodes are so selected as to produce ionization essentially equivalent to that in a free-air ionization chamber. This is possible only over limited ranges of photon energies. Such a chamber is more appropriately termed an "air-equivalent ionization chamber."

Extrapolation Ionization Chamber: An ionization chamber with electrodes whose spacing can be adjusted and accurately determined to permit extrapolation of its reading to zero chamber volume.

Free-Air Ionization Chamber: An ionization chamber in which a delimited beam of radiation passes between the electrodes without striking them or other internal parts of the equipment. The electric field is maintained perpendicular to the electrodes in the collecting region. As a result, the ionized volume can be accurately determined from the dimensions of the collecting electrode and the limiting diaphragm. This is the basic standard instrument for x-ray dosimetry within the range of 5 to 1400 kVp.

Thimble Ionization Chamber: A small cylindrical or spherical ionization chamber, usually with walls of organic material.

Tissue-Equivalent Ionization Chamber: An ionization chamber in which the material of the walls, electrodes, and gas are so selected as to produce

ionization essentially equivalent to that characteristic of the tissue under consideration. In some cases it is sufficient to have only tissue equivalent walls, and the gas may be air, provided the air volume is negligible. The essential point in this case is that the contribution to the ionization in the air made by ionizing particles originating in the air is negligible, compared to that produced by ionizing particles characteristic of the wall material.

Chamber, Pocket: A small, pocket-sized ionization chamber used for monitoring radiation exposure of personnel. Before use, it is given a charge and the amount of discharge is a measure of the radiation exposure.

Charge: The fissionable material or fuel placed in a reactor to produce a chain reaction. To assemble the charge in a reactor.

Charge, Space: The electric charge carried by a cloud or stream of electrons or ions in a vacuum or a region of low gas pressure, when the charge is sufficient to produce local changes in the potential distribution. It is of importance in thermionic tubes, photoelectric cells, ion accelerators, etc.

Chemical (Isotopic) Exchange: A process in which atoms (isotopes) of the same element in two different molecules exchange places.

Cherenkov Radiation: Blue light emitted when a charged particle moves in a transparent medium with a speed greater than that of light in the same medium.

Circuit, Anticoincidence: A circuit with two input terminals which delivers an output pulse if one input terminal receives a pulse, but delivers no output pulse if pulses are received by both input terminals simultaneously or within an assignable time interval.

Circuit, Coincidence: An electronic circuit that produces a usable output pulse only when each of two or more input circuits receives pulses simultaneously or within an assignable time interval.

Circuit, Integrating: An electronic circuit which records the total number of ions or events collected for a given time from which an average value for the number of ions or events per unit time can be found.

Circular Mil: An area equal to the area contained in a circle of one mil in diameter or 7.854×10^{-7} square inch.

Cladding (Clad): An external layer of material applied directly to nuclear fuel or other material to provide protection from a chemically reactive environment, to provide containment of radioactive products produced during the irradiation of the composite, or to provide structural support.

Clinical: Pertaining to the observed symptoms and cause of disease.

Cockcroft-Walton Accelerator: A device for accelerating charged particles by application of a very high direct-current voltage to a stream of ions in a straight insulated tube. The high voltage is obtained through a number of rectifiers and capacitors arranged in a series-coupled-voltage multiplier circuit.

Coincidence: The occurrence of counts in two or more detectors simultaneously or within an assignable time interval. A true coincidence is one that is due to the incidence of a single particle or of several genetically related particles. An accidental, chance, or random coincidence is one that is due to the accidental occurrence of unrelated counts in the separate detectors. An anticoincidence is the occurrence of a count in a specified detector unaccompanied simultaneously or within an assignable time interval by a count in other specified detectors. A delayed coincidence is the occurrence of a count in one detector at a short, but measurable, time after a count in another detector. The two counts are due to a genetically related occurrence, such as successive events in the same nucleus.

Collimator: A device for confining the elements of a beam within an assigned solid angle.

Collision: Encounter between two subatomic particles (including photons) which changes the existing momentum and energy conditions. The products of the collision need not be the same as the initial systems.

Elastic Collision: A collision in which there is no change either in the internal energy of each participating system or in the sum of their kinetic energies of translation.

Inelastic Collision: A collision in which there are changes both in the internal energy of one or more of the colliding systems and in the sums of the kinetic energies of translation before and after the collision.

Column, Thermal: A column or large body of moderator, such as graphite, extending away from the active section of a nuclear reactor to provide near its other end (for experimental purposes) a flux of thermal neutrons of high cadmium ratio; i.e., containing few virgin and epithermal neutrons.

Compound: A distinct substance formed by a union of two or more ingredients in definite proportions by weight.

Compton Effect: An attenuation process observed for x or gamma radiation in which an incident photon interacts with an orbital electron of an atom to produce a recoil electron and a scattered photon of energy less than the incident photon.

Condenser R-Meter: An instrument consisting of an "air-wall" ionization chamber together with auxiliary equipment for charging and measuring its voltage. It is used as an integrating instrument for measuring the exposure of x or gamma radiation in roentgens, (R). (See Chamber, Ionization.)

Contamination, Radioactive: Deposition of radioactive material in any place where it is not desired, particularly where its presence may be harmful. The harm may be in vitiating an experiment or a procedure, or in actually being a source of danger to personnel.

Control: The purposeful variation of the reactivity of a reactor. "Absorber control" is obtained by varying the amount of neutron absorbers within the reactor. "Configuration control" is obtained by changing the geometry of the reactor.

Control System: A coordinated group of components designed to exert a directing influence on other components. A system of apparatus for controlling the rate of reaction in a nuclear reactor. The term may refer to all apparatus provided for this purpose or to one of several essentially independent arrangements, such as a regulating system and safety system. A reaction may be controlled automatically

by a servo system that adjusts the control elements to maintain the flux level near a desired value. A reactor may have a tendency toward stability because of self-regulation, but this quality of stability ordinarily is not considered part of the control system.

Controlled Area: A defined area in which the occupational exposure of personnel (to radiation) is under the supervision of the Radiation Protection Supervisor.

Conversion (Reactor Technology): Nuclear transformation of a fertile substance into a fissile substance.

Conversion Ratio: The ratio of the number of fissile nuclei produced by conversion to the number of fissile nuclei destroyed. The term can refer to an instant of time or to a period of time.

Converter Reactor: The difference between "converter" and "breeder" reactor is that a converter produces fissile atoms from fertile atoms, but has a conversion ratio less than one. A breeder reactor has a conversion ratio greater than one and therefore produces more fissile atoms than it consumes.

Coolant: A substance, usually liquid or gas, used for cooling any part of a reactor in which heat is generated. Such parts include not only the core but also the reflector, shield, and other elements that may be heated by absorption of radiation.

Core: In a nuclear reactor, the region containing the fissionable material. The body of fuel or moderator and fuel in a nuclear reactor. It does not include the fuel outside the active section in a circulating reactor. Identical with active lattices in a reactor. In a heterogeneous reactor, the region containing fuel-bearing cells.

Corpuscle: A blood cell.

Corpuscular Emission, Associated: The full complement of secondary charged particles (usually limited to electrons) associated with an x-ray or gamma-ray beam in its passage through air. The full complement of electrons is obtained after the radiation has traversed sufficient air to bring about equilibrium between the primary photons and secondary electrons. Electronic equilibrium with the secondary photons is intentionally excluded.

Cosmic Rays: High-energy particulate and electromagnetic radiations which originate outside the earth's atmosphere.

Coulomb: Unit of electrical charge in the MKSA system of units. A quantity of charge equal to one ampere second.

Count (Radiation Measurements): The external indication of a device designed to enumerate ionizing events. It may refer to a single detected event or to the total number registered in a given period of time. The term often is erroneously used to designate a disintegration, ionizing event, or voltage pulse.

Spurious Count: In a radiation counting device, a count caused by any agency other than radiation.

Counter, Gas Flow: A device in which an appropriate atmosphere is maintained in the counter tube by allowing a suitable gas to flow slowly through the sensitive volume.

Counter, Geiger-Mueller: Highly sensitive, gas-filled radiation-measuring device. It operates at voltages sufficiently high to produce avalanche ionization.

Counter, Proportional: Gas-filled radiation detection device; the pulse produced is proportional to the number of ions formed in the gas by the primary ionizing particle.

Counter, Scintillation: The combination of phosphor, photomultiplier tube, and associated circuits for counting light emissions produced in the phosphors.

Counting, Coincidence: A technique in which particular types of events are distinguished from background events by coincidence circuits which register coincidences caused by the type of events under consideration.

Counting Ratemeter: An instrument which gives a continuous indication of the average rate of ionizing events.

Critical: Capable of sustaining (at a constant level) a chain reaction. "Prompt critical" means sustaining a chain reaction without the aid of delayed neutrons.

Critical Size: Any one of a set of physical dimensions of the core and reflector of a nuclear reactor maintaining a critical chain reaction, the material and structure of the core and the reflector having been specified.

Cross Section, Capture: The probability that a nucleus will capture an incident particle. The unit of cross section is commonly the barn (10^{-24} cm^2) .

Cross Section, Nuclear: The probability that a certain reaction between a nucleus and an incident particle or photon will occur. It is expressed as the effective "area" the nucleus presents for the reaction. "Macroscopic cross section" refers to the cross section per unit volume (preferably) or per unit mass. "Microscopic cross section" is the cross section of one atom or molecule. (See Barn, and Cross Section, Capture.)

Curie: The special unit of activity. One curie equals 3.700×10^{10} nuclear transformations per second. (Abbreviated Ci.) Several fractions of the curie are in common usage.

Microcurie: One-millionth of a curie (3.7×10^4) disintegrations per sec.). Abbreviated μ Ci.

Millicurie: One-thousandth of a curie (3.7×10^7) disintegrations per second). Abbreviated mCi.

Picocurie: One-millionth of a microcurie (3.7 \times 10^{-2} distintegrations per second or 2.22 disintegrations per minute). Abbreviated pCi; replaces the term $\mu\mu$ c.

Cyclotron: A particle accelerator which uses a magnetic field to confine a positive ion beam to a plane while an alternating electric field accelerates the ions in a spiral path. An RF voltage is applied between one or two hollow semicircular electrodes called "dees" at the frequency at which the ions rotate (which is constant in the conventional cyclotron). As the voltage between the dees alternates, particles are accelerated as they enter and leave the dees.

-D-

Daughter: Synonym for decay product.

Decay, Radioactive: Disintegration of the nucleus of an unstable nuclide by spontaneous emission of charged particles and/or photons.

Decay Constant: The fraction of the number of atoms of a radioactive nuclide which decay in unit time. Symbol: λ . (See Disintegration Constant.)

Decay Curve: A curve showing the relative amount of radioactive substance remaining after any time interval. (See Disintegration Constant.)

Decay Product: A nuclide resulting from the radioactive disintegration of a radionuclide, formed either directly or as the result of successive transformations in a radioactive series. A decay product may be either radioactive or stable.

Decontamination Factor: The ratio of the amount of undesired radioactive material initially present to the amount remaining after a suitable processing step has been completed. Decontamination factors may refer to the reduction of some particular type of radiation, or to the gross measurable radioactivity.

Delayed Neutron: Neutrons emitted by excited nuclei formed in a radioactive process; so-called because they are emitted an appreciable time after fission. They are important in the control of nuclear reactors.

Delta Ray: Any secondary ionizing particle ejected by recoil when a primary ionizing particle passes through matter.

Densitometer: Instrument utilizing a photocell to determine the degree of darkening of developed photographic film.

Density (Photographic): Used to denote the degree of darkening of photographic film. Logarithm of opacity of exposed and processed film. Opacity is the reciprocal of transmission; transmission is the ratio of transmitted to incident intensity.

Depletion: Reduction of the concentration of one or more specified isotopes in a material or in one of its constituents.

Depolymerization: The breaking down of an organic compound into two or more molecules of less complex structure.

Detector, Radiation: Any device for converting radiant energy to a form more suitable for observation. An instrument used to determine the presence, and sometimes the amount, of radiation.

Deuterium: A heavy isotope of hydrogen with one proton and one neutron in the nucleus. (Symbol: ²₁ H or D).

Deuteron: Nucleus of a deuterium atom.

Direct Voltage Accelerator (Potential Drop Accelerator): An accelerator which uses a constant voltage to accelerate particles and is typically constructed with an ion or electron source inside a "terminal," which operates at a very high voltage with respect to the target area, which is at ground potential. Usually named according to the type of power supply used.

Discriminator, Pulse Height: A circuit designed to select and pass voltage pulses of a certain specified amplitude.

Disintegration Constant: The fraction of the number of atoms of a radioactive nuclide which decay in unit time; λ in the equation $N = N_0 e^{-\lambda t}$, where N_0 is the initial number of atoms present, and N is the number of atoms present after some time, t.

Disintegration, Nuclear: A spontaneous nuclear transformation (radioactivity) characterized by the emission of energy and/or mass from the nucleus. When numbers of nuclei are involved, the process is characterized by a definite half-life.

Dollar (Reactor Technology): A special unit of reactivity; equal to that amount of reactivity required to make a reactor critical on prompt neutrons only, and therefore equal to the effective delayed neutron fraction for that reactor.

Doppler Broadening: In spectroscopy, the observed broadening of a spectral line resulting from the thermal motion of the molecules, atoms, or nuclei. In reactor technology, it is the observed broadening of the energy width of a cross section resonance resulting from the thermal motion of the target particles.

Doppler Effect: The change in the observed wave length of a radiation which results from the motion of its source relative to the observer.

Dose: A general form denoting the quantity of radiation or energy absorbed. For special purposes it must be appropriately qualified. If unqualified, it refers to absorbed dose.

Absorbed Dose: The energy imparted to matter by ionizing radiation per unit mass of irradiated material at the place of interest. The unit of absorbed dose is the rad. One rad equals 100 ergs per gram. (See Rad.) Cumulative Dose (Radiation): The total dose resulting from repeated exposures to radiation.

Depth Dose: The radiation dose delivered at a particular depth beneath the surface of the body. It is usually expressed as a percentage of surface dose.

Dose Equivalent (DE): A quantity used in radiation protection. It expresses all radiations on a common scale for calculating the effective absorbed dose. It is defined as the product of the absorbed dose in rads and certain modifying factors. (The unit of dose equivalent is the rem.)

Exit Dose: Dose of radiation at surface of body opposite to that on which the beam is incident.

Integral Dose (Volume Dose): A measure of the total energy absorbed by a patient or object during exposure to radiation. (See Gram-Rad.)

Maximum Permissible Dose Equivalent (MPD): The greatest dose equivalent that a person or specified part thereof shall be allowed to receive in a given period of time.

Median Lethal Dose (MLD): Dose of radiation required to kill, within a specified period, 50 percent of the individuals in a large group of animals or organisms. Also called the LD₅₀.

Percentage Depth Dose: Dose of radiation delivered at a specified depth in tissue, expressed as a percentage of the skin dose.

Permissible Dose: The dose of radiation which may be received by an individual within a specified period with expectation of no significantly harmful result.

Skin Dose (Radiology): Absorbed dose at center of irradiation field on skin. It is the sum of the dose in air and scatter from body parts.

Threshold Dose: The minimum absorbed dose that will produce a detectable degree of any given effect.

Tissue Dose: Absorbed dose received by tissue in the region of interest, expressed in rads. (See Dose and Rad.)

Dose, Fractionation: A method of administering radiation, in which relatively small doses are given daily or at longer intervals.

Dose, Protraction: A method of administering radiation by delivering it continuously over a relatively long period at a low dose rate.

Dose Meter, Integrating: Ionization chamber and measuring system designed for determining total radiation administered during an exposure. In medical radiology the chamber is usually designed to be placed on the patient's skin. A device may be included to terminate the exposure when it has reached a desired value.

Dose Rate: Absorbed dose delivered per unit time.

Dose Ratemeter: Any instrument which measures radiation dose rate.

Dosimeter: Instrument to detect and measure accumulated radiation exposure. In common usage, a pencil-size ionization chamber with a self-reading electrometer, used for personnel monitoring.

Dosimetry, Photographic: Determination of cumulative radiation dose with photographic film and density measurement.

Dynamitron: A particle accelerator using a voltage multiplying circuit with the stages driven by high voltage capacitors in parallel. A radiofrequency power source is used to charge the capacitors.

Dyne: The unit of force which, when acting upon a mass of one gram, will produce an acceleration of one centimeter per second per second.

-E-

Efficiency (Counters): A measure of the probability that a count will be recorded when radiation is incident on a detector. Usage varies considerably, so it is well to ascertain which factors (window transmission, sensitive volume, energy dependence, etc.) are included in a given case.

Electrode: A conductor used to establish electrical contact with a nonmetallic part of a circuit.

Electrometer: Electrostatic instrument for measuring the difference in potential between two points. Used to measure change of electric potential of charged electrodes resulting from ionization produced by radiation.

Electromotive Force: Potential difference across electrodes tending to produce an electric current.

Electron: A stable elementary particle having an electric charge equal to $\pm 1.60210 \times 10^{-19}$ C. and a rest mass equal to 9.1091×10^{-31} kg.

Secondary Electron: An electron ejected from an atom, molecule, or surface as a result of an interaction with a charged particle or photon.

Valence Electron: Electron which is gained, lost, or shared in a chemical reaction.

Electron Volt: A unit of energy equivalent to the energy gained by an electron in passing through a potential difference of one volt. Larger multiple units of the electron volt are frequently used: keV for thousand or kilo electron volts; MeV for million or mega electron volts. (Abbreviated: eV, 1 eV = 1.6 $\times 10^{-12}$ erg.)

Electroscope: Instrument for detecting the presence of electric charges by the deflection of charged bodies.

Electrostatic Field: The region surrounding an electric charge in which another electric charge experiences a force.

Electrostatic Unit of Charge: (See Statcoulomb.)

Element: A category of atoms all of the same atomic number.

Emulsion, Nuclear: A photographic emulsion specially designed to permit observation of the individual tracks of ionizing particles.

End Product: The stable nuclide that is the final member of a radioactive series.

Energy: Capacity for doing work. "Potential energy" is the energy inherent in a mass because of its

spatial relation to other masses. "Kinetic energy" is the energy possessed by a mass because of its motion; MKSA units: kg-m²/sec² or joules.

Binding Energy: The energy represented by the difference in mass between the sum of the component parts and the actual mass of the nucleus.

Excitation Energy: The energy required to change a system from its ground state to an excited state. Each different excited state has a different excitation energy.

Ionizing Energy: The average energy lost by ionizing radiation in producing an ion pair in a gas. For air, it is about 33.73 eV.

Radiant Energy: The energy of electromagnetic radiation, such as radio waves, visible light, x and gamma rays.

Reaction Energy (Nuclear): In the disintegration of a nucleus, it is equal to the sum of the kinetic or radiant energies of the reactants minus the sum of the kinetic or radiant energies of the products. If any product of a specified reaction is in an excited nuclear state, the energy of subsequently emitted gamma radiation is not included in the sum. The "ground-state nuclear reaction energy" is the reaction energy when all reactant and product nuclei are in their ground states. (Symbol: Q_0).

Energy Dependence: The characteristic response of a radiation detector to a given range of radiation energies or wave lengths compared with the response of a standard free-air chamber.

Energy Fluence: The sum of the energies, exclusive of rest energies, of all particles passing through a unit cross-sectional area.

Energy Flux Density (energy fluence rate): The sum of the energies, exclusive of rest energies, of all particles passing through a unit cross-sectional area per unit time. (Energy fluence per unit of time.)

Enriched Material: (1) Material in which the relative amount of one or more isotopes of a constituent has been increased. (2) Uranium in which the abundance of the ²³⁵U isotope is increased above normal.

Enzyme: A biological catalyst of great specificity for a particular substance (substrate) or a particular group of closely related substances which generally activates or accelerates a biochemical reaction.

Epidermis: The outermost layer of cells of the skin.

Epilation (Depilation): The temporary or permanent removal or loss of hair.

Epithelium: A term applied to cells that line all canals and surfaces having communication with external air; also, cells specialized for secretion in certain glands as the liver, kidneys, etc.

Equilibrium, Radioactive: In a radioactive series, the state which prevails when the ratios between the amounts of successive members of the series remains constant.

Secular Equilibrium: If a parent element has a very much longer half-life than the daughters (so there is no appreciable change in its amount in the time interval required for later products to attain equilibrium) then, after equilibrium is reached, equal numbers of atoms of all members of the series disintegrate in unit time. This condition is never actually attained, but is essentially established in such a case as radium and its series to Radium D. The half-life of radium is about 1,600 years; of radon, approximately 3.82 days, and of each of the subsequent members, a few minutes. After about a month, essentially the equilibrium amount of radon is present; then (and for a long time) all members of the series disintegrate the same number of atoms per unit time.

Transient Equilibrium: If the half-life of the parent is short enough so the quantity present decreases appreciably during the period under consideration, but is still longer than that of successive members of the series, a stage of equilibrium will be reached after which all members of the series decrease in amount exponentially with the period of the parent. An example of this is radon (half-life of approximately 3.82 days) and successive members of the series to Radium D.

Erg: Unit of work done by a force of one dyne acting through a distance of one cm. Unit of energy which can exert a force of one dyne through a distance of one cm; cgs units: dyne-cm or gm-cm²/sec².

Error, Statistical: Errors in counting due to the random time-distributions of disintegrations.

Erythema: An abnormal redness of the skin due to distension of the capillaries with blood. It can be caused by many different agents—heat, drugs, ultraviolet rays, ionizing radiation.

Erythrocyte: A red blood corpuscle.

Eugenics: The science which deals with the influences that improve the hereditary qualities of a race or breed.

Excitation: The addition of energy to a system, thereby transferring it from its ground state to an excited state. Excitation of a nucleus, an atom, or a molecule can result from absorption of photons or from inelastic collisions with other particles.

Exoergic: That which liberates energy.

Exposure: A measure of the ionization produced in air by x or gamma radiation. It is the sum of the electrical charges on all ions of one sign produced in air when all electrons liberated by photons in a volume element of air are completely stopped in air, divided by the mass of the air in the volume element. The special unit of exposure is the roentgen.

Acute Exposure: Radiation exposure of short duration.

Chronic Exposure: Radiation exposure of long duration by fractionation or protraction. (See Dose, Fractionation and Dose, Protraction.)

_F-

Fallout: Radioactive debris from a nuclear detonation, which is airborne or has been deposited on the earth. Special forms of fallout are "Dry Fallout," "Rainout," and "Snowout."

Fertile: Of a nuclide, capable of being transformed, directly or indirectly, into a fissile nuclide by neutron capture. Of a material, containing one or more fertile nuclides.

Film Badge: A pack of photographic film which measures radiation exposure for personnel monitoring. The badge may contain two or three films of differing sensitivity and filters to shield parts of the film from certain types of radiation.

Film Ring: A film badge in the form of a finger ring.

Filter (Radiology): Primary—A sheet of material, usually metal, placed in a beam of radiation to absorb preferentially the less penetrating components. Secondary—A sheet of material of low atomic number (relative to the primary filter) placed in the filtered beam of radiation to remove characteristic radiation produced by the primary filter.

Filtration, Inherent (x rays). The filter permanently in the useful beam; it includes the window of the x-ray tube and any permanent tube or source enclosure.

Fissile: Of a nuclide, capable of undergoing fission by interaction with slow neutrons.

Fission, Nuclear: A nuclear transformation characterized by the splitting of a nucleus into at least two other nuclei and the release of a relatively large amount of energy.

Fission Products: Elements or compounds resulting from fission.

Fission Yield: The percentage of fissions leading to a particular nuclide.

Fissionable: Of a nuclide, capable of undergoing fission by any process.

Fluence: The number of particles passing through a unit cross-sectional area.

Fluorescence: The emission of radiation of particular wavelengths by a substance as a result of absorption of radiation of shorter wavelength. This emission occurs essentially only during the irradiation.

Fluorescent Screen: A sheet of material coated with a substance (such as calcium tungstate or zinc sulfide) which will emit visible light when irradiated with ionizing radiation.

Fluorography (Photofluorography): Photography of image produced on fluorescent screen by x or gamma radiation.

Fluoroscope: A fluorescent screen, suitably mounted with respect to an x-ray tube for ease of observation and protection, used for indirect visualization (by x rays) of internal organs in the body or internal structures in apparatus or in masses of material.

Flux Density (fluence rate): The number of particles passing through a unit cross-sectional area per unit of time. (Fluence per unit of time.)

Flux, Neutron: A term used to express the intensity of neutron radiation. The number of neutrons passing through a unit area in unit time. For neutrons of a given energy, the product of neutron density with speed.

Focal Spot (x rays): The part of the target of the x-ray tube struck by the main electron stream.

Frequency: Number of cycles, revolutions, or vibrations completed in a unit of time. (See Hertz.)

Fuel: Fissionable material of reasonably long life, used or usable in producing energy in a nuclear reactor. The term frequently is applied to a mixture, such as natural uranium, in which only part of the atoms are fissionable, if it can maintain a self-sustaining chain reaction under the proper conditions.

Fuel Cycle: The sequence of steps, such as utilization, reprocessing, and refabrication, through which nuclear fuel passes.

Fusion, Nuclear: Act of coalescing two or more atomic nuclei. (See Reaction, Thermonuclear.)

--G-

Gamete: Either of the two germ cells (sperm or ovum).

Gamma, Prompt: Gamma radiation emitted at the time of fission of a nucleus.

Gamma Ray: Short wavelength electromagnetic radiation of nuclear origin (range of energy from 10 keV to 9 MeV) emitted from the nucleus.

Gas Amplification: As applied to gas ionization radiation detecting instruments, the ratio of the charge collected to the charge produced by the initial ionizing event.

Geiger Region: In an ionization radiation detector, the operating voltage interval in which the charge collected per ionizing event is essentially independent of the number of primary ions produced in the initial ionizing event. Geiger Threshold: The lowest voltage applied to a counter tube for which the number of pulses produced in the counter tube is essentially the same, regardless of a limited voltage increase.

Gene: Fundamental unit of inheritance which determines and controls hereditarily transmissible characteristics. Genes are arranged linearly at definite loci on chromosomes.

Generator ("Cow"): A device in which a daughter radionuclide is eluted from an ion exchange column containing a parent radionuclide long-lived compared to the daughter.

Genetic Effect of Radiation: Inheritable change, chiefly mutations, produced by the absorption of ionizing radiations. On the basis of present knowledge these effects are purely additive; there is no recovery.

Genetics: The branch of biology dealing with the phenomena of heredity and variation.

Genotype: The fundamental hereditary (genetic) constitution of an organism.

Geometry Factor: The fraction of the total solid angle about the source of radiation that is subtended by the face of the sensitive volume of a detector.

Geometry, Good: In nuclear physics measurements, an arrangement of source and detecting equipment such that the use of finite source size and finite detector aperture introduces little error.

Geometry, Poor: In a nuclear experiment, an arrangement in which the angular aperture between the source and detector is large, introducing into the measurement a comparative large uncertainty for which a correction may be necessary.

Germ Cells: The cells of an organism whose function is reproduction.

Gonad: A gamete-producing organ in animals; testis or ovary.

Gram Atomic Weight: A mass in grams numerically equal to the atomic weight of an element.

Gram Molecular Weight (Gram-Mole): Mass in grams numerically equal to the molecular weight of a substance.

Gram-Rad: Unit of integral dose equal to 100 ergs.

Graphite: A form of carbon in which the atoms are hexagonally arranged in planes. Commonly used for moderators because it can be made in compact, fairly strong blocks, easily machined to close tolerances, and because the prolonged baking at high temperature used in its manufacture helps eliminate impurities that might absorb neutrons.

Gravitation: Force of attraction existing between all material bodies in the universe. The magnitude of the force between any two bodies is proportional to the product of the masses of the two bodies and inversely proportional to the square of the distance between them.

Grenz Rays: X rays produced at voltages of 5 to 20 kVp, intended primarily for surface therapy.

Ground State: The state of a nucleus, atom, or molecule at its lowest energy. All other states are "excited."

-H-

Half-Life, Biological: The time required for the body to eliminate one-half of an administered dosage of any substance by regular processes of elimination. Approximately the same for both stable and radioactive isotopes of a particular element.

Half-Life, Effective: Time required for a radioactive element in an animal body to be diminished 50 percent as a result of the combined action of radioactive decay and biological elimination.

Effective half-life

= Biological half-life × Radioactive half-life Biological half-life + Radioactive half-life

Half-life, Radioactive: Time required for a radioactive substance to lose 50 percent of its activity by decay. Each radionuclide has a unique half-life.

Half Value Layer (Half Thickness) (HVL): The thickness of a specified substance which, when introduced into the path of a given beam of radiation, reduces the exposure rate by one-half.

Hardness (x rays): A relative specification of the quality or penetrating power of x rays. In general, the shorter the wavelength the harder the radiation.

Health, Radiological: The art and science of protecting human beings from injury by radiation, and promoting better health through beneficial applications of radiation.

Heredity: Transmission of characters and traits from parent to offspring.

Hertz: Unit of frequency equal to one cycle per second.

Hot Cell: A heavily shielded enclosure for handling and processing (by remote means or automatically) or storing highly radioactive materials.

Hygiene, Radiation: Radiological health.

-I-

Immunity: The power which a living organism possesses to resist and overcome infection.

Implant (Radiology): Encapsulated radioactive material embedded in a tissue for therapy. It may be permanent (seed) or temporary (needle).

Insulating Core Transformer (ICT): A high voltage power supply consisting of a transformer, the core of which is separated into insulated segments, each having a secondary winding which drives its own rectifier. The rectifier outputs are connected in series to produce the high voltage. An accelerating column may be directly attached to the high voltage terminal, or it may be physically separated from the unit and connected to it by a high-voltage shielded cable.

Intensifying Screen: Sheet of cardboard or other substance coated with fluorescent material, placed in contact with the film in radiography. The x or gamma rays excite the fluorescent substance. The light thus emitted adds to the radiation effect on the film and produces an image of greater density for a given exposure. Sheets of thin lead may be used in industrial radiography with very high energy radiation. In this case, the increased effect is due largely to secondary electrons and x rays emitted by the lead.

Intensity: Amount of energy per unit time passing through a unit area perpendicular to the line of propagation at the point in question.

Interlock: A device, usually electrical and (or) mechanical, to prevent activation of a control until a

preliminary condition has been met, or prevent hazardous operations. Its purpose usually is safety.

Internal Conversion: One of the possible mechanisms of decay from the metastable state (isomeric transition) in which the transition energy is transferred to an orbital electron, causing its ejection from the atom. The ratio of the number of internal conversion electrons to the number of gamma quanta emitted in the de-excitation of the nucleus is called the "conversion ratio."

Ion: Atomic particle, atom, or chemical radical bearing an electrical charge, either negative or positive.

Ion Exchange: A chemical process involving the reversible interchange of ions between a solution and a particular solid material such as an ion exchange resin consisting of a matrix of insoluble material interspersed with fixed ions of opposite charge.

Ionization: The process by which a neutral atom or molecule acquires a positive or negative charge.

Primary Ionization: (1) In collision theory: the ionization produced by the primary particles as contrasted to the "total ionization" which includes the "secondary ionization" produced by delta rays. (2) In counter tubes: The total ionization produced by incident radiation without gas amplification.

Secondary Ionization: Ionization produced by delta rays.

Specific Ionization: Number of ion pairs per unit length of path of ionizing radiation in a medium; e.g., per cm. of air or per micron of tissue.

Total Ionization: The total electric charge of one sign on the ions produced by radiation in the process of losing its kinetic energy. For a given gas, the total ionization is closely proportional to the initial ionization and is nearly independent of the nature of the ionizing radiation. It is frequently used as a measure of radiation energy.

Ionization Density: Number of ion pairs per unit volume.

Ionization Path (Track): The trail of ion pairs produced by an ionizing radiation in its passage through matter.

Ionizing Event: Any occurrence of a process in which an ion or group of ions is produced.

Ion Pair: Two particles of opposite charge, usually referring to the electron and positive atomic or molecular residue resulting after the interaction of ionizing radiation with the orbital electrons of atoms.

Irradiation: Exposure to radiation.

Isobars: Nuclides having the same mass number but different atomic numbers.

Isochronous Cyclotron (Azimuthally Varying Field [AVF] or Sector Focused Cyclotron): A cyclotron which uses a constant accelerating frequency and focuses the particles by means of wedge-shaped sectors on the magnet poles.

Isodose Chart: Chart showing the distribution of radiation in a medium by means of lines or surfaces drawn through points receiving equal doses. Isodose charts have been determined for beams of x rays traversing the body, for radium applicators used for intracavitary or interstitial therapy, and for working areas where x rays or radioactive nuclides are employed.

Isodose Curve: A curve depicting loci of identical radiation doses in a structure.

Isomers: Nuclides having the same number of neutrons and protons but capable of existing, for a measurable time, in different quantum states with different energies and radioactive properties. Commonly, the isomer of higher energy decays to one with lower energy by the process of isomeric transition.

Isotones: Nuclides having the same number of neutrons in their nuclei.

Isotopes: Nuclides having the same number of protons in their nuclei, and hence the same atomic number, but differing in the number of neutrons, and therefore in the mass number. Almost identical chemical properties exist between isotopes of a particular element. The term should not be used as a synonym for nuclide.

Stable Isotope: A non-radioactive isotope of an element.

Isotope Effect (Chemistry): The effect of the difference in the mass between isotopes of an element on the rate and/or equilibria of chemical transformations.

Isotope Separation: Process in which a mixture of isotopes of an element is separated into its component isotopes, or in which the abundance of isotopes in such a mixture is changed.

J

Joule: The unit for work and energy, equal to one newton expended along a distance of one meter $(1J = 1N \times 1m)$.

-K-

Kerma: The sum of the initial kinetic energies of all charged particles liberated by indirectly ionizing particles in a volume, divided by the mass of matter in that volume.

Kilo Electron Volt (keV): One thousand electron volts, 10^3 eV.

Kilovolt (kV): A unit of electrical potential difference, equal to 1,000 volts.

Kilovolt Peak (kVp): The crest value in kilovolts of the potential difference of a pulsating potential generator. When only half the wave is used, the value refers to the useful half of the cycle.

Klein-Nishina Formula: A formula that expresses the cross section of an unbound electron for scattering of a photon in the Compton effect, as a function of the energy of the photon. The term usually refers to the integral Klein-Nishina formula, which gives the total cross section for the process. The differential Klein-Nishina formula gives the differential cross section for scattering at a given angle. Because of the confidence with which photon-electron interactions can be interpreted (by using the Klein-Nishina formula), the Compton effect is important in the analysis of energy and polarization of gamma rays from many sources.

-L-

Labeled Compound: A compound consisting, in part, of labeled molecules. By observations of radioactivity or isotopic composition, this compound or its fragments may be followed through physical, chemical, or biological processes.

Lag Time: The time between the occurrence of the primary ionizing event and the occurrence of the count.

Laser: Light amplification by stimulated emission of radiation. The laser region is that portion of the spectrum which includes ultra-violet, visible light, and infrared. (See Laser Definitions and Abbreviations, page 442.)

Latent Period: The period or state of seeming inactivity between the time of exposure of tissue to an injurious agent and response.

LD₅₀ (Radiation Dose): (See Dose, Median Lethal.)

Lead Equivalent: The thickness of lead affording the same attenuation, under specified conditions, as the material in question.

Lepton: One of a class of light elementary particles (having small mass). Specifically, an electron, a positron, a neutrino, an antineutrino, a muon, or an antimuon. (See Baryon, Meson.)

Lesion: A hurt, wound, or local degeneration.

Leukemia: A disease in which there is great overproduction of white blood cells, or a relative overproduction of immature white cells, and great enlargement of the spleen. The disease is variable, at times running a more chronic course in adults than in children. It is almost always fatal. It can be produced in some animals by long-continued exposure to low doses of ionizing radiation.

Linear Accelerator: A device for accelerating charged particles. It employs alternate electrodes and gaps arranged in a straight line, so proportioned that when potentials are varied in the proper amplitude and frequency, particles passing through the waveguide receive successive increments of energy.

Localization, Selective (Biology): Accumulation of a particular nuclide to a significantly greater degree in certain cells or tissues. (See Absorption Ratio, Differential.)

Mass: The material equivalent of energy—different from weight in that it neither increases nor decreases with gravitational force.

Critical Mass: The minimum mass of fissile material which can be made critical with a specified geometrical arrangement and material composition.

Relativistic Mass: The increased mass associated with a particle when its velocity is increased. The increase in mass becomes appreciable only at velocities approaching the velocity of light, 3×10^{10} cm/sec.

Mass Defect: Difference between the mass of the nucleus as a whole and the sum of the component nucleon masses.

Mass-Energy Relation: The name sometimes given to the equation $E = mc^2$.

Mass Numbers: The number of nucleons (protons and neutrons) in the nucleus of an atom. (Symbol: A)

Maximum Credible Accident: The worst accident in a reactor or nuclear energy installation that, by agreement, need be taken into account in devising protective measures.

Mean Free Path: The average distance that particles of a specified type travel before a specified type (or types) of interaction in a given medium. The mean free path may thus be specified for all interactions (i.e., total mean free path) or for particular types of interaction such as scattering, capture, or ionization.

Mean Life: The average lifetime for an atomic or nuclear system in a specified state. For an exponentially decaying system, the average time for the number of atoms or nuclei in a specified state to decrease by a factor of e (2.718...).

Mega Electron Volt (MeV): One million electron volts, 10⁶ eV.

Meson: One of a class of medium-mass, short-lived elementary particles with a mass between that of the electron and that of the proton. Examples: Pi mesons (pions) and K-mesons (kaons). (See Baryon, Lepton.)

Metabolism: The sum of all physical and chemical processes by which living organized substance is produced and maintained and by which energy is made available for the uses of the organism.

Metastable State: An excited nuclear state having a half-life long enough to be observed.

Metastasis: The transfer in the body of malignant neoplastic cells from the original or parent site to one more distant.

Micron: Unit of length equal to 10^6 meters. (Symbol: μ).

Microwave: An electromagnetic wave having a wavelength of approximately 1 meter to 1 millimeter corresponding to frequencies of about 300 to 300,000 megacycles per second. (See Glossary of Microwave Terms.)

Mil: Unit of length equal to one-thousandth of an inch.

Milliroentgen (mR): A submultiple of the roentgen, equal to one one-thousandth of a roentgen. (See Roentgen.)

Moderator: Material used to moderate or slow down neutrons from the high energies at which they are released.

Molecular Weight: The sum of the atomic weights of all the atoms in a molecule.

Molecule: Smallest quantity of a compound which can exist by itself and retain all properties of the original substance.

Momentum: The product of the mass of a body and its velocity; MKSA units, kg-m/sec.

Monte Carlo Method: A method permitting the solution by means of a computer of problems of physics, such as those of neutron transport, by determining the history of a large number of elementary events by the application of the mathematical theory of random variables.

Monitoring: Periodic or continuous determination of the amount of ionizing radiation or radioactive contamination present in an occupied region. Area Monitoring: Routine monitoring of the radiation level or contamination of a particular area, building, room, or equipment. Some laboratories or operations distinguish between routine monitoring and survey activities.

Personnel Monitoring: Monitoring any part of an individual, his breath, or excretions, or any part of his clothing.

Mutation: Alteration of the usual hereditary pattern, usually sudden.

-N-

N-Unit: That quantity of neutron radiation measured in a condenser R-meter that will produce the same amount of ionization as one roentgen of x radiation.

Neoplasm: A new growth of cells which is more or less unrestrained and not governed by the usual limitations of normal reproduction. *Benign:* some degree of growth restraint and no spread to distant parts. *Malignant:* growth invades tissues or spreads to distant parts, or both.

Neutrino: A neutral particle of very small rest mass originally postulated to account for the continuous distribution of energy among particles in the beta-decay process.

Neutron Cycle: The average energy, interaction and migration history of neutrons in a reactor, beginning with fission and continuing until they have leaked out or have been absorbed.

Neutrons, Prompt: Neutrons accompanying the fission process without measurable delay.

Newton: The unit of force, which when applied to a one kilogram mass will give it an acceleration of one meter per second per second. $(1N = 1 \text{kg} \times 1 \text{m/ls}^2)$

Nuclear Fusion: (See Reaction, Thermonuclear.)

Nucleon: Common name for a constituent particle of the nucleus. Applied to a proton or neutron.

Nucleus: (Biological) A definitely delineated body within the cell, containing the chromosomes. (Nuclear) That part of an atom in which the total positive electric charge and most of the mass is concentrated.

Nuclide: A species of atom characterized by the constitution of its nucleus. The nuclear constitution is specified by the number of protons (Z), number of neutrons (N), and energy content; or, alternatively, by the atomic number (Z), mass number A = (N + Z), and atomic mass. To be regarded as a distinct nuclide, the atom must be capable of existing for a measurable time. Thus, nuclear isomers are separate nuclides, whereas promptly decaying excited nuclear states and unstable intermediates in nuclear reactions are not so considered.

-0-

Organ: Group of tissues which together perform one or more definite functions in a living body.

Osmosis: The passage of pure solvent from the lesser to the greater concentration when two solutions are separated by a membrane which selectively prevents the passage of solute molecules, but is permeable to the solvent.

Osmotic: Pertaining to osmosis.

-P-

Packing Fraction: The ratio (Δ/A) of the mass defect (Δ) , and mass number (A), of a nuclide.

Pair Production: An absorption process for x and gamma radiation in which the incident photon is annihilated in the vicinity of the nucleus of the absorbing atom, with subsequent production of an electron and positron pair. This reaction only occurs for incident photon energies exceeding 1.02 MeV.

Parent: A radionuclide which, upon disintegration, yields a specified nuclide—either directly or as a later member of a radioactive series.

Path, Mean Free: Average distance a particle travels between collisions.

Periodic Table: An arrangement of chemical elements in order of increasing atomic number. Elements of similar properties are placed one under the other, yielding groups and families of elements. Within each group there is a gradation of chemical and physical properties but, in general, a similarity of chemical behavior. From group to group, however, there is a progressive shift of chemical behavior from one end of the table to the other.

Permeable: Affording passage or penetration.

Phantom: A volume of material approximating as closely as possible the density and effective atomic number of tissue. Ideally a phantom should behave in respect to absorption of radiation in the same manner as tissue. Radiation dose measurements made within or on a phantom provide a means of determining the radiation dose within or on a body under similar exposure conditions. Some materials commonly used in phantoms are water, Masonite, pressed wood, and beeswax.

Phosphorescence: Emission of radiation by a substance as a result of previous absorption of radiation of shorter wavelength. In contrast to fluorescence, the emission may continue for a considerable time after cessation of the exciting irradiation.

Photoelectric Effect: Process by which a photon ejects an electron from an atom. All the energy of the photon is absorbed in ejecting the electron and in imparting kinetic energy to it.

Photofluorography: (See Fluorography.)

Photon: A quantity of electromagnetic energy (E) whose value in joules is the product of its frequency (ν) in hertz and Planck constant (h). The equation is: $E = h\nu$.

Photosynthesis: The production of carbohydrates by green plants in the presence of sunlight through the agency of chlorophyll.

Physics, Health: A science and profession devoted to the protection of man and his environment from unnecessary radiation exposure.

Pile: (See Reactor, Nuclear.)

Planck Constant: A natural constant of proportionality (h) relating the frequency of a quantum of energy to the total energy of the quantum:

$$h = \frac{E}{v} = 6.6256 \times 10^{-34} \text{ J sec.}$$

Plateau: As applied to radiation detector chambers, the level portion of the counting rate-voltage curve where changes in operating voltage introduce minimum changes in the counting rate. Plateau Slope, Relative: The relative increase in the number of counts as function of voltage expressed in percentage per 100 volts increase above the Geiger threshold.

Poison: Material of high absorption cross section which absorbs neutrons unproductively and reduces the reactivity of a reactor.

Polycythemia: A disease characterized by overproduction of red blood cells.

Polymerization: Union of two or more molecules of a compound to form a more complex molecule.

Positron: Particle equal in mass to the electron and having an equal but positive charge.

Potential Ionization: The potential necessary to separate one electron from an atom, resulting in the formation of an ion pair.

Potential Difference: Work required to carry a unit positive charge from one point to another.

Power, Nuclear: Useful power released in exothermic nuclear reactions.

Power, Stopping: A measure of the effect of a substance upon the kinetic energy of a charged particle passing through it.

Pressure Vessel, Reactor: A reactor vessel designed to withstand a substantial operating pressure.

Process, Regenerative: The process by which damaged or destroyed cells are replaced by new ones of the same type.

Prompt Gamma Radiation: Gamma radiation accompanying the fission process without measurable delay.

Proportional Region: Voltage range in which the gas amplification is greater than one, and in which the charge collected is proportional to the charge produced by the initial ionizing event.

Protium: A name sometimes applied to the hydrogen isotope of mass 1 to distinguish it from deuterium and tritium.

Proton: Elementary nuclear particle with a positive electric charge equal numerically to the charge of the electron and a mass of 1.007277 mass units.

Purpura: Large hemorrhagic spots in or under the skin or mucous tissues.

-Q-

Quality (Radiology): The characteristic spectralenergy distribution of x radiation. It is usually expressed in terms of effective wave lengths or half-value layers of a suitable material; e.g., up to 20/ kV, cellophane; 20 to 120 kVp, aluminum; 120 to 400 kVp, copper; over 400 kVp, tin.

Quality Factor (QF): The linear-energy-transferdependent factor by which absorbed doses are multiplied to obtain (for radiation protection purposes) a quantity that expresses—on a common scale for all ionizing radiations—the effectiveness of the absorbed dose.

Quantum: An observable quantity is said to be "quantized" when its magnitude is, in some or all of its range, restricted to a discrete set of values. If the magnitude of the quantity is always a multiple of a definite unit, then that unit is called the quantum (of the quantity). For example, the quantum or unit of orbital angular momentum is h, and the quantum of energy of electromagnetic radiation of frequency ν is $h\nu$. In field theories, a field (or the field equations) is quantized by application of a proper quantum-mechanical procedure. This results in the existence of a fundamental field particle, which may be called the field quantum. Thus, the photon is a quantum of the electromagnetic field and in nuclear field theories the meson is considered the quantum of the nuclear field.

Quantum Theory: The concept that energy is radiated intermittently in units of definite magnitude called quanta, and absorbed in a like manner.

Quenching: The process of inhibiting continuous or multiple discharge in a counter tube which uses gas amplification.

Quenching Vapor: Polyatomic gas used in Geiger-Mueller counters to quench or extinguish avalanche ionization.

Rabbit: A small container propelled, usually pneumatically or hydraulically, through a tube in a nuclear reactor to expose substances experimentally to the radiation and neutron flux of the active section. Used for rapid removal of samples with very short half-lives.

Rad: The unit of absorbed dose equal to 0.01 J/kg in any medium. (See Absorbed Dose.) (Written: rad.)

Radiation: (1) The emission and propagation of energy through space or through a material medium in the form of waves; for instance, the emission and propagation of electromagnetic waves, or of sound and elastic waves. (2) The energy propagated through space or through a material medium as waves; for example, energy in the form of electromagnetic waves or of elastic waves. The term radiation or radiant energy, when unqualified, usually refers to electromagnetic radiation. Such radiation commonly is classified, according to frequency, as Hertzian, infrared, visible (light), ultra-violet, x ray, and gamma ray. (See Photon.) (3) By extension, corpuscular emissions, such as alpha and beta radiation, or rays of mixed or unknown type, as cosmic radiation.

Annihilation Radiation: Photons produced when an electron and a positron unite and cease to exist. The annihilation of a positron-electron pair results in the production of two photons, each of 0.51 MeV energy.

Background Radiation: Radiation arising from radioactive material other than the one directly under consideration. Background radiation due to cosmic rays and natural radioactivity is always present. There may also be background radiation due to the presence of radioactive substances in other parts of the building, in the building material itself, etc.

Characteristic (Discrete) Radiation: Radiation originating from an atom after removal of an electron or excitation of the nucleus. The wavelength of the emitted radiation is specific, depending only on the nuclide and particular energy levels involved.

Direct Radiation: Obsolete term for "leakage radiation."

External Radiation: Radiation from a source outside the body—the radiation must penetrate the skin.

Infrared Radiation: Invisible thermal radiation whose wavelength is longer than the red segment of the visible spectrum.

Internal Radiation: Radiation from a source within the body (as a result of deposition of radionuclides in body tissues.)

Ionizing Radiation: Any electromagnetic or particulate radiation capable of producing ions, directly or indirectly, in its passage through matter.

Leakage (Direct) Radiation: All radiation coming from the source housing except the useful beam.

Monochromatic Radiation: Electromagnetic radiation of a single wavelength, or radiation in which all the photons have the same energy.

Monoenergetic Radiation: Radiation of a given type (alpha, beta, neutron, gamma, etc.) in which all particles or photons originate with and have the same energy.

Primary Radiation: The useful beam of an x-ray tube.

Scattered Radiation: Radiation which during its passage through a substance, has been deviated in direction. It may also have been modified by a decrease in energy.

Secondary Radiation: Radiation resulting from absorption of other radiation in matter. It may be either electromagnetic or particulate.

Stem Radiation: X rays given off from parts of the anode other than the target, particularly from the target support.

Stray Radiation: The sum of leakage and scattered radiation.

Radioactivity: The property of certain nuclides of spontaneously emitting particles or gamma radiation or of emitting x radiation following orbital electron capture or of undergoing spontaneous fission.

Artificial Radioactivity: Manmade radioactivity produced by particle bombardment or electromagnetic irradiation, as opposed to natural radioactivity.

Induced Radioactivity: Radioactivity produced in a substance after bombardment with neutrons or other particles. The resulting activity is "natural radioactivity" if formed by nuclear reactions occurring in nature, and "artificial radioactivity" if the reactions are caused by man.

Natural Radioactivity: The property of radioactivity exhibited by more than fifty naturally occurring radionuclides.

Radioautograph: (See Autoradiograph.)

Radiobiology: That branch of biology which deals with the effects of radiation on biological systems.

Radiochemistry: The aspects of chemistry connected with radionuclides and their properties, with the behavior of minute quantities of radioactive materials by means of their radioactivity, and the use of radionuclides in the study of chemical problems.

Radiography: The making of shadow images on photographic emulsion by the action of ionizing radiation. The image is the result of the differential attenuation of the radiation in its passage through the object being radiographed.

Radiology: That branch of medicine which deals with the diagnostic and therapeutic applications of radiant energy including x rays and radionuclides.

Radiopharmaceutical: A pharmaceutical compound which has been tagged with a radionuclide.

Radioresistance: Relative resistance of cells, tissues, organs, or organisms to the injurious action of radiation. The term may also be applied to chemical compounds or to any substances. (See Radiosensitivity.)

Radiosensitivity: Relative susceptibility of cells, tissues, organs, organisms, or any living substance to the injurious action of radiation. Radioresistance and radiosensitivity are currently used in a comparative sense, rather than in an absolute one.

Rare Earth: Any of the series of very similar metals ranging in atomic number from 57 through 71.

Rate, Recovery: The rate at which recovery takes place after radiation injury. It may proceed at different rates for different tissues. "Differential recovery rate:" Among tissues recovering at different rates, those having slower rates will ultimately suffer greater damage from a series of successive irradiations. This differential effect is considered in fractionated radiation therapy if the neoplastic tissues have a slower recovery rate than surrounding normal structures.

Reaction (Nuclear): An induced nuclear disintegration; i.e., a process occurring when a nucleus comes in contact with a photon, an elementary particle, or another nucleus. In many cases the reaction can be represented by the symbolic equation: $X + a \rightarrow Y + b$ or, in abbreviated form, X(a,b) Y. X is the target nucleus, a is the incident particle or photon, b is an emitted particle or photon, and Y is the product nucleus.

Chain Reaction: Any chemical or nuclear process in which some products or energy released by the process are instrumental in the continuation or magnification of the process.

Endoergic Reaction: Reaction which absorbs energy.

Endothermic Reaction: Reaction which absorbs energy, specifically in the form of heat.

Exothermic Reaction: Reaction which liberates energy, specifically as heat.

Thermonuclear Reaction: A nuclear reaction in which the energy necessary for the reaction is provided by colliding particles possessing kinetic energy by virtue of their thermal agitation. Such reactions occur at appreciable rates only for temperatures of millions of degrees and higher. Their rate increases with temperature. The energy of most stars is believed to be derived from exothermic thermonuclear reactions.

Reactivity: A parameter, ρ , giving the deviation from criticality of a nuclear chain-reacting medium such that positive values correspond to a supercritical state and negative values to a subcritical state.

Reactor, Breeder: A reactor which produces more fissile material than it consumes; i.e., has a conversion ratio greater than unity.

Reactor, Converter: A reactor which produces fissile atoms from fertile atoms, but has a conversion ratio less than one.

Reactor, Nuclear: An apparatus in which nuclear fission may be sustained in a self-supporting chain reaction. A reactor includes fissionable material (fuel) such as uranium or plutonium, and moderating material (except fast reactors), and usually includes a reflector to conserve escaping neutrons, provision for heat removal, and measuring and control elements. The terms "pile" and "reactor" have been used interchangeably, with reactor now becoming more common. These terms usually are applied only to systems in which the reaction proceeds at a controlled rate, but they also have been applied to bombs. Reactors may be classified on various bases:

1. By Fuel Arrangement

Heterogeneous: Fissionable material, (fuel) and moderator are arranged as discrete bodies (usually in a regular pattern) of such dimensions that a non-homogeneous medium is presented to the neutrons.

Homogeneous: Fissionable material and moderator (if used) are so combined that an effectively homogeneous medium is presented to the neutrons. Such a mixture is represented either by a solution of fuel in moderator or by discrete particles whose dimensions are small in comparison with the neutron mean free path.

2. By Neutron Energy

Epithermal: A substantial fraction of fissions (e.g., 30 or 40 percent) are induced by neutrons of more than thermal energy.

Fast: A nuclear reactor in which there is little moderation of neutrons. Thus, fission is induced primarily by fast neutrons that have lost relatively little of the energy with which they were released. The slowing down of neutrons that does occur is due largely to inelastic scattering instead of elastic scattering. About 100,000 electron volts is regarded as the minimum value of mean energy of neutrons inducing fission for a reactor to be considered fast, with one-half to one-third MeV more common. Sometimes the fission threshold of ²³⁸U is taken as the lower limit of the fast range. Reactors of this type have potentially high neutron economy.

Intermediate: Fission is induced predominantly by neutrons whose energies are greater than thermal, but much less than the energy with which neutrons are released in fission. From 0.5 to 100,000 electron volts may be taken roughly as the energy range of neutrons inducing fission in intermediate reactors. The neutron absorption resonances of the fuel may be important in this range.

Thermal: A nuclear reactor in which fission is induced primarily by neutrons of such energy that they are in substantial thermal equilibrium with the core material. A representative energy for thermal neutrons often is taken as 0.025 eV (2200 meters per second) which corresponds to the mean energy of neutrons in a Maxwellian distribution at 293°K, although most thermal reactors actually operate at a higher temperature. A moderator is an essential element of a thermal reactor.

3. By Use

Power: A reactor capable of providing useful mechanical power. In reactors now planned, this is done by generating energy (in the form of heat) conveyed at a temperature high enough for efficient conversion to mechanical work.

Power Breeder: A nuclear reactor designed to produce both useful power and fuel.

Production: A nuclear reactor designed primarily for large-scale production of transmutation products (e.g., plutonium).

Research: A reactor whose primary purpose is as a research tool. It may supply neutrons, other particles, and gamma radiation, and will include special provision for exposing samples (which may include living organisms) to these fluxes. It may provide transmutation products as well as have special experimental facilities.

4. Special

High Flux: Since a high flux results from a high rate of fission per unit volume, a high-flux reactor operates at high power density.

High Temperature: Roughly, the temperature may be considered high in this connection if it is great enough to permit generation of mechanical power at good efficiency.

Recoil, Aggregate: The ejection, from the surface of a sample, of a cluster of atoms attached to one atom that is recoiled as the result of alpha particle emission. Although the phenomenon may be quite common, the amount of matter thus carried away is so small as to be undetectable unless it is strongly radioactive. It is observed with strong preparations of alpha-active materials of high specific activity—such as nearly pure polonium compounds—as a migration of a small fraction of the radioactivity onto clean surfaces in the vicinity.

Recombination: The return of an ionized atom or molecule to the neutral state.

Recovery (Radiobiology): The return toward normal of a particular cell, tissue, or organism after radiation injury.

Reflector: A layer or structure of material between the shield and core of a reactor, designed to reduce the escape of neutrons and return them to the core. Neutrons entering the reflector are scattered randomly, some of them many times. A large fraction may ultimately return to the core. It is possible to design a reflector which will return more than 90% of the neutrons that would otherwise be lost. Requirements for a good reflector are similar to those for a good moderator: Its atoms should have low neutronabsorption cross section and high scattering cross section. Low atomic mass is not important. A reflector's effectiveness increases with its thickness, approaching a limiting factor when the thickness is several times the transport mean free path. Reflector savings is a measure of the decrease in critical core size obtained by the use of the reflector.

Relative Biological Effectiveness (RBE): The RBE is a factor used to compare the biological effectiveness of absorbed radiation doses (i.e., rads) due to different types of ionizing radiation, more specifically, it is the experimentally determined ratio of an absorbed dose of a radiation in question to the absorbed dose of a reference radiation required to produce an identical biological effect in a particular experimental organism or tissue. NOTE: This term should not be used in radiation protection. (See Quality Factor.)

Rem: A special unit of dose equivalent. The dose equivalent in rems is numerically equal to the absorbed dose in rads multiplied by the quality factor, the distribution factor, and any other necessary modifying factors.

Rep: An obsolete special unit of absorbed dose.

Resolving Time, Counter: The minimum time interval between two distinct events which will permit both to be counted. It may refer to an electronic circuit, to a mechanical indicating device, or to a counter tube.

Resonance Energy: The kinetic energy of an incident particle (expressed in the laboratory system) that makes the total energy of the system composed of the incident particle and the target nucleus close to the energy of a nuclear level of the compound nucleus.

Resonant Transformer: A transformer so designed that the inductance and distributed capacitance of its windings comprise a circuit which is in resonance at the frequency of the supplied power. As it does not require an iron core, insulation problems and weight are minimized. This principle is the basis of certain 1 and 2 million volt generators used to produce x rays and electron beams.

Respiratory System: The group of organs concerned with the exchange of oxygen and carbon dioxide in organisms. In higher animals this consists successively of the air passages through the mouth, nose, and throat, the trachea, the bronchi, the bronchioles, and the alveoli of the lungs.

R-Meter: (See Condenser R-Meter.)

Rod: A relatively long and slender body of material used in or with a nuclear reactor. It may contain fuel, absorber, fertile materials, or other material in which activation or transmutation is desired.

Control Rod: Any rod used to control the reaction rate in a nuclear reactor by changing the effective multiplication constant and hence the reaction rate's time derivative. It may be a fuel rod or a part of the moderator; in thermal reactors it commonly is a neutron absorber. Cadmium and boron (as boron steel) are suitable absorbing materials. Sometimes absorbing control rods are made of fertile material to utilize the neutrons absorbed in control. The term includes power control rod, regulating rod, safety rod, shim rod.

Fuel Rod: A rod-shaped body of nuclear fuel or a long, slender fuel assembly prepared for use in a reactor. A short fuel rod is called a "slug."

Regulating Rod: A control rod intended to accomplish rapid, fine adjustment of the reactivity of a nuclear reactor. It can usually move much more rapidly than a shim rod, but makes a smaller change in the reactor's reactivity. Its rapid and sometimes continuous readjustment may be accomplished by a servo system.

Safety Rod: An emergency control rod capable of shutting down a reactor very quickly, should the ordinary control system (e.g., regulating and shim rods) fail. Since it must be able to reduce the reactor's effective multiplication constant to much less than unity when inserted, it is withdrawn almost completely during normal operation. A safety rod may be suspended above the core by a magnetic coupling and allowed to fall in if power reaches a predetermined level.

Scram Rod: Safety rod.

Shim Rod: A control rod used for making occasional coarse adjustments in the reactivity of a nuclear reactor. It usually moves more slowly than a regulating rod and, singly or as one of a group, can make a greater total change in the reactivity. Its name is derived from analogy to a mechanical shim. A shim rod commonly is positioned so that the reactor will be just critical (reactivity = 0, effective multiplication constant = 1) when the regulating rod is near the middle of its range of travel.

Roentgen (R): The special unit of exposure. One roentgen equals 2.58×10^{-4} coulomb per kilogram of air. (See Exposure.)

Roentgenography: Radiography by means of x rays.

Roentgenology: That part of radiology which pertains to x rays.

Roentgen Rays: X rays.

Rutherford: An obsolete unit of radioactivity equivalent to 10⁶ disintegrations per second.

-S-

Sarcoma: Malignant neoplasm composed of cells imitating the appearance of the supportive and lympathic tissues.

Scaler: An electronic device which registers current pulses received over a given time interval.

Binary Scaler: A scaler whose scaling factor is two per stage.

Decade Scaler: A scaler whose scaling factor is a power of ten.

Scanner, Rectilinear: A device which employs a moving collimated detector and a moving recorder to produce an image of the radionuclide distribution within an organ or gland.

Scanning (Medical): The process by which the spatial distribution of a radionuclide within an organ or gland in the body is visualized.

Scattering: Change of direction of subatomic particles or photons as a result of a collision or interaction.

Coherent Scattering: Scattering of photons or particles in which there are definite phase relationships between the incoming and the scattered waves. Coherence manifests itself in the interference between the waves scattered by two or more scattering centers. An example is the Bragg scattering of x rays and of neutrons by the regularly spaced atoms in a crystal, for which constructive interference occurs only at definite angles, called "Bragg angles."

Compton Scattering: The scattering of a photon by an electron. Part of the energy and momentum of the incident photon is transferred to the electron and the remaining part is carried away by the scattered photon. Elastic Scattering: Scattering caused by elastic collisions, and therefore conserving kinetic energy of the system. Rayleigh scattering is a form of elastic scattering.

Incoherent Scattering: Scattering of photons or particles in which the scattering elements act independently of one another; there are no definite phase relationships among the different parts of the scattered beam. The intensity of the scattered radiation at any point is obtained by adding the intensities of the scattered radiation reaching this point from the independent scattering elements.

Inelastic Scattering: The type of scattering which results in the nucleus being left in an excited state and the total kinetic energy being decreased.

Multiple Scattering: Scattering of a particle or a photon in which the final displacement is the vector sum of many—usually small—displacements.

Plural Scattering: Scattering of a particle or a photon in which the final deflection is the vector sum of a small number of displacements.

Rayleigh Scattering: The elastic scattering of a photon without loss of photonic energy. Sometimes referred to as coherent scattering.

Single Scattering: The deflection of a particle from its original path owing to one encounter with a single scattering center in the material traversed.

Scattering Coefficient, Compton: That fractional decrease in the energy of a beam of x or gamma radiation in an absorber due to the energy carried off by scattered photons in the Compton effect.

Scintillation Camera: A device for visualizing the spatial distribution of a radionuclide within an organ or gland in the body. The gamma camera uses a stationary NaI(Tl) crystal as the detection element. Positioning signals are generated from a bank of photomultiplier tubes and applied to a cathode ray tube. Counts are integrated on film to obtain an image of the radionuclide distribution.

Scram: Emergency stopping of a nuclear reactor, usually by dropping safety rods. This may be arranged to occur automatically at a predetermined

neutron flux or under other danger conditions, the reaching of which causes the monitors and associated equipment to generate a scram signal. To shut down a reactor by causing a scram.

Sealed Source: A radioactive source sealed in an impervious container which has sufficient mechanical strength to prevent contact with and dispersion of the radioactive material under the conditions of use and wear for which it was designed.

Selector, Pulse Height: A circuit designed to select and pass voltage pulses in a certain range of amplitudes.

Series, Radioactive: A succession of nuclides, each of which transforms by radioactive disintegration into the next until a stable nuclide results. The first member is called the "parent," the intermediate members are called "daughters," and the final stable member is called the "end product."

Shield: A body of material used to prevent or reduce the passage of particles or radiation. A shield may be designated according to what it is intended to absorb (as a gamma-ray shield or neutron shield), or according to the kind of protection it is intended to give (as a background, biological, or thermal shield). The shield of a nuclear reactor is a body of material surrounding the reactor to prevent the escape of neutrons and radiation into a protected area, which frequently is the entire space external to the reactor. It may be required for the safety of personnel or to reduce radiation enough to allow use of counting instruments for research or for locating contamination or airborne radioactivity.

Shutdown: Procedure of stopping a chain reaction by bringing the reactor to a subcritical condition (effective multiplication constant less than 1). State of a reactor after being shut down.

Sickness, Radiation: (Radiation Therapy): A self-limited syndrome characterized by nausea, vomiting, diarrhea, and psychic depression, following exposure to appreciable doses of ionizing radiation, particularly to the abdominal region. Its mechanism is unknown and there is no satisfactory remedy. It usually appears a few hours after irradiation and may subside within a day. It may be sufficiently severe to necessitate interrupting the treatment series or to incapacitate the patient. (General): The syndrome associated with intense acute exposure to ionizing radiations.

Sigmoid Curve: S-shaped curve, often characteristic of a dose-effect curve in radiobiological studies.

Softness: A relative specification of the quality or penetrating power of x rays. In general, the longer the wave length the softer the radiation.

Spallation: A term used to denote a nuclear reaction induced by high-energy bombardment and involving the ejection of more than two or three particles (neutrons, protons, deuterons, alpha particles, etc.).

Specific Activity: Total activity of a given nuclide per gram of a compound, element, or radioactive nuclide.

Specific Gamma-Ray Constant: For a nuclide emitting gamma radiation, the product of exposure rate at a given distance from a point source of that nuclide and the square of that distance divided by the activity of the source, neglecting attenuation.

Spectrograph, Mass: A device for analyzing a substance in terms of the ratios of mass to charge of its components, usually restricted to devices which produce a focused mass spectrum of lines on a photographic plate.

Spectrometer, Mass: A device similar to the mass spectrograph but designed so that the beam constituents of a given mass-to-charge ratio are focused on an electrode and detected or measured electrically.

Spectrum: A visual display, a photographic record, or a plot of the distribution of the intensity of radiation of a given kind as a function of its wavelength, energy, frequency, momentum, mass, or any related quantity.

Standard, Radioactive: A sample of radioactive material, usually with a long half-life, in which the number and type of radioactive atoms at a definite reference time is known. It may be used as a radiation source for calibrating radiation measurement equipment.

Stateoulomb (Electrostatic Unit of Charge): That quantity of electric charge which, when placed in a vacuum one cm distant from an equal and like charge, will repel it with a force of one dyne (abbreviated: esu). Preferred name for this unit is franklin (abbreviated: Fr).

Sterility (Biological): Temporary or permanent incapability to reproduce.

Streaming: The increased transmission of electromagnetic or particulate radiation through a medium resulting from the presence of extended voids or other regions of low attenuation. (Also called channeling effect.)

Stringer: A long structure occupying a hole through the shield, and sometimes into the active section, of a nuclear reactor. Its removal permits access to the core for inserting experimental materials. If it is part of a large graphite reactor, for instance, part of its length may consist of graphite blocks keyed together to permit withdrawal as a unit.

S.U.: Strontium unit. 1 pCi 90 Sr/gCa

Subcritical (Fissile System): Having an effective multiplication constant less than one, so that a self-supporting chain reaction cannot be maintained.

Supercritical (Fissile System): Having an effective multiplication constant greater than one, so that the rate of reaction rises.

Survey, Radiological: Evaluation of the radiation hazards incident to the production, use, or existence of radioactive materials or other sources of radiation under specific conditions. Such evaluation customarily includes a physical survey of the disposition of materials and equipment, measurements or estimates of the levels of radiation that may be involved, and sufficient knowledge of processes using or affecting these materials to predict hazards resulting from expected or possible changes in materials or equipment.

Synchrocyclotron: A cyclotron which compensates for the relativistic mass increase of the particles as they reach high energy by reducing the accelerating frequency so as to match exactly the slower revolutions of the accelerated particles.

Synchrotron: An accelerator in which particles are accelerated around a circular path by radiofrequency electric fields. The magnetic guiding and focusing fields are increased synchronously to match the energy gained by the particles so that the orbit radius remains constant. (See Cyclotron, Synchrocyclotron.)

Syndrome: The complex of symptoms associated with any disease.

Target Theory (Hit Theory): A theory explaining some biological effects of radiation on the basis that ionization, occurring in a discrete volume (the target) within the cell, directly causes a lesion which subsequently results in a physiological response to the damage at that location. One, two, or more "hits" (ionizing events within the target) may be necessary to elicit the response.

Therapy: Medical treatment of a disease.

Brachytherapy (Therapy at short distances): The treatment of disease with sealed radioactive sources placed near, or inserted directly into, the diseased area.

Contact Radiation Therapy: X ray therapy with specially constructed tubes in which the target-skin distance is very short (less than 2 cm). The voltage is usually 40 to 60 kV.

Radiation Therapy: Treatment of disease with any type of radiation.

Rotation Therapy: Radiation therapy during which either the patient is rotated before the source of radiation or the source is revolved around the patient. In this way, a larger dose is built up at the center of rotation within the patient's body than on any area of the skin.

Teletherapy (Therapy at long distance): The treatment of disease with gamma radiation from a source located at a distance from the patient.

Thermalization: Establishment of thermal equilibrium between neutrons and their surroundings.

Threshold, Photoelectric: The quantum of energy $h\nu_0$ that is just enough to release an electron from a given system in the photoelectric effect. The corresponding frequency, ν_0 , and wavelength, λ_0 , are the threshold frequency and wavelength respectively. For example, in the surface photoelectric effect, the threshold $h\nu_0$ for a particular surface is the energy of a photon which, when incident on the surface, causes the electron to emerge with zero kinetic energy.

Tissue Equivalent Material: Material made up of the same elements in the same proportions as they occur

in a particular biological tissue. In some cases, the equivalence may be approximated with sufficient accuracy on the basis of effective atomic number.

Tracer, Isotopic: The isotope or non-natural mixture of isotopes of an element which may be incorporated into a sample to permit observation of the course of that element, alone or in combination, through a chemical, biological, or physical process. The observations may be made by measurement of radioactivity or of isotopic abundance.

Track: Visual manifestation of the path of an ionizing particle in a chamber or photographic emulsion.

Transition, Isomeric: The process by which a nuclide decays to an isomeric nuclide (i.e., one of the same mass number and atomic number) of lower quantum energy. Isomeric transitions, often abbreviated I.T., proceed by gamma ray and/or internal conversion electron emission.

Transmutation: Any process in which a nuclide is transformed into a different nuclide, or more specifically, when transformed into a different element by a nuclear reaction.

Tritium: The hydrogen isotope with one proton and two neutrons in the nucleus. (Symbol: ³₁H or T)

Triton: The nucleus of tritium, the hydrogen isotope of mass number 3, used as a nuclear projectile or as a product of a nuclear reaction.

Tube, Boron Counter: A counter tube filled with boron trifluoride (BF_3) and/or having electrodes coated with boron or boron compounds used for detecting slow neutrons by the (n,α) reaction of ^{10}B .

Tube, Electron Multiplier: A tube in which small electron currents are amplified by a cascade process employing secondary emission.

Tube, Photomultiplier: An electron multiplier tube in which the electrons initiating the cascade originate by photoelectric emission.

Tumor: In its general sense, a swelling. The term is often synonymous with neoplasm. A malignant tumor is capable of metastasizing.

Valence: Number representing the combining or displacing power of an atom; number of electrons lost, gained, or shared by an atom in a compound; number of hydrogen atoms with which an atom will combine, or which it will displace.

Van De Graaff Accelerator: An electrostatic machine in which electrical charge is carried into the high voltage terminal by a belt made of an insulating material moving at a high speed. The particles are then accelerated along a discharge path through a vacuum tube by the potential difference between the insulated terminal and the grounded end of the accelerator.

Volt: The unit of electromotive force (1V = 1W/1A).

Voltage, Operating: As applied to radiation detection instruments, the voltage across the electrodes in the detecting chamber required for proper detection of an ionizing event.

Voltage, Starting: For a counter tube, the minimum voltage that must be applied to obtain counts with the particular circuit with which it is associated.

Volume, Sensitive: That portion of a counter tube or ionization chamber which responds to a specific radiation.

-W--

Water, Activated: A transient, chemically reactive state created in water by absorbed ionizing radiation.

Water, Heavy: Popular name for water of which the hydrogen component is deuterium.

Watt: The unit of power equal to one joule per second (IW = IJ/ls).

Wavelength: Distance between any two similar points of two consecutive waves (λ) for electromagnetic radiation. The wavelength is equal to the velocity of light (c) divided by the frequency of the wave (ν) , $\lambda = c/\nu$. The "effective wavelength" is the wavelength of monochromatic x rays which would undergo the same percentage attenuation in a specified filter as the heterogeneous beam under consideration.

Wave Motion: The transmission of a periodic motion or vibration through a medium or empty space. (Transverse): Wave motion in which the vibration is perpendicular to the direction of propagation. (Longitudinal): Wave motion in which the vibration is parallel to the direction of propagation.

-X-

X Rays: Penetrating electromagnetic radiations whose wave lengths are shorter than those of visible light. They are usually produced by bombarding a metallic target with fast electrons in a high vacuum. In nuclear reactions, it is customary to refer to photons originating in the nucleus as gamma rays, and those originating in the extranuclear part of the atom as x rays. These rays are sometimes called roentgen rays after their discoverer, W. C. Roentgen.

Laser Definitions and Abbreviations*

Angstrom (Å): A unit measure of wavelength equal to 10^{-10} meter or 10^{-4} micron.

Beam Divergence: The angle of beam spread measured in milliradians (1 milliradian = 3.4 minutes of arc).

Closed Installation: Any location where lasers are used which will be closed to personnel when a laser is operating. Useful adjuncts are remote-control firing and television monitoring of the target area.

C. W. Laser: A continuous wave laser, as distinguished from pulsed lasers.

Decibel (dB): A unit used to express a beam intensity ratio. The decibel is equal to ten times the logarithm of the beam intensity ratio expressed by the equation, $n(dB) = 10 \log_{10} (P_1 \div P_2)$, where P_1 and P_2 designate two amounts of power density or energy density and n the number of decibels corresponding to their ratio.

Energy Density: The intensity of electromagnetic radiation energy per unit area per pulse expressed as joules per square centimeter (J/cm²).

Gas Laser: A type of laser in which the laser action takes place in a gas medium, usually a c.w. laser.

Joule (J): A unit of energy used in describing a single pulsed output of a laser. It is equal to one watt-second or 0.239 calories.

Joule per Square Centimeter (J/cm²): A unit of energy density of pulsed lasers used in measuring the amount of energy per unit area of absorbing surface, or per unit area of a laser beam.

Laser: Light amplification by stimulated emission of radiation, sometimes referred to as an "optical maser."

Laser Control Area: Any area which contains one or more lasers and in which the activity of employees is subject to control and supervision.

Maser: Microwave amplification by stimulated emission of radiation. When used in the term optical maser, it is often interpreted as molecular amplification by stimulated emission of radiation.

Maximum Permissible Power Density or Energy Density: The intensity (power density or energy density) of laser radiation that, in the light of present medical knowledge, is not expected to cause detectable bodily injury to a person at any time during his lifetime.

Millimeters of Mercury (mm. Hg.): A unit of gas or air pressure (e.g., one atmosphere = 760 mm. Hg., or 29.92 in. Hg.).

Open Installation: Any location where lasers are used which will be open to operating personnel during laser operation and may or may not specifically restrict entry to casuals.

Optical Density (O.D.): A logarithmic expression of the attenuation afforded by a filter.

Optically Pumped Lasers: A type of laser that, as a general rule, derives energy from a noncoherent light source, such as a xenon flash lamp. Coherent light sources have also been used. These lasers are usually pulsed and are commonly called solid-state lasers, since a solid-state crystal such as ruby or glass is used.

^{*}Reprinted by permission of the American Conference of Governmental Industrial Hygienists.

Output Power and Output Energy: The laser output power is used primarily to rate c.w. lasers since the energy delivered per unit time remains relatively constant (output measured in watts). In contrast, pulsed lasers deliver their energy output in pulses and their effects may best be categorized by energy output per pulse. The power output level of c.w. lasers is usually expressed in milliwatts (mW = 1/1000 watt) or watt range, pulsed lasers in the kilowatt range (kW = 1000 watts), and q-switched pulsed lasers in the megawatt (MW = million watts) or gigawatt range (GW = billion watts). Pulsed energy output is usually expressed in joules per pulse.

Partial Pressure of Oxygen: At sea level, oxygen exerts a partial pressure of 159 mm. Hg. This equals 760 (mm. Hg. air pressure) × 0.2096 (the O₂ content of the air).

Power Density: The intensity of electromagnetic radiation power per unit area expressed as watts/cm².

Pulse Length: The duration of a pulsed laser flash. It may be measured in terms of millisecond (msec. = 10^{-3} sec.), microsecond (µsec. = 10^{-6} sec.), or nanosecond (nsec. = 10^{-9} sec.).

Pulsed Laser: A laser that delivers its energy in short pulses, as distinguished from a c.w. laser.

Q-Switched Laser (Q-Spoiled): A laser capable of extremely high peak powers for very short durations (pulse length of several nanoseconds).

Repetitive Pulse Laser: A pulsed laser with repeated pulsed output. The frequency of the pulses is termed pulsed reoccurrence frequency (P.R.F.). Repetitive pulse lasers have properties similar to a c.w. laser if the P.R.F. is very high.

Semi-Conductor or Junction Laser: A class of lasers which, at present, produce relatively low c.w. power outputs. This class of lasers may be "tuned" in wave lengths and are most efficient. (It is anticipated that higher power outputs will be made available through future developments.)

Specular or Regular Reflection: A mirror-like reflection.

Watt (W): A unit of power used in describing a c.w. laser output.

Watts per Square Centimeter (W/cm²): A unit of power density used in measuring the amount of power per area of absorbing surface, or per area of a c.w. laser beam.

Glossary of Microwave Terms*

Absorption Loss: The loss of power in a transmission circuit that results either from coupling to a neighboring circuit or conductor or from dissipation or conversion of electrical energy into other forms.

<u>Amplifier</u>: A device for increasing the power associated with an input signal without appreciably altering its essential features. The output signal is controlled by the signal applied to the amplifier input, while the additional power is supplied by another source.

Amplitude: The amount of variation of an alternating quantity from its zero value. Instantoneous amplitude is the amplitude at any particular time, while peak amplitude is the maximum excursion on one side of zero, and peak-to-peak amplitude is the total excursion between peak values on both sides of zero.

ATR Tube: An antitransit-receive tube, which is a gas-filled, rf switching tube used to isolate the transmitter while a pulse is being received over a common antenna transmission line. The ATR tube is normally used in conjunction with a TR tube, between the TR tube and the transmitter, to present the proper impedance to the ontenno transmission line when the transmitting tube is quiescent, so that all the received power will be coupled through the TR tube to the receiver.

Attenuation: Decrease in magnitude of current, voltage or power of a signal in tronsmission between paints, usually expressed in db.

Attenuator, Flop: A device designed to introduce attenuation into a waveguide circuit by means of a resistive sheet moved into the guide.

Attenuator, Rotary Vone: A device designed to introduce attenuation into a waveguide circuit by means of varying the angular position of a resistive sheet in the guide.

Balanced Line: A line or circuit utilizing two identical conductors, each having the same electromagnetic characteristics with respect to other conductors and ground. A balanced line is preferred in circumstances where minimum noise and cross-talk is desired.

<u>Balun:</u> A device which provides coupling and matching between a <u>balanced</u> line and an unbalanced (i. e. coaxial) line.

<u>Band</u>: The continuous range of frequencies extending between two specified limiting frequencies.

Borretter: A metallic resistor with a positive temperature coefficient of resistivity used for rf detection and level measurements.

<u>Bolometer</u>: A device with a high temperature coefficient of resistivity, such as a barretter (positive), or thermistor (negative), which is used to sense rf power level.

BWO Tube: See Tube, Backward Wave.

<u>Cavity</u>: A metallic enclosure in certain types of tubes or circuits within which resonant fields may be excited at microwave frequencies.

Characteristic Impedance: The characteristic impedance of a uniform transmission line is the ratio of the applied voltage to the resultant current at the point where the voltage is applied, when the line is of infinite length. Characteristic impedance is commonly used to denote that impedance which may be connected to a transmission line or microwave device to provide an impedance-matched termination, i.e. a termination which will not reflect power, thus simulating a line of infinite length.

Chake Joint: A type of joint for connecting two sections of waveguide. It is so arranged that there is efficient energy transfer without the necessity of an electrical contact on the inside surfaces of the guide.

<u>Circulator</u>: A device having three or more ports with the characteristic that energy entering port 1 couples to port 2, entering port 2 couples to part 3, and entering the highest-numbered port couples to port 1. Such a device is, for example, very useful as an isolator if one of the ports is terminated. Thus, if port 3 is terminated and a BWO is connected to port 1, the BWO output appears at port 2, but any signal reflected by the load is absorbed in the termination on port 3 thus eliminating pulling. Circulators commonly use Foraday rotation to accomplish their non-reciprocal characteristics.

<u>Coaxial Line:</u> A TEM transmission line in which ane conductor completely surrounds the other, the two being coaxial and separated by a continuous solid dielectric or dielectric spacers. Such a line is characterized by having no external field and no susceptibility ta external fields from ather sources.

<u>Coupling Coefficient</u>: In directional couplers, the ratio of the power entering the main arm to the power output obtained from the auxiliary arm.

<u>Cutoff Frequency:</u> The frequency at which the output of a device begins to attenuate. Specifically, it can be the band edge of a filter, or the lowest frequency at which lossless waveguide will propagate energy at a particular mode with little attenuation.

<u>Crossed-Field Device</u>: An electron device (such as a magnetron tube having a cylindrical cathode surrounded by an anode structure) in which electron current from the cathode is influenced by a magnetic field acting at right angles to the applied electric field. When electrons move away from the cathode, in a direction perpendicular to the magnetic field, this field imposes a force of right angles to the electron motion. The electrons then spiral into arbit around the cothode rother than moving collinearly with the electric field. Most of the electrons move gradually closer to the anode, losing potential energy which they contribute to the rf field as they interact with the anode slow-wave structure. The tube structure may be cylindrical or linear.

<u>Crystal Detector (Square Law)</u>: A device whose output voltage is proportional to the square of its input voltage. Often used to measure relative rf power level or to present the wave envelope on an oscilloscope.

Decay Time: Generally defined as the time required for a voltage to decay to 1/e of its original value.

<u>Decibel</u>: The db is a unit of power ratio measurement. (Voltage can be used if impedance is constant.) The db is a ratio of gain (omplification) or loss (attenuation) in an electronic system. Expressed algebraically, it is:

DB = 10
$$\log_{10} \frac{P_2}{P_1}$$
 or 20 $\log_{10} \frac{V_2}{V_1}$

Decibel below one mw (dbm): The dbm or decibel/milliwatt is a power level with a db ratio referenced to 1 mw. A 0 dbm specification means the level is 1 milliwatt. 0 dbm = 1 mw, 10 dbm = 10 mw, -10 dbm = 0.1 mw, and so on.

^{*}Reprinted by permission of Alfred Electronics, Palo Alto, California.

Decibe! below one watt (dbw): The dbw or decibe!/watt is a power level with a db ratio referenced to 1 watt. 0 dbw = 1 watt, -10 dbw = 100 mw, 10 dbw = 10 watts, etc.

Delay Line: See Wave Circuits, Slow.

Diodes:

PIN: This diode is made by diffusing the semiconductor with P dopont from one side and N dopant from the opposite side with the processes so controlled as to leave a thin intrinsic region separating the two. (P dopant enhances the flow of holes and N dopant the flow of electrons.) The PIN diode has long enough storage time that at microwave frequencies, it cannot rectify. It appears, rather, as a variable resistor whose value is controlled by a dc bias current. It is therefore well suited for use as a variable microwave attenuator.

PN: PN diodes have no intrinsic region and have a short storage time. They function as a normal diode rectifier into the high microwave regions. If the diode is dc biased so that the rf signal is small compared to the bias voltage, they cease to be rectifiers. Reverse bias causes the diode to appear as a small capacitor whereas forward bias causes it to appear as a resistor. Thus, it can be used as a reflective microwave switch. It can also be used as a variable reflective attenuator except for the operating region where the bias and rf voltages are comparable and rectification occurs.

<u>Point Contact</u>: These diodes consist of a semiconductor with a very small wire (catwhisker) pressed against it. Such a diode has very low reactance and serves as a detector or mixer over most of the microwave range. At low power levels, it has a square law response.

<u>Directional Coupler</u>: A device consisting of two transmission lines coupled together in such a way that a wave traveling in one line (the main line) in one direction excites a wave in the other line (the auxiliary arm), ideally, in one direction only.

<u>Directivity:</u> Let P_2 be the power out of the auxiliary arm of a directional coupler with power P_1 into the main line input of the directional coupler, while the main line output and auxiliary arm are terminated with matched terminations. Let P_3 be the power out of the auxiliary arm with P_1 into the main line output, while the main line input and auxiliary arm are terminated with matched terminations. The directivity is the difference in db between the ratio of $\frac{P_2}{P_1}$ and $\frac{P_3}{P_1}$.

<u>Duty Cycle:</u> The fraction of time that a pulse signal is on, i. e. pulse duration in seconds times repetition rate in cps.

<u>Faraday Rotation</u>: A linearly polarized wave is equivalent to a combination of two circularly polarized components of equal amplitude and opposite rotational sense. Faraday rotation is the apparent rotation of the plane of polarization of such a linearly polarized wave as it propagates in a medium which exhibits a different propagation constant for the two component waves of opposite rotational sense (such as a ferrite material).

<u>Field Intensity</u>: The electrical force exerted by an electric field an a unit charge present therein. Normally expressed in valts per meter.

Frequency Pulling: A change of the source frequency caused by a change of the load impedance seen by the source.

<u>Frequency Pushing</u>: A change of the source frequency caused by a change in electron current flow within the source oscillator; e.g. the change in BWO beam current due to a change in the grid or anade valtage causes a change in frequency.

<u>Frequency Stabilization</u>: In reference to an oscillator, a means of eliminating or minimizing both long- and short-term instability or other inaccuracy in the output frequency. Normally achieved by sampling the oscillator output signal for comparison with an ultrastable reference, and using the comparator to develop a frequency-or phase-controlling feedback signal to synchronize the oscillator output with the reference. Such systems are described as employing frequency-lock or phase-lock respectively. Phase-locked systems achieve better short term stability than frequency-locked systems.

Harmonic: A sinusoidal wave having a frequency that is an integral multiple of a fundamental frequency. For example, the second harmonic is a component of a complex signal whose frequency is twice that of the fundamental frequency of that signal.

Hybrid Circuit: A functional combination of integrated circuit and discrete (individual) components.

Hybrid Junction or Hybrid T: A component with four branches, which, when branches are properly terminated, has the property that energy can be transferred from any one branch into only two of the remaining three. In common usage this energy is equally divided between the two branches and the two outputs are in phase quadrature.

Incident Power or Signal: Power flowing to a load or using device from the signal source.

Insertion Loss or Gain: The loss or gain produced by adding (inserting) a device into a signal transmission path. Normally equivalent to the transmission loss or gain of the device measured between its input and output terminals. Insertion loss is commonly used to define the loss of a variable attenuator when set to zero.

Integrated Circuit: An electronic circuit or system fabricated by the vacuum deposition of both active and passive components in a single piece of manufactured crystalline material or ceramic.

<u>Iris:</u> In a waveguide, a conducting plate or plates, of thickness small compared to a wavelength, occupying a part of the cross section of the waveguide. When only a single mode can be supported, an iris acts substantially as a shunt admittance.

<u>Isolator</u>, Ferrite: A microwave device which allows rf energy to pass through in one direction with very little attenuation while rf energy flowing in the opposite direction is absorbed (attenuated).

Limiter: A device which, with input signal drive above a minimum level, limits the output amplitude to a predetermined value.

Maser (Microwave Amplification by Stimulated Emission of Radiation): A low noise, microwave amplifier utilizing controlled energy level changes in a medium to obtain signal amplification. Common media are gases (ammonia) and crystals (ruby).

Matched Termination: A termination producing no reflected wave at any transverse section of the transmission line. It is equal to the characteristic impedance, Z_a.

<u>Microstrip</u>: A microwave transmission component utilizing a single conductor supported above a ground plane. Also called stripline.

Microwaves: In general usage, microwaves refer to those radiofrequency wavelengths which are sufficiently short to exhibit some of the properties of light. Microwaves are usually used in pointto-point communications because they are easily concentrated into a beam.

Microwave Region: That portion of the electromagnetic spectrum lying between the far infra-red and conventional radio frequency portion. Commonly regarded as extending from 1 GHz (30 cm wavelength) to 300 GHz (1 mm wavelength). The region above 26 GHz is often referred to as the millimeter region.

Mismatch Loss: The loss in transmitted power expressed in db resulting from load mismatch, e.g. a YSWR of 2:1 results in a mismatch loss of 0.51 db. It is defined as $-10 \log_{10} (1 - 1 pl^2)$ where p is the reflection coefficient.

Modes: Used to denote field patterns which characterize the way in which electromagnetic waves propagate axially on a transmission line. There are two general types of modes: the TE modes in which the electric fields are everywhere transverse to the axis of the waveguide, and the TM modes in which the magnetic fields are everywhere transverse to the guide axis.

Noise Figure: A figure of merit defined as the ratio of the available signal-to-noise power at the input terminals of a device to the available signal-to-noise power at the output terminals, usually expressed in db.

Noise Power: The random power (noise) contained in a signal which tends to mask the desired intelligence in the signal. Noise power is present due to thermal agitation in resistances within a device, random motion of electric charges within a device, and thermal noise or background pickup at the device input.

Parametric Amplifier (MAVAR – Mixer Amplification by Variable Reactance): A microwave amplifier utilizing the non-linearity of a reactive element to obtain amplification with low noise figure.

<u>Phase Shifter:</u> A device for adjusting the phase of a particular field component at the output of the device relative to the phase of that field component at the input.

PIN Diode Attenuator: A two-port network composed of two or more PIN diodes controlled by a driver circuit. The diodes act as a small capacitance shunted by an electrically variable resistance at microwave frequencies, and can be varied in resistance over a range of about 2 - 10,000 ohms by controlling the bias current by means of the driver circuit. Multiple-diode units can be arranged in a network in which one or more diodes attenuate the microwave signal passing from input to output, and the other diodes maintain the input and output impedance at a near-constant level to match the transmission line. Some ALFRED PIN Diode Attenuators are designed to give substantial control range over many octaves of frequency while maintaining impedance matching at both ports.

PM Focusing: Focusing of the electron beam in a TWT or BWO tube by means of an axial magnetic field established by a single permanent magnet extending the full active length of the tube. The full-length permanent magnet is located outside the evacuated envelope with poles at each end of the tube.

Polarization: In electromagnetic waves, refers to the direction of the electric field vector. When the electric and/or magnetic fields are in a plane perpendicular to the direction of propagation in a transmission line the waves are said to be transverse. If transverse waves do not change in angular direction from instant to instant within this plane of polarization, they are said to be linearly polarized. Circular polarization is the resultant electric field produced by the combination of two equal-amplitude linearly polarized waves at right angles to each other and 90° out of phase. With circular polarization, the electric field vector at any point describes a circle in a plane perpendicular to the direction of propagation.

Power: The time rate of transferring or transforming energy. Electrically, power is expressed in watts, which is the product of applied voltage and resulting in-phase current. The difference between level and power is that power always designates a definite quantity while level expresses relative power and is normally measured in db.

Power, absolute: The power level expressed in watts or dbm, i.e. in absolute units.

Power, average: In the case of a sinusoid, this is the RMS value. In the case of pulses or square waves, it is the peak power multiplied by the duty cycle, i.e. the duty cycle of a square wave is 0.5, therefore, the average power is 0.5 times the peak power. Expressed in absolute power units.

<u>Power, peak</u>: The maximum power reached during a pulse. Expressed in absolute power units.

Power, relative: Power level referred to some other power level, usually expressed in db.

PPM Focusing: Focusing of the electron beam in a TWT or BWO tube by means of an axial magnetic field established by a series of small permanent magnets (periodic permanent magents) extending the full active length of the tube. The small permanent magnets are oriented axially along the tube, with adjacent magnets polarized in opposite directions. The small magnets are located outside the vacuum envelope and are separated by pole pieces which surround the envelope and carry to it the individual axial field contributions of the magnets. The polarization alternation results in cancellation of the external magnetic field.

Precision Connector: A coaxial connector designed to mate with another identical connector in such a way that electrical discontinuities in the transmission line are eliminated or minimized. These connectors are intended to combine the inherent advantages of coaxial devices (broadband performance, mechanical flexibility, low cost) with the electrical efficiencies (minimum contact resistance and VSWR) previously available only with waveguide. ALFRED equipment is available with Amphenol APC-7 precision connectors which are sexless, i.e. any connector will mate with all other connectors of the same type.

<u>Propagation Constant:</u> A transmission characteristic of a line which indicates the effect of the line on the wave being transmitted along the line. It is a complex quantity having a real term, the attenuation constant, and an imaginary term, the phase constant.

Pulse Repetition Rate: The average number of pulses per unit time in a pulse train.

Q-Factor: With regard to a resonant cavity, the ratio of energy stored to energy dissipated per cycle.

Rectangular Waveguide: A hollow tube of rectangular cross section normally having sides with a dimensional ratio of 2:1. With rectangular waveguides so proportioned, the dominant mode will have a free-space wavelength range between one and two times the larger cross-section dimension. Rectangular waveguide is normally usable only over less than octave ranges.

Reflected Power or Signal: Power flowing from the load or using device back to the signal source, due to impedance mismatch at the load or device input.

Reflection Coefficient: The vector ratio of the reflected voltage to the incident voltage at the same point. If the point of reflection is a pure resistance, the reflection coefficient is the numerical ratio of the incident voltage to the reflected voltage.

Reflectometer: A microwave system arranged to measure the incident and reflected powers and indicate their ratio.

Resonator, Cavity: A closed section of coaxial line or waveguide, completely enclosed by conducting walls, often made variable and used as a wavemeter.

Return Loss: The ratio of incident to reflected power expressed in db. It is defined as $-20 \log_{10} \mathrm{lpl}$ where p is the reflection coefficient.

Rise Time: Generally construed to be the time required for a step function, pulse, or square wave to rise from 10 to 90 percent of its final amplitude.

RMS Amplitude (Root-Mean-Square Amplitude): The value of an alternating current or voltage that produces the same power dissipation in a certain resistance as dc current or voltage of the same value. The RMS (or effective) value of a periodic quantity is the square root of the average of the squares of the values of the quantity taken throughout one period. If the periodic quantity is a sine wave, its effective (RMS) value is 0.707 of its peak amplitude.

Sampler: A directional coupler which has a detector attached to the auxiliary arm to provide a video output sample proportional to the input power level. For applications in which the sampler is used to monitor power or drive a closed-loop source leveling system, a directional coupler having a flat coupling coefficient must be used.

Signal-to-Noise-Ratio: The ratio of the field intensity of a radio wave to the radio noise field intensity at the same point. It may also be considered as the ratio, at any point of a circuit, of signal power to total circuit-noise power.

Sliding Load: A length of transmission line containing a matched electrical load which can be positioned at a variable distance from the connector end.

Sliding Short: A length of transmission line contoining an electrical short which can be positioned at a variable distance from the connector end.

<u>Slotted Section</u>: A length of transmission line having a nonrodioting slot cut in the wall to admit a probe used for standing wave measurements.

<u>Smith Diagram</u>: A diagram developed to aid in the solution of transmission line and device impedance problems by permitting simple evaluation of impedance at any location or frequency.

<u>Solid-State Oscillotor</u>: A semiconductor device pockaged with an external circuit to provide rf output by utilizing the charge-handling properties of the semiconductor (instead of signal inter-oction with an electron beam flow through evacuated space as in an electron tube).

Spectrum Analyzer: An instrument which can determine and display the frequency components present in any signal or complex waveform, together with their relative amplitude, usually on an oscilloscope.

Stripline: See Microstrip.

Synchronization: See Frequency Stabilization.

<u>Tangential Sensitivity:</u> The absolute signal level in dbm required to produce an output signal which elevates the noise by an amount equal to the average noise level with no signal present.

Thermistor: A resistance element mode of a semiconducting material which exhibits o high negative temperature coefficient of resistivity.

IR Tube: A transmit-receive tube, which is a gas-filled rf switching tube that enables a system to use the same antenno for both transmitting and receiving. The TR unit prevents the transmitted power from injuring the sensitive receiver. A TR unit normally consists of a covity containing a discharge gap which completes the transmitter circuit to the antenno, and a coupling circuit which connects the received signal from the antenna to the receiver when the discharge gap is not fired, indicating that the transmitting tube is quiescent.

<u>Transmission Line</u>: Any structure used to guide the flow of electrical energy from one point to another. Most commonly used types are cooxial lines and rectangular waveguide (see definitions). Other types include parallel plate, stripline, ridged waveguide, and circular waveguide.

<u>Transmission Loss or Gain:</u> Refers to the relative change in power level of a signal transmitted from one point to another, such as within a circuit or between the input and output terminals of o device.

Tube, Backward Wave (BWO): A traveling-wave tube in which the electrons travel in a direction opposite to that in which the wave is propagated (microwave oscillator or narrowband amplifier).

<u>Tube</u>, <u>Klystron</u>: An electron tube in which the electrons are periodically bunched by electric fields formed by electrodes and cavities. It is used as an oscillator or amplifier for microwave signals.

<u>Tube, Magnetron</u>: An electron tube in which the electron flow from the cathode to the onode is influenced by the magnetic field opplied perpendicular to the cathode-anode poth, and by the field effects produced by the onode cavities. The electrons follow a spiraling poth and reach the anode in bunches, producing output oscillations. The abbreviation VTM is used for voltage-tuned magnetrons.

<u>Tube, Traveling-Wave (TWT)</u>: A broadband microwave tube which depends for its characteristics upon the interaction between the field of a wave propagated along an rf delay line structure and a beam of electrons traveling in near synchronism with the wave.

Tuning Screw: A screw or probe inserted into a transmission line (parallel to the E Field) to develop susceptance, the magnitude and sign of which is controlled by the depth of penetration of the screw.

Tunnel Diode: A PN diode to which a large amount of impurity has been added. It offers high-speed charge movement and a negative resistance region above a minimum level of applied voltage. It con be used os an oscillator or amplifier with suitable external circuits.

UHF: Ultra-high frequency, the band of frequencies between 300 and 3000 MHz.

Unbolanced Line: A line or circuit which is asymmetric with respect to ground and/or other conductors, usually having ground serve as one of the circuit conductors; e.g. a coaxial line.

VHF: Very high frequency, the band of frequencies between 30 and 300 MHz.

<u>Varactor</u>: A PN junction device in which the capacitonce varies with applied voltage. It can be used as an oscillator or hormonic frequency multiplier with suitable external circuits. It is also used as a variable capacitor, e.g. for voltage control of oscillator frequency.

<u>Velocity, Group</u>: The velocity with which the envelope of an electromagnetic wave travels in a medium, usually identified with the velocity of energy propagation.

Velocity of Light: 300 meters per usec in air, designated by the symbol C. The product of group and phase velocity in a medium always equals the velocity of light in that medium.

<u>Velocity Modulation:</u> Impressing a periodic voriation in velocity on an electron beam, for exomple, by exposing the beam to a time-varying axial voltage.

<u>Velocity</u>, <u>Phase</u>: The velocity with which o point of constant phase is propogated in a progressive sinusoidal wave.

Voltage Standing Wave Radio (VSWR): The measured ratio of the field strength of a voltage maximum to that of an adjacent minimum

along a tronsmission line. VSWR = $\frac{1 + |p|}{1 - |p|}$ where p is the reflection coefficient.

<u>Wave Circuits, Slow:</u> A microwave circuit designed to have a phase velocity considerably below the speed of light. The general opplication for such waves is in traveling-wave tubes. Commonly called a microwave delay line.

Wave, Tronsverse Electric (TE Wave): In a homogeneous isotropic medium, on electromagnetic wave in which the electric field vector is everywhere perpendicular to the direction of propagation. The dominant rectangular waveguide mode is TE₁₀.

Wave, Transverse Electromagnetic (TEM Wave): In a homogeneous isotropic medium, an electromagnetic wave in which both the electric and magnetic field vectors are everywhere perpendicular to the direction of propagation. This is the normal mode in coax, open wire, and stripline.

Wave, Tronsverse Magnetic (TM Wave): In a homogeneous isotropic medium, an electromagnetic wove in which the magnetic field vector is everywhere perpendicular to the direction of propagotion. This mode is not widely used.

<u>Wavelength</u>: The distance between adjacent points of the same phase in a wave train. It corresponds to the distance traveled by the wave in one cycle.

Wavemeter, Absorption: A device containing a resonator which causes it to obsorb moximum energy at its resonant frequency when loosely coupled to a source. It is used for measuring frequency.

Wavemeter, Transmission: A device which utilizes o cavity to transmit moximum power at resonance and thereby provide maximum deflection on a readout meter at the frequency of resonance.

YIG Device: A component using single-crystal Yttrium Iron Garnet (YIG) as a resonant structure which can be electronically tuned.

		, , , , ,
		: : :
		3 3 3 3
		· .

SECTION VI INDEX

INDEX

-A -	Page	Page	Pa	age
Abbreviations, listing	. 2	Aluminum (Cont'd)	Attenuation (Cont'd)	
Absorbed dose		Density	Coefficient (Cont'd)	
Absorbed fraction	413	Dose buildup factor 145		
Absorption	413	Equivalent	Water 1	
Radiation		Isotopes	X and gamma, table 1	
Alpha		Alveoli 414	Pair production 4	
Beta		Americium	Photoelectric	
Gamma		Atomic mass	Fast neutrons	
Neutron Proton		Isotopes	X rays	
Ratio, differential		Amplification	In concrete 1	52
Self		Gas		
Equation		Amplifier	Auger effect 4	+15
Graph	127	Linear 414	Autofluoroscope 4	15
Absorption coefficient	413	Pulse 414	Autoradiograph 4	
Atomic		Analyzer, pulse height 414	Available radionuclides	
Compton		Analysis	Avalanche	
Linear		Activation	Average life 4 Avogadro's number 4	
Energy, for air		Isotope dilution	Avogadro s number	,13
Air		Equation	-B-	
Bone		Anemia		
Muscle		Angstrom unit 414, 442	Background radiation 4	₊ 33
Water	140	Anion 414	Optimum counting time, graph 1	.19
Accelerator	413	Annihilation	Backscatter	
Betatron		Radiation433	IPC 1	
Cockcroft-Walton		Anode	Table 1	
Cyclotron		Anticoincidence circuit 418	Backscattering 4	٠١5
Direct voltage		Antimatter 414	Barium Atomic mass	57
Linear		Antimony Atomic mass	Isotopes	
Resonant transformer		Isotopes	Decay scheme 4	
Synchrocyclotron		Argon	Specific activity 1	
Synchrotron		Atomic mass 52	Barn 4	
Van de Graaff	441	Isotopes 241	Neutron cross-section curves 1	.41
Actinium		Decay scheme 384	Barriers	
Atomic mass		Specific activity 104		15
Isotopes		Area	Primary4	
Series		Decontamination	Secondary	
Activation		Arsenic	Baryon4	
Analysis		Atomic mass 54	Beam4	
Neutron, formula		Isotopes 256	Useful 4	
Activity	413	Specific activity 104	Hole 4	16
Mass relationship		Artificial radioactivity 434	Berkelium	
Method of calculation		Associated		51
Of common isotopes		Corpuscular emission 419	Isotopes 3	/6
Specific		Wavelength	Beryllium Atomic mass	51
Element		Atomic mass 61	Isotopes	
Equation		Isotopes	Beta	-
Isotope	104	Atom 414	Backscatter correction 1	27
Acute exposure	424	Periodic chart 67	Counting, equations	30
Adsorption		Atomic	, -	33
Aggregate recoil	436	Absorption coefficient 413	Dose rate from uranium 2	
Air	125	Binding energy, table 51		90
Absorption coefficients Attenuation coefficients		Mass 414 Mass unit	Energy(see Feather analysis) 4 Av. and max., table	92
Density		Masses, table	Initial half-thickness, graph 1	
MPC, isotopes in		Number	MP dose limits	
Air wall ionization chamber		Effective	Particle 4	
Alpha emitters		Weight 414	Penetration ability curve 1	22
By energy, table	88	Gram 426	Range	29
MPC		Table of		90
Alpha particle		Attenuation	Energy curve in aluminum 1	
Range, graph		Coefficient (15		104
Equation		Compton	Binary scaler	
Alphabet, Greek	1	Air, graph		51
Aluminum	_	Mass	Biologic (biological)	_
Atomic mass	52	Concrete 139	Effectiveness of radiation 4	16
Backscatter correction		Lead		30
Beta emitter	127	Table 137	Relative effectiveness 4	36

Pag	ge	1	Page	i i	Page
Biological half-life 42	6	Cerium (Cont'd)		Controlled area	419
	33	Isotopes	307	Conversion	
Bismuth		Decay scheme		Factor	
	51	Specific activity		Area	15
Isotopes	54	Cesium		Density	15
Decay scheme 40)6	Atomic mass	57	Electrical	16
Blood		Gamma radiation levels	131	Energy	16
Dyscrasia 41	۱6	Gamma transmission		Fission	18
Bone marrow 41		Concrete		Fluid flow rates	18
Bone seeker 41	١6	Iron and lead		Length	19
Boron		Isotopes		Mass	20
	51	Decay scheme		Miscellaneous	20
Isotopes		Specific activity		Power Pressure	21 22
Neutron cross section 14 Counter tube 44		Chain reaction	434	Radiological units	23
Brachytherapy		Cloud	417	Time	24
Bragg-Gray principle 41		Ionization		Velocity	24
Branching41		Air-wall		Volume	25
Breeder, reactor 41		Extrapolation		Internal	427
Bremsstrahlung		Free-air		Ratio	
British thermal unit 41		Thimble	417	Converter reactor	419
Bromine		Tissue-equivalent	417	Coolant	419
Atomic mass	54	Chamber, pocket	418	Copper	
Isotopes	59	Characteristic	433	Atomic mass	53
Specific activity 10		Charge		Backscatter correction	
Buildup factor41		Space		Beta emitters	
Plane monodirectional source 14		Chart of the nuclides		Gamma radiation levels	
Point isotopic source 14		Chemical (isotopic) exchange		Isotopes	
Burial ground	ιo	Cherenkov radiation	418	Decay scheme Specific activity	
-C -		Atomic mass	52	Core	
-0-		Isotopes		Corpuscle	
Cadmium		Specific activity		Corpuscular emission, assoc	
	56	Collision		Correction	
Isotopes 28	33	Elastic		Backscatter	127
Neutron cross section 14	+1	Inelastic	419	Decay	
Calcium		Columbium (see Niobium)		Explanation	105
Atomic mass	52	Atomic mass	55	Semi-log plot	
Isotopes		Isotopes		Universal tables of	
Decay scheme 38		Decay scheme		Geometry	
Specific activity		Column, thermal		Resolving time	
Calibration		Common logarithms, table	48	Self-absorption	
Procedures	32	Commonly available nuclides	86 // 19	Cosmic rays In electromagnetic spectrum.	
	54	Labeled		Coulomb	
Isotopes		Specific activity		Coulomb's law	
Calorie		Compton		Count	
Cancer 41		Absorption coefficient	413	Spurious	420
Capillary 41	16	Attenuation coefficient	415	Counter	
Capture		Effect	419	Boron, tube	
Cross section		Scattering		Efficiency	
Electron		Coefficient	438	Gas flow	420
K-electron		Concrete	120	Geiger-Mueller	420
Radiative		Attenuation of x rays		Geometry	
Carbon	. /	Equivalents of lead Mass attenuation coefficient		Equation Internal proportional	
	51	Transmission of gamma		Proportional	
Isotopes		Condenser R-meter		Reliability, stat. limits	
Decay scheme 38		Confidence levels, error calc.		Resolving time	
Carcinogenic4		Conservation		Error, graph	
Carcinoma 41		Kinetic energy, equation	26	Scintillation	
Carrier 41	L7	Momentum, equation	26	Counting	
Hold-back41	L7	Constant		Beta particles, equations	30
Isotopic (see Carrier) 41	۱7	Decay	420	Coincidence	420
Carrier-free		Equation		Rate, errors in	
Catalyst41		Disintegration		Graph	114
Cathoda (1		Fundamental	11	Nomograph	
Cathode		Planck's	12	Ratemeter	
Cell (biological)		Contact radiation therapy Contamination	440	Critical	
Cells	,	Radioactive	419	Mass	
Germ42	26	Removal		Size	
Somatic4		Control		Cross section	
Cerium	-	Rod		Capture	420
	57	System		Neutron	

Page	Page	Page
Cross section (Cont'd)	Diode	Electromagnetic spectrum
Nuclear	PIN 445	Chart
Crossed-field device 444	PN	Table
Crystal detector	Direct radiation	Electromotive force 423
Curie	Direct voltage accelerator 421	Electron (see Beta)
Micro	•	Assoc. corpuscular emission. 419
Milli 420	· · · · · · · · · · · · · · · · · · ·	Atomic mass 51
Pico 420	Discrete radiation 433	Capture 416
Curium	Discriminator, pulse height 421	K-capture 417
Atomic mass	Disintegration	Multiplier tube
Isotopes	Constant	Secondary
Curve Decay421	Nuclear	Valence
Semi-log plot	Doppler	Electroscope
Sigmoid	Broadening	Electrostatic
Cutoff frequency 444	Effect 421	Field 423
C. W. Laser 442	Dosage	Generator(see Van de Graaff) 441
Cyclotron 420	Internal radiation, equation 33	Unit of charge (statcoulomb) 423
D	Dose	Electrostatics
-D -	Absorbed	Element
Daughter 420	Buildup factors	Emission, assoc. corpuscular 419
Decad scaler	Cumulative	Emulsion, nuclear 423
Decay	Depth 422	End product
Constant 420	Equivalent 422	Endoergic reaction 434
Equation 28	Exit	Endothermic reaction 434
Corrections	Fractionation	Energy
Semi-log plot 108	Integral	Binding
Fission product, equations 29	Maximum permissible 422	Dependence
Product 421	Median lethal 422	Of instruments 129
Radioactive420	Meter, integrating 422	Excitation
Actinium series 113	Percentage depth	Fluence
Equations	Permissible	Flux density
Semi-log plot	Radiation Protection Guide. 210	Graph
Thorium series	Rate	Kinetic
Uranium series 112	Beta at surface of uranium 204	Conservation of, equation. 26
Tables	Ratemeter 422	Of photon
Time 444 Decibel	Skin	Potential
Laser 442	Tissue	Range as function of
Microwave 444	Volume (integral)	Alpha particle 125
Decontamination	Dosimeter 422	Beta particle 122
Factor 421	Dosimetry, photographic 422	Proton particle 126
Equation	Dynamitron	Reaction
Delay line	Dyscrasia, blood	Enriched material
Delayed neutron 421	Dysprosium	Epidermis
Delta ray 421	Atomic mass 59	Epilation 424
Densitometer 421	Isotopes 321	Epithelium
Density Air66	-E-	Epithermal reactor
Common metals	-E-	Equations
Elements	Effective	Beta particle counting 30 Resolving time
Energy 442	Atomic number 414	Correction 30
Ionization 427	Dose (various dose rates) 210	Determination 31
Photographic	Half-life	Self-absorption 30
Depilation (see Epilation) 424 Depletion	Equation	Calibration procedures 32
Depolymerization	Effects of radiation	Exposure rate Any gamma
Depth dose	Genetic	Approximate 32
Percentage, tables 169	Efficiency (counters) 422	Linear source 33
Detector, radiation 421	Overall counting 128	Point source 32
Deuterium	Einstein equation	Radium, gamma
Deuteron	Einsteinium Atomic mass	Classical physics 26 Conservation of
Observed standard 31	Isotopes	Kinetic energy 26
Theoretical standard 31	Elastic	Momentum
Differential	Collision	Energy 26
Absorption ratio	Scattering 438	Linear force 26
Recovery rate	Electric waves, in spectrum 50	Momentum
Dilution, isotope analysis 414 Isotopic, Equation 34	Regative (see Cathode) 423	Power
	1	

1	Page	1	Page	:	Page
Equations (Cont'd)		Exposure (Cont'd)	ĺ	Focal spot (x rays)	425
Decontamination factor	33	Maximum permissible	210	Force	
Dose in air, gamma	32	Rate, source		Between two charges	
Electrostatic	27	Any gamma		Electromotive	
Capacitance	28	Equation	32	Linear, equation	
Force between two charges.	28	Table		Fractionation dose	422
Potential	28	Linear, equation	32	Francium	62
Work	28	Point, equation	32	Atomic mass	
Geometry of a counter	35	External radiation Extrapolation ion. chamber		Free-air ionization chamber	
Point source	33	Extraporation ion. chamber	41,	Free path, mean	
Beta emitter dose	33	-F -		Frequency	425
Biological half-life	33	Factor		Pulling	
Effective half-life	33	Backscatter correction	127	Pushing	
Isotopic dilution	34	Buildup		Stabilization	
Double dilution method	34	Dose buildup, tables	145	FSD	
Logarithmic relations	26	Geometry	35	Depth dose, tables	
Neutron activation methods	34	Reliability	31	X rays	159
Single addition method	34	Factors, conversion	15	Fuel	,
Radiation absorption	29	Area	15	Cycle	
Alpha	29	Density	15	Rod	
Beta	29	Electrical	16	Fundamental constants Fusion, nuclear	
Gamma Neutron	29 30	Energy Fission	16 18	rusion, nuclear	423
Proton	30	Fluid flow rates	18	-G <i>-</i>	
Radioactive decay	28	Length	19	ű	
Constant	28	Mass	20	Gadolinium	
Fission product	29	Miscellaneous	20	Atomic mass	58
Resolving time error	121	Power	21	Isotopes	317
Specific activity	29	Pressure	22	Gallium	
Statistics of counting	31	Radiological units	23	Atomic mass	53
Standard deviation		Time	24	Isotopes	
Observed	31	Velocity	24	Specific activity	
Theoretical	31	Volume	25	Gamete	425
Wave and quantum relations	27	Fallout		Gamma emitters	2.2
Assoc. wavelength, particle	27	Faraday rotation		Calibration	
Compton scattering	27 27	Fast reactor		Exposure rate	
Mass-energy	27	Feather analysis	29	Table, listed by energy	
Photoelectric	27	Fermium		Gamma-ray	425
Photon energy	27	Atomic mass	64	Absorption	
Wave	27	Isotopes		Coefficient in air	
Equilibrium, radioactive	424	Fertile	424	Mass energy	140
Secular	424	Field intensity	445	Dose buildup factors	
Transient		Film		Energy in various tissues.	
Equipment decontamination	198	Badge		Equations	
Erbium		Medical		Flux equivalent	
Atomic mass	59	Ring		Attenuation coefficient, lead	
Isotopes		Speed		In electromagnetic spectrum. Levels from point source	
Erg Error	424	Filter (radiology) Primary		Mass attenuation coefficient	
In counts	114	Secondary		Prompt	
Resolving time		Filtration, inherent		RPG	
Equation	31	X-ray, graph		Rules of thumb	
Graph	121	Fissile		Transmission	148
Statistical	424	Fission, nuclear	425	Gas	
Erythema	424	Fission products	425	Amplification	425
Erthrocyte		Decay, equations		Flow counter (radiation)	
Eugenics	424	Fission yield		Laser	442
Europium	50	Fissionable		Geiger	/ 0.5
Atomic mass		Flow counter, gas		Region Threshold	
Isotopes Event, ionizing		Fluence		Geiger-Mueller (G-M) counter	
Exchange	420	Fluorescence		Gene	
Chemical (isotopic)	418	Fluorescent screen		Generator ("cow")	
Ion		Fluorine		Genetic effect of radiation	
Excitation		Atomic mass	51	Genetics	
Energy		Isotopes		Genotype	
Exit dose		Fluorography	425	Geometry	
Exoergic		Fluoroscope	425	Calculations	
Exothermic reaction		Flux		Detector	
Exponential functions, table		Density (fluence rate)		Factor	
Exposure		Energy		Good	
Acute		Photon		Poor	
Chronic	424	Neutron	442	Germ cells	420

Page	Page	Page
Germanium	Incident power or signal 445	Iron (Cont'd)
Atomic mass	Incoherent scattering 438	Specific activity 104
Isotopes	Indium	Transmission of gamma 149
Glassware, decontamination 199	Atomic mass 56	Irradiation
Glory (beam) hole 416	Isotopes	Isobars 428
Gold	Decay scheme	Isodose Chart
Atomic mass	Induced radioactivity 434	Curve
Isotopes	Inelastic collision 419	Isolator, ferrite 445
Decay scheme 405	Infrared radiation 433	Isomers 428
Specific activity 104	In electromagnetic spectrum. 50	Isomeric transition 440
Gonad	Inherent filtration (x rays) 425	Isotones
Atomic weight	Insertion loss or gain 445 Instrument calibration 416	Activity-mass relationship. 103
Mole	Insulating core transformer 427	Commonly available 86
Rad 426	Integral dose (volume dose) 422	Dilution
Graphite 426	Integrated circuit 445	Analysis
Graveyard (burial ground) 416	Integrating	Equations
Gravitation	Circuit	Effect
Grenz rays	Intensifying screen 427	Specific activity, table 104
Ground state 426	Intensity 427	Stable
	Interlock 427	Isotopic
-H-	Intermediate reactor 435	Carrier (see Carrier) 417
Wa Fa daam	Internal Conversion	Exchange
Hafnium Atomic mass	Dosage, radiation	Tracer
Isotopes	Determination, equations 33	-J-
Half-life	Proportional counter	
Biological	Backscatter factors 127	Joule 428
Equation	Geometry factors 127	(Laser)
Effective	Self-absorption correction 128 Radiation	Per square centimeter 442 Junction laser
Radioactive	Iodine	Junetion raser
Half-thickness (HVL) 426	Atomic mass 57	-K-
Beta particles in aluminum 124	Gamma radiation levels 131	
Half value layer	Isotopes	K-edge, x ray
Graph	Decay scheme	K-electron
Hardness (x rays)	Ion	Kilo electron volt (keV) 428
Harmonic	Exchange 427	Kilovolt (kV)
Health	Pair 428	Kilovolt peak (kVp) 428
Physics	Positive (see Cation) 417	Kinetic energy
Radiological	Ionization	Klein-Nishina formula 428 Krypton
Helium	Air-wall	Atomic mass
Atomic mass 51	Extrapolation 417	Isotopes
Isotopes 231	Free-air 417	Decay scheme 391
Heredity445	Thimble	Kurchatovium (suggested name)
Hertz	Tissue-equivalent 417 Density	Isotopes 380
High-flux reactor	Path (track)	-L-
Hit theory (target theory) 440	Potential	<u> </u>
Hold-back carrier 417	Primary 427	L-edge, x ray 161
Holmium	Secondary	Labeled
Atomic mass	Specific	Compound
Homogeneous reactor 435	Ionizing	Lag time
Hot cell 427	Energy 423	Lanthanum
Hybrid	Event 428	Atomic mass 57
Circuit	Radiation	Isotopes
Junction	Iridium	Decay scheme
Hydrogen Atomic mass	Isotopes	Specific activity 104 Laser
Heavy (see Deuterium) 9	Decay scheme 403	Control area
Isotopes 231	Gamma radiation levels 131	C. W 442
Decay scheme	Iris 445	Definition and abbreviation. 442
Neutron cross-section 142 Specific activity 104	Iron Atomic mass 53	Latent period
Hygiene, radiation	Beta backscatter correction, 127	Atomic mass
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dose buildup factor 145	Isotopes
-I <i>-</i>	Equivalents of lead 157	LD ₅₀ 429
	Gamma radiation levels 131	Lead
Immunity	Isotopes	Atomic mass
Tuprant (radiorogy) 42/	Decay scheme 386	Attenuation of x ray 151

Pag	;e	I	Page	Page
Lead (Cont'd)		Mass (Cont'd)		Monoenergetic radiation 433
Concrete equivalents 15	7	Relativistic	429	Monte Carlo method 430
Dose buildup factors 14	_ I	Spectrograph		Motion, wave 441
Equivalent		Spectrometer		Multiple scattering 438
Gamma ray attenuation 13		Table of atomic		Mutation 430
Iron equivalents 15		Unit, atomic	414	
Isotopes 35		Mass-energy		-N-
Decay scheme 40		Absorption coefficient	140	
Thickness		Conversions	16	N-unit
Table	6	Relation	429	Napierian logarithms 46
Reduced beam	6	Matched termination	445	Natural logarithms 46
Transmission of gamma 14	8	Mathematics		Natural radioactivity 434
Leakage radiation 43	3	Signs and symbols	1	Neodymium
Lepton 42	9	Tables	36	Atomic mass 58
Lesion 42	9	Maximum credible accident	429	Isotopes 310
LET 21		Maximum permissible		Neon
Lethal dose (LD ₅₀)	2	Concentration in air, water.		Atomic mass 51
Leukemia 42		Dose		Isotopes 235
Limiter 44	.5	Dose limits		Neoplasm 430
Linear		Levels in total body	206	Neptunium
Absorption coefficient 41		Power		Atomic mass
Graph (air)		Density	442	Isotopes 371
Accelerator		Mean		Series
Amplifier41		Free path		Neutrino
Attenuation coefficient 41	_ I	Life		Neutron
Energy transfer		Median lethal dose (MLD)		Absorption
	6	Mega electron volt (MeV)	429	Activation
, 0	12	Mendelevium	61.	Atomic mass
Lithium	.,	Atomic number	64 270	Attenuation, fast 144
	1	Isotopes	3/9	Cross sections Boron
	- 1	Mercury Atomic mass	61	Cadmium 141
Localization, selective 42 Logarithms	٠	Isotopes		Hydrogen142
	8	Decay scheme		Indium141
	1	Specific activity		Water142
	6	Meson		Cycle
	6	Metabolism		Delayed
Lung		Metals	430	Flux
Capacity 2	1	Decontamination	198	Prompt
Weight21		Density	65	RPG
Lutetium	_	Metastable state	430	Rules of thumb
Atomic mass 6	60	Metastasis	430	Sources
Isotopes 33	0	Meter		Newton 430
•		Dose rate	422	Nickel
-M <i>-</i>	- 1	Microcurie	420	Atomic mass 53
		Micro-microcurie (picocurie)	420	Isotopes
Magnesium		Micron	430	Decay scheme 389
	1	Microstrip	445	Niobium (Columbium)
Isotopes23		Microwave430,		Atomic mass 55
Malignant tumor 44	- 1			Isotopes 270
Man, standard 21		Mil		Decay scheme 393
Chemical composition 21	4	Millicurie		Nitrogen
Mass of organs		Millimeter of mercury		Atomic mass
Max. perm. amt. of isotope 20		Million electron volts		Isotopes
Normal physiological data 21		Milliroentgen		Specific activity 104
Respiratory exchange 21 Water balance 21		Mismatch loss		Nobelium
Manganese	٠′	Modes		Atomic mass
	3	Molecular weight		Isotopes
Gamma radiation levels 13	- 1	Molecule		Figure
Isotopes	- 1	Labeled		Power
Specific activity 10		Molybdenum	72)	Nonisotopic carrier
Maser	~	Atomic mass	55	Nuclear
(Laser)	2	Isotopes		Binding energy, table 51
(Microwave)44		Decay scheme		Cross section
Mass 42		Specific activity		Disintegration
Absorption coefficient 41		Momentum		Emulsion
Activity relationship 10		Conservation	26	Fission
Atomic	4	Equation	26	Fusion 430
Table 5	51	Photon	27	Nucleus 430
Attenuation coefficient		Monitoring	430	Power
Table of	39	Area	430	Reactor 435
Critical 42		Instruments	129	Nucleon 430
Defect		Personnel		Nucleus
Number 42	29	Monochromatic radiation	433	Biological 430

Page	Page	Page
Nucleus (Cont'd)	Photoelectric (Cont'd)	Primary (Cont'd)
Nuclear	Equation	
Nuclide 431	Threshold44	I
Chart of the 69	Photofluorography	Process, regenerative 432
Number	Photographic	Product, decay
Atomic	Density	.
Avogadro's	Dosimetry	
Mass 429	Photon	I
1425	Energy2	Specific activity 104
-0-	Flux density	Prompt gamma radiation 432
	Photosynthesis	
Open installation	Physics	Proportional
Operating voltage	Classical equations 20 Health43	
Optical density	Picocurie	
Organ	Pile (see Reactor, nuclear) 43	
Mass of 212	PIN diode attenuation 44	
Osmium	Planck's constant	
Atomic mass	Plateau	
Isotopes	Slope, relative	2 Atomic mass
Osmotic	Atomic mass 60	
Output	Backscatter corrections 12	1
Energy 443	Isotopes	
Power 443	Plural scattering 43	
Oxygen Atomic mass	Plutonium	Protium
Atomic mass	Atomic mass	
130topes 234	Decay scheme 40	
-P-	Specific activity 10	
	PM focusing 44	
Packing fraction	Pocket chamber418	
Paint, decontamination 198	Point source	Amplifier
Pair production	Exposure rate	
Palladium	Poison 43	. 1
Atomic mass 55	Polarization 44	
Isotopes	Polonium	Discriminator 421
Paraffin attenuation, neutron 144	Atomic mass 6	
Parametric amplifier	Isotopes	
Partial pressure of oxygen 443	Specific activity 10	.
Particle	Polycythemia	
Associated wavelength 27	Polymerization	
Accelerator	Positron 43	
Alpha	Potassium Atomic mass	Q-switched laser
Beta	Isotopes24	
Peak, kilovolts 428	Decay scheme 38	
Penetration ability	Specific activity 10	
Beta radiation 122	Potential	Vapor 432
Gamma radiation	Difference	_ 1
Percentage depth dose	Energy	
Periodic table	Ionization	
Of elements 67	Power 44	6 Rad 433
Permeable	Absolute	.
Permissible dose	Average 44	
Concentration in air, water 206	Density	
Radioisotopes, total body 206 Personnel	Peak44	
Decontamination	Reactor43	_
Monitoring 430	Relative 44	6 Background 433
Phantom	Stopping43	
Phase sifter	PPM focusing	
Phosphorus Atomic mass	Praseodymium Atomic mass	Concentration guides 206 Detector
Isotopes	Isotopes	
Decay scheme 383	Decay scheme 40	
Specific activity 104	Specific activity 10	E Exposure (see Exposure) 424
Phosphorescence	Precision connector 44	
Photoelectric	Pressure vessel, reactor 43	
Attenuation coefficient 415	Primary Ionization	Hygiene

Page	Page	Page
	- 1 (5 .13)	Don't a
Radiation (Cont'd)	Radon (Cont'd)	Region (25
Internal	Isotopes	Geiger
Ionizing	Decay scheme 406	Proportional
Leakage (direct) 433	Range	Regulating rod
Measurements (see Count) 420	Alpha particle	Relative
Monochromatic	Equation	
Monoenergetic	Graph	Biological effectiveness 436
Penetration ability	Beta particle Equation	Plateau slope
Beta	1 -1	Reliability factor 32
Gamma	As function of energy In aluminum	Statistical limit of counter 120
Primary	Maximum	Rem
Protection Guides 210	_	Rep
Scattered	Proton 126	Repetitive pulse laser 443
Secondary	Graph	Research reactor
Sickness	Rate, recovery	Resolving time
Stem	I	Counter
Stray	Ratemeter	Correction, equation 31
Target theory	Counting	Determination, equation 31
Therapy	Ratio, differential absorption 413	Error
Brachytherapy		Equation
Radiation	Ray Alpha414	Graph
Rotation	Beta416	Resonance
Teletherapy	Cosmic 419	Capture 417
Ultraviolet	Delta421	Energy
Radiative capture	Gamma	Resonator cavity
Radioactive	Absorption equation 29	Respiratory
Contamination	Grenz	Exchange in man 215
Decay	Infrared 433	System
Decontamination	X	Capacity
Equations	Attenuation in	Response time, curve 130
Equilibrium	Concrete	Return loss
Secular	Lead	Rhenium
Transient	Barrier computation 150	Atomic mass
Half-life	Machine output, diagnostic	Isotopes
Semi-log plot	Dental	Rhodium
Series	Nondental	Atomic mass 55
Actinium	Rayleigh scattering 438	Isotopes
Neptunium	Reaction (nuclear) 434	Rise time 446
Thorium	Chain	R-meter, condenser 419
Uranium	Endoergic	RMS amplitude
Standard	Endothermic	Rod
Radioactivity	Energy	Control
Artificial 434	Exothermic	Fuel
Induced	Thermonuclear	Regulating 437
Neutron	Reactivity	Safety 437
Natural	Reactor	Scram
Radioautograph	Breeder 435	Shim 437
Radiobiology	Converter 435	Roentgen 437
Radiochemistry	Epithermal	Intensity, point source, Y 132
Radiography	Fast 435	Output of some isotopes 131
Radioisotopes (see Isotope)	Heterogeneous 435	Rays 437
By element	High flux 436	Roentgenography (see X ray) 437
Max.perm.in body,air,& water 206	High temperature 436	Roentgenology
Radiological	Homogeneous	Rotation therapy 440
Health 427	Intermediate 435	Rubidium
Survey 439	Nuclear 435	Atomic mass 54
Radiology 434	Power 435	Isotopes 263
Radionuclides, commonly avail. 86	Breeder 435	Decay scheme 391
Radiopharmaceutical 434	Production 435	Specific activity 104
Radioresistance 434	Research 435	Rules of thumb 205
Radiosensitivity 434	Thermal 435	Ruthenium
Radio waves, spectrum 50	Recoil, aggregate 436	Atomic mass 55
Radium	Recombination	Isotopes 276
Atomic mass 62	Recovery (radiobiology) 436	Decay scheme 395
Isotopes 364	Rate 434	Specific activity 104
Decay scheme 406	Rectangular waveguide 446	Rutherford
Radiation levels 131	Red blood cell (Erythrocyte) 424	
Specific activity 104	Reflected	-S-
Transmission through	Power 446	
Concrete 149	Signal	Safety rod 437
Iron 149	Reflection coefficient 446	Samarium
Lead 148	Reflectometer 446	Atomic mass 58
Radon	Reflector 436	Isotopes
Atomic mass	Regenerative process 432	Sampler 446

Pag	Page	Page
Sarcoma	_	Tangential sensitivity 447 Tantalum
Saturation thickness	Atomic mass	Atomic mass
Backscatter correction 12 Scaler 43		Isotopes
Binary 43	Radiation levels 131	Target theory
Decade	Specific activity 104 Softness (radiation) 439	Technetium Atomic mass
Atomic mass 5		Atomic mass
Isotopes		Teletherapy 440
Scanner	,	Tellurium Atomic mass
Scattered radiation 43		Isotopes
Scattering		Temperature, conversion factor 20 Terbium
Compton43		Atomic mass 58
Elastic		Isotopes
Incoherent		Thallium Atomic mass
Multiple	Table 104	Isotopes 350
Plural		Specific activity 104 Therapy
Single	1.	Brachytherapy
Scattering, coefficient, Compton 43		Contact
Scintillation Camera43	Analyzer	Radiation
Counter	Specular or regular reflection 443	Thermal
Scram		Column
Screen	Square roots and squares 36 Stable isotope	Unit, British
Medical		Thermalization
Speed	Deviation	Thermistor
Secondary	Radioactive 439	Thimble ionization chamber 417
Electron	Statcoulomb	Thorium Atomic mass
Protection barriers 41	Error	Isotopes
Radiation		Decay scheme
Selective localization 42	Statistics of counting 31 Stem radiation 433	Series
Selector, pulse height 438	Sterility (biological) 439	Threshold
Selenium Atomic mass	Stopping power	Dose
Isotopes	Streaming	Photoelectric
Self-absorption	Stringer	Thulium
Corrections, IPC 128	Strontium 44/	Atomic msss
Semiconductor or junc. laser 44		
Sensitive volume		Conversion factors 24 Lag
Series, radioactive 438	Specific activity 104	Optimum counting 119
Shield	S.U	Resolving, counter 436
Shim rod	Sulfur	Atomic mass 56
Shutdown	Atomic mass	Isotopes 288
Sickness, radiation 438 Sigmoid curve 439	Isotopes	Tissue Dose422
Signal-to-noise ratio 446	Specific activity 104	Equivalent
Signs and symbols Alphabetically	Survey, radiological 439	Ionization chamber 417 Material 440
By name		Titanium
By symbol		Atomic mass
Silicon	By name	Isotopes
Atomic mass	Mathematical 1	Townsend avalanche
Isotopes 238 Silver	Synchronization	TR tube
Atomic mass 56	Synchrotron	Track 440
Isotopes	Syndrome	Transient radioactive equilib. 424 Transition, isomeric 440
Skin dose 422	o,scem, respiratory 430	Transmission
Sliding	-T-	Gain
Load	Table of isotopes 219	Line
Slotted section 447	Tagged (labeled) compound 428	Transmutation

Page	Page	Page
Trigonometric	Velocity (Cont'd)	X ray (Cont'd)
Tritium 440	Of light 447	Attenuation in
Atomic mass	Phase 447	Concrete
Isotopes	Visible spectrum 50	Graph
Specific activity 104	Volt	Table 139
Triton 440	Electromagnetic spectrum 50	Lead
Tube	Electron	Graph
Backward wave 447	Voltage	Table
Boron counter 440	Operating 441	Water
Electron multiplier 440	Standing wave radio 447	Graph 133
Klystron 447	Starting 441	Table 138
Magnetron 447	Volume	Barrier computation 150
Photomultiplier 440	Dose (integral) 422	Concrete & iron equivalents. 157
TR 447	Sensitive 441	Energies
Traveling-wave 447		Critical-absorption 161
Tumor 440	-w-	Emission 161
Malignant 441		Graphs
Tungsten (wolfram)		Exposure 159
Atomic mass 60	Water	Filtration
Isotopes	Activated	FSD
Specific activity 104	Attenuation, neutron 144	kVp
Tuning screw	Balance in man	HVL vs. tube potential 155
Tunnel diode 447	Dose buildup factor 145	Output, table
	Heavy	Dental
-U-	Mass attenuation coefficient 137	Nondental
11TD	MPC, isotope	RPG
UHF	Neutron cross section 142 Watt441, 443	Shielding
Ultraviolet, spectrum 50 Unbalanced line 447	Watts per square centimeter 443	Concrete, graphs 152
Units	Wave	HVL, table
Rad 433	And quantum relations 27	Lead, graphs
Rem	Circuits, slow 447	Xenon
Rep 436	Equation	Atomic mass 57
Roentgen	Length	Isotopes 299
Universal decay table 106	Associated 27	Decay scheme 398
Uranium	Meter	,
Atomic mass 63	Absorption 447	- Y-
Beta surface dose rate 204	Transmission 447	
Isotopes 369	Motion 441	YIG device 447
Decay scheme 407	Spectrum 50	Ytterbium
Series 112	Transverse	Atomic mass
Specific activity 104	Electric447	Isotopes328
Useful beam 415	Electromagnetic 447	Yttrium
••	Magnetic 447	Atomic mass 54
-V -	Weight	Isotopes
** *****	Atomic	Decay scheme 292
Valence	Gram Atomic	-z-
Electron	Molecular	-2-
Variation exponent functions 41	Wolfram (tungsten)	Z number (see Atomic number) 414
Atomic mass 53	Atomic mass 60	Zinc
Isotopes	Isotopes	Atomic mass 53
Van de Graaff accelerator 441	Specific activity 104	Isotopes
Vapor, quenching		Decay scheme
VHF		Radiation levels
Varactor 447	w.	Specific activity 104
Velocity	-x-	Zirconium
Group 447		Atomic mass 55
Modulation 447	X ray 441	Isotopes 269
		Decay scheme 393